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Physical models of the development of turbulence in free shear flows and in accretion discs are
proposed. The models are based on the results of numerical simulations of turbulent flow development.
The main idea of the proposed theory of turbulence in free shear flow is stated as follows: the onset
of turbulence begins with the formation of large vortices. The formation and evolution of large-scale
turbulence in accretion discs are considered. It is shown that the kinetic energy of vortices forming in
a turbulent flow is a virtually constant fraction of the initial kinetic energy of the rotating matter of an
accretion disc. A possible mechanism explaining the transfer of angular momentum by large vortices
that form in the disc without any noticeable heating of the matter is suggested.

Keywords: Accretion discs; Large-scale turbulence; Angular momentum transfer

1. Introduction

The problem of turbulence has challenged scientists for over a century. However, no

comprehensive turbulence theory has been developed to this day.

In 1985, Belotserkovskii [1] showed that fully developed free turbulence could be simulated

without using any subgrid-scale model and adjustment of any semiempirical constants. The

most systematic presentations of this approach can be found in [2, 3], where it was applied to

free turbulent flows behind moving bodies (including both near- and far-wake flow structures),

oceanic flows, Taylor–Couette flow, evolution of turbulent mixing zones, and other important

problems concerning the onset of turbulence. The approach reflects the multidimensional

and unsteady nature of the flows in question and takes into account phenomena related to

compressibility, as well as effects due to viscosity (dominated by molecular mechanism). In

those studies, it was also shown that large-scale vortices play a dominant role in turbulent flow

structure.

The basic ideas of direct numerical simulation of turbulence rely on the following two

hypotheses supported by experimental evidence.
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420 O. M. Belotserkovskii et al.

(i) Large-scale coherent vortices and small-scale stochastic turbulence are statistically

independent at high Reynolds numbers.

(ii) Molecular viscosity (more generally, the mechanism of energy dissipation) plays a minor

role in the analysis of large-scale vortex dynamics.

Large vortices carry the greater part of the energy of turbulent motion and determine the flow

structure, but they do not result in the dissipation of kinetic energy into heat. Such dissipation