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The neutron-capture element abundances in the 52 red giants with metallicities spanning the range
−0.6 < [Fe]/[H] < 0.25 are found. High-resolution spectra (R = 42000; S/N > 100) for the inves-
tigated stars were obtained with the ELODIE spectrograph of the 1.93 m telescope at the Observatoire
de Haute Provence (France). The determination of elemental abundances was carried out with the local
thermodynamic equilibrium assumption by the model atmosphere method; for Ba and Eu the hyper-
fine structure was taken into account. The dependences of the neutron-capture element abundances on
metallicity are presented.
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1. Introduction

The heavy elements (Z > 30) in the Solar System are formed in neutron-capture processes,
by either the slow or the rapid process [1].

At relatively low neutron densities, if the time between neutron captures is longer than the
β-decay time, these captures are referred to as slow processes. The rapid process has tradition-
ally been related to an astrophysical process taking place in a highly neutron-rich environment,
in which the mean time between neutron captures is very short compared with the β-decay
time.

The theory proposes the existence of different astrophysical sites for the operation of the
two neutron-capture nucleosynthesis mechanisms. For the case of the slow process, the two
astrophysical sources are, firstly, the He-burning cores of massive stars (M > 10M�) [2–4]
and, secondly, the thermally pulsing He shells of asymptotic giant branch stars [5, 6]. However,
the specific site or sites of the rapid process is an unsolved problem, although there have been
some suggestions considering the type II supernovae explosions [4, 7], the mergers of neutron
stars [8, 9], accretion-induced collapse [10] and type 1.5 supernovae [11] as the possible
sources.
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In this paper, we continue our discussion of elemental abundance ratios for low-mass stars
in the Galactic disc. The effective temperatures Teff , the elemental abundances of C, N and O,
the α elements, the elements of the Fe peak and the neutron-capture elements Y, Ba and Eu
were determined earlier [12–14]. In this review we present a new determination of the Zr and
Sm abundances.

2. Observations and parameters

The spectra of the studied stars were obtained on 1.93 m telescope of the Observatoire de Haute
Provence (France) equipped with the echelle spectrograph ELODIE [15]. The resolving power
was 42 000 in the wavelength range λ = 3850–6800 Å. Spectrum extraction, wavelength cali-
bration and radial velocity measurement have been performed at the telescope with the online
data reduction software, while straightening of the orders and removal of cosmic-ray hits, bad
pixels and telluric lines were performed as described in [16]. We carried out continuum level
drawing and equivalent width measurements using the DECH20 code [17]. The equivalent
widths of lines were measured by Gaussian function fitting. The temperatures were deter-
mined with a very high level of accuracy using the line depth ratios [12]. The logarithm of
the surface gravity g was determined using the Fe ionization equilibrium assumption, where
the average Fe abundances determined from the Fe I lines and Fe II lines must be identical.
The microturbulent velocities Vt were determined by forcing the abundances determined from
individual Fe I lines to be independent of the equivalent width. The parameters for the stars
studied are presented in table 1.

3. Elemental abundance determination

Using the derived stellar parameters and the atmosphere models given by Kurucz [18] we
determined the elemental abundances ofY, Zr and Sm from a local thermodynamic equilibrium
analysis of equivalent widths using the WIDTH9 code. The solar abundances of Y, Zr and Sm
(log{[ε(Y)]�} = 2.24, log{[ε(Zr)]�} = 2.6 and log{[ε(Sm)]�} = 1.01) were calculated with
the solar model given by Kurucz [18] from the spectra of the Moon and asteroids that were
obtained with the echelle spectrograph ELODIE. The oscillator strengths for the Zr II and Sm
II lines have been adjusted as described in [19]. The lines included in our analysis and atomic
data are listed in table 2.

The mean Y, Zr and Sm abundances are [Y]/[Fe] = −0.09 ± 0.09, [Zr]/[Fe] = −0.04 ±
0.06 and [Sm]/[Fe] = 0.04 ± 0.07, respectively.

The Ba and Eu abundances are determined from line profile fitting of the stellar spectra
using the STARSP code developed by Tsymbal [20].

The elemental abundances are derived from the Ba II resonance line (λ = 4555 Å) and from
the Eu II subordinate line (λ = 6645 Å). The Ba II and Eu II ions considered here have lines
that show appreciable hyperfine structure. The atomic data for these lines were taken from [21].
Recent non-local thermodynamic equilibrium (NLTE) calculations for Ba II and Eu II have
been carried out and were reported in [21, 22]. It was shown that, for the Ba II line (λ = 4555 Å)

that we used in our calculations, the NLTE effects are small for [Fe]/[H] > −1.9. For the Eu
II line (λ = 6645 Å) the NLTE correction ranges from 0.04 dex to 0.06 dex. Therefore, we did
not take into account the NLTE effects in our calculations. The solar Ba and Eu abundances,
log{[ε(Ba)]�} = 2.21 and log{[ε(Eu)]�} = 0.53, and the van der Waals damping constants
C6 for the Ba II and Eu II lines were determined in [21] from solar line profile fitting. The
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Table 1. Atmospheric parameters and neutron-capture abundances.

