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The Maximum Entropy Method is widely used for reconstruction of real non-negative functions, such 
as images (intensity distributions) in optics and astronomy. The problem of reconstruction exists not 
only for real non-negative functions: in radio holography, for example, it is often necessary to 
reconstruct a coherent source field distribution described by a complex function. In this paper the 
Generalization of Maximum Entropy Method for reconstruction of functions of different types (real 
non-negative as well as real with alternating signs and complex ones) is suggested. Though this 
problem is considered for two-dimensional functions it is evident that the generalization obtained can 
be applied for functions of different dimensions. Numerical simulation results show high quality of 
reconstruction of complex functions and stability of the algorithm in the presence of measurement 
errors. 

KEY WORDS Reconstruction of images, maximum entropy method 

1. INTRODUCTION 

The Maximum Entropy Method is widely used for solving image reconstruction 
problem, for example, in optics and astronomy [ l ,  21. Let us consider the 
traditional Maximum Entropy Method in discrete form for two-dimensional 
sequences 

m I  

X,) >= 0 
where a$ are constants, Ank are measured data (in radio astronomy: samples of 
visibility function). 

The problem (1)-(3) is a nonlinear optimization problem with constraints in 
the form of equality (2) and inequality (3). 

Using the Lagrange method it is easy to obtain a solution for xmI 
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314 A. T. BAJKOVA 

where cunk-Lagrange or  dual factors which can be found by maximization of the 
dual functional without supplementary conditions 

It is clear that xmi in accordance with (4) is always non-negative. But in several 
cases it is necessary to reconstruct real sequences with alternating signs or 
complex ones. Such a situation arises, for example, in radio astronomy or in radio 
holography when it is required to build an image of coherent sources. 

In this paper the Generalization of Maximum Entropy Method (1)-(3) is 
suggested. The possibilities of this method for high quality reconstruction and 
stability in the presence of errors were investigated by numerical simulation 
technique. 

2. RECONSTRUCTION OF REAL FUNCTION WITH ALTERNATING 
SIGNS 

In this case the minimizing functional cannot be written as (l), because xmi can 
take negative values and the logarithm of a negative value is not determined in 
the real domain. Therefore it is proposed to modify functional (1) in the following 
way 

where I * I is the absolute value of * . 

traditional problem (1)-(3) let us represent the sequence xmi in the form 
To avoid the absolute value in (6) and reduce the optimization problem to the 

Xmi = Ym/ - zm/ 

where both ymi and zmi are non-negative. 
In addition, let the sequences yml and zmI satisfy the following conditions 

if x m i > O  then zmi=$O and x m l = y m i  
if x m l < O  then ym,=$O and x,,= -zml. 

Then functional (6) can be rewritten as follows 

Let (9) be modified as 

\ m  I / 

where a is a parameter which can be chosen so that the conditions (8) are 
realized. That will be shown below. 
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RECONSTRUCTION OF COMPLEX FUNCTIONS 315 

The supplementary conditions (2) can be rewritten in the following way 

C C (Yml - z m / ) a $ f ; A n k  
m I  

YmI, zm/>= 0- (12) 
Analysis of the solution of the optimization problem (10)-(12) shows that the 

value of the parameter a influences the realization of the conditions (8) and 
therefore the reconstruction quality. 

Let us show how this problem of condition optimization (10)-(12) can be 
represented as a simpler dual nonconditional optimization problem. 

Let us construct a Lagrange functional using (10) and (11) 

where = Lagrange or dual factors. 
Let us find the minimum of L from the extremum existence condition 

d L  dL -=o, -=o: 
dYm1 dzm/ 

zrnl = exp ( c c an,& - 1 - ln (a)).  ( 14) 
n k  

As can be seen from (13) and (14), conditions (12) are satisfied. 
By substituting (13) and (14) into the Lagrange functional we obtain the dual 

optimization problem without supplementary conditions 
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The dual factors an& are determined by solving (15). The solution sought for can 
be found by substituting the value of an& into (13) and (14). 

The solution of (15) may be found by using any gradient method. 
The solutions (13) and (14) have a peculiarity : the product of yml and zmI 

depends on the parameter a 
ymlzml = exp (-2 - 2 In (a) )  = K(a) .  (16) 

From the last expression it is clear that K ( a )  influences the accuracy of the 
realization of conditions (8) and, consequently, the reconstruction quality. An 
increase of a results in a decrease of K ( a )  and an improvement of the 
reconstruction quality, which will be shown by numerical simulation. 

3. RECONSTRUCTION OF COMPLEX FUNCTIONS 

Since the real and imaginary parts of the complex function are real functions with 
alternating signs, let us represent the complex sequence in the following way 

rml + Iqml = (xm1 - yml) + i ( Z m l  - urn/) 

x m / ,  Y m / ,  zm1, urn/>= 0. 