Hd Teff log g [Fe]/[H] [Y] [Zr] [Ba] [Eu] [Sm]

2 910 4756 2.7 0.12 −0.03 −0.04 −0.18 0.07 0.04
4 188 4809 2.7 0.04 0 0 −0.05 0.13 −0.06
4 482 4917 2.65 0.02 −0.11 0.02 0.07 0.02 −0.05
5 395 4849 2.15 −0.32 −0.24 −0.06 −0.09 −0.01 −0.06
6 319 4650 2.3 0.06 −0.14 −0.06 −0.17 0.06 0
6 482 4738 2.4 −0.11 −0.29 −0.07 0.05 0.23 0.01
7 106 4684 2.55 0.05 −0.19 −0.18 −0.16 −0.43 −0.02
7 578 4680 2.5 0.12 −0.09 −0.01 −0.13 0.03 0.2
8 207 4750 2.75 0.27 −0.26 −0.01 −0.18 0.05 −0.09
8 599 4781 2.5 −0.22 −0.06 −0.11 0.11 0.09 0.21
8 733 4932 2.7 0.02 −0.13 −0.08 0.07 −0.05 −0.02
9 408 4804 2.3 −0.21 −0.04 −0.13 0.05 0.18 −0.03

10 975 4881 2.4 −0.19 −0.07 −0.01 0.08 0.34 0.12
11 559 4977 3 0.05 −0.13 0.03 −0.06 −0.23 0.02
11 749 4679 2.4 −0.1 −0.22 −0.03 −0.01 0.17 0.01
11 949 4708 2.3 −0.16 −0.11 −0.08 0.1 0.13 0.04
15 453 4696 2.4 −0.07 −0.1 0.06 0.01 0.04 −0.06
15 755 4611 2.3 −0.01 −0.2 −0.07 −0.1 −0.02 −0.03
15 779 4821 2.7 0.02 −0.06 −0.02 −0.03 0.15 −0.02
16 247 4629 2.2 −0.22 −0.02 −0.06 0.06 0.09 0.15
16 400 4840 2.5 −0.01 0.06 0 0.05 0.08 0.06
17 361 4646 2.5 0.12 −0.17 −0.08 −0.18 0 0.04
18 885 4722 2.5 0.16 −0.16 −0.14 −0.17 −0.09 0.03
19 270 4723 2.4 0.15 −0.22 −0.16 −0.06 0.02 0.13
19 787 4832 2.75 0.14 −0.14 −0.02 −0.05 0.05 0.02
19 845 4933 2.8 0.11 −0.01 −0.02 −0.92 0.06 0.04
20 791 4986 2.8 0.11 −0.08 0 0.03 0.08 0.16
25 602 4693 2.4 −0.42 −0.08 −0.08 0.01 0.12 0.09
25 604 4764 2.7 0.13 0.06 −0.01 −0.14 0.04 0.06
26 546 4743 2.25 −0.01 −0.06 −0.08 0 0.03 0.03
26 659 5178 2.9 −0.13 0.02 0.03 0.22 0.05 0.01
26 755 4630 2.2 −0.06 −0.11 0 −0.05 0.08 0.09
27 348 5003 2.8 0.14 −0.09 −0.1 −0.05 −0.07 −0.02
27 371 4955 2.7 0.11 −0.11 −0.05 −0.07 0.06 0.06
27 697 4975 2.65 0.11 −0.1 −0.06 −0.02 0.01 0.05
28 292 4453 2.1 −0.18 −0.11 0.01 0.02 0.17 0.1
28 305 4925 2.55 0.11 −0.11 −0.06 −0.02 0.01 0.06
28 307 4961 2.7 0.12 −0.11 −0.03 −0.13 0 −0.08
30 557 4829 2.45 −0.07 0.03 0.04 0.16 0.14 0.09
31 444 5080 2.75 −0.17 0 0.12 0.16 0.19 0.11
33 419 4708 2.3 0 −0.11 −0.03 −0.01 0.02 0.16
33 618 4590 2.3 0.05 −0.08 −0.07 −0.06 0.02 0.14
34 200 5055 2.8 0.04 −0.09 −0.06 0.05 0.08 −0.06
34 559 5010 2.9 0.04 0.13 0.08 0.1 0.18 0.05
35 369 4931 2.4 −0.14 −0.11 −0.06 0.23 0.21 0.08
37 638 5093 2.8 −0.01 0.1 0 0.1 0.13 0.01
39 070 5047 2.8 0.03 −0.03 0 −0.04 0.09 −0.02
39 910 4618 2.6 0.27 −0.12 −0.05 −0.13 0.05 0.11
40 020 4670 2.3 0.13 −0.26 −0.13 −0.19 −0.06 0.02
40 801 4703 2.2 −0.21 −0.19 −0.15 0.2 0 −0.06
42 341 4655 2.6 0.25 −0.11 −0.11 −0.21 −0.03 0.08
43 023 4994 2.6 −0.13 0.05 −0.08 0.12 0 0.04

mean Ba and Eu abundances are [Ba]/[Fe] = −0.02 ± 0.11 and [Eu]/[Fe] = 0.09 ± 0.12,
respectively.

The obtained abundances are presented in table 1.
The dependences of the neutron-capture element abundances on metallicity are presented

in figure 1.
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Table 2. Oscillator strengths for the lines used.

Ion λ X (eV) log gf

Zr II 5112.28 1.66 −0.79
5350.09 1.76 −0.89
5350.36 1.81 −0.8
6114.79 1.66 −1.48

Sm II 4523.92 0.43 −0.08
4577.69 0.25 −0.61

Figure 1. The abundance ratios [X]/[Fe] versus [Fe]/[H]: (a); (b); (c); (d); (e).
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4. Conclusions

(1) Using spectra of high quality, we have carried out an analysis of the abundances of the
‘lighter’ neutron-capture elements Y and Zr and the ‘heavier’ elements Ba, Sm and Eu in
the stars of the Galactic disc.

(2) We observe in our sample of giants the trends of [Ba]/[Fe] and [Eu]/[Fe] versus [Fe]/[H]
and there is no correlation between [Y]/[Fe], [Zr]/[Fe] and [Sm]/[Fe] versus [Fe]/[H].
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