(17) 

(18) 

where 

By analogy with (8) let the sequences xmI,  ymr, zml and uml satisfy the following 
conditions 

if rml > O  then y m 1 3 0  and rml = x m l  

if rml < O  then xml+O and rml= -yml 

if qml < O  then zml 3 0  and qml = -urn,[. 

Because rml and qml are independent of one another it is proposed to minimize 

if qml>O then vml+O and qml=zml ( 1 9  

the following functional 

If conditions (19) are satisfied, the optimization problem can be rewritten by 
analogy with (lo)-( 12) in the following way 

where a$, b$ are constants, Ankt B,,, are the real and imaginary parts of the 
measured samples respectively. 
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mRs 

The solution of the optimization problem (21)-(23) is expressed as 

SIMULATED 
SAMPI5l HOUXRAM 

E0LM;RhY 

The dual factors and P n k  can be found by maximization of the dual functional 

PIELD DISTRIBUTION 
RECONSTRUCTgD BY 

c m 1 m  MAXIMUM 
TRUE FIELD 

DISTRIBUTION 
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I v  I I 

(a) (b) ( c )  (d) 
Figure 2 Numerical simulation results for a complex distribution with three point-like components 
(0.8 i j 0 . 6 ) ,  (-0.3 +j0.9), (-0.6 +j0.8). (A) (U,  V)-samples. (B) True distribution. (C) Distribution 
obtained without reconstruction algorithm. (D) Reconstructed distribution obtained by using the 
Generalized Maximum Entropy Method with a = exp (-1). (E) Reconstructed distribution obtained 
with a = exp (2). (F) Reconstructed distribution obtained with a = exp (5). (a) Absolute value of the 
real part of a two-dimensional distribution. (b) Diagonal cross-section of the real part. (c) Absolute 
value of the imaginary part of the two-dimensional distribution. (d) Diagonal cross-section of the 
imaginary part. 
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RECONSTRUCTION OF COMPLEX FUNCTIONS 319 

without supplementary conditions 

by substituting expression (24) for x,,, y,,, zm1, v,,. 
As can be seen from (24), solutions for x,,, y,,, z,,, v,, are related by 

x,,y,l = zmlvml = exp (-2 - 2 In (u)) = K ( a )  
similarly to (16). 

By changing u it is possible to control the reconstruction quality. An increase of 
a leads to a decrease of K ( a )  and to closer realization of conditions (19), and 
therefore to improving the reconstruction quality. 

4. NUMERICAL SIMULATION 

The possibilities of the proposed Generalized Maximum Entropy Method have 
been investigated by using the “HOLOGRAPHY” Program Package on an 
IBM-PC-AT in TURBO-PASCAL created in the Institute of Applied Astronomy 
of the USSR Academy of Sciences for the simulation of the Radio Holography 
Aperture Synthesis System for mapping artificial cosmic bodies illuminated with 
coherent radiation by terrestrial stations. The scheme of the simulation algorithm 
is given in Figure 1. In Figure 2, simulation results are shown for a point-like 

Figure 3 Numerical simulation results for a complex distribution with three gaussian-like com- 
ponents. (A) True distribution. (B) Distribution obtained without using reconstruction algorithm. (C) 
Reconstructed distribution obtained by using the Generalized Maximum Entropy Method with 
a = exp (7). (a) Absolute value of the real part of a two-dimensional distribution. (b) Diagonal 
cross-section of the real part. (c) Absolute value of the imaginary part of the two-dimensional 
distribution. (d) Diagonal cross-section of the imaginary part. 
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complex distribution. Different reconstructed distributions are obtained by using 
different values of the parameter a. It can be seen that reconstruction quality 
depends on the value of a, with increasing a leading to improvement of quality. 
In Figure 3, simulation results are shown for a more complicated complex 
distribution. 

In the above examples measurement errors were taken into account. Random 
errors uniformly distributed in the range of [-O.lA, O.lA], where A is a 
maximum of the modulus of complex distribution, were added to the samples. 
Computer simulation shows that random errors uniformly distributed in the range 
of [-0.25A, 0.25AI are tolerable. Thus, simulation results show sufficiently high 
stability of the Generalized Maximum Entropy Method in the presence of 
measurement errors. 

5. CONCLUSIONS 

In this paper a generalization of the well-known Maximum Entropy Method is 
proposed. This technique is suitable for the reconstruction of functions of 
different types not only of real non-negative functions, but real functions with 
alternating signs and complex ones as well. Computer simulation of the 
generalized algorithm proved its possibilities for high-quality reconstruction of 
complex distributions and its high stability in the presence of measurement errors: 
The Generalized Maximum Entropy Method suggested can be effectively used for 
imaging coherent sources in radio astronomy and holography. 
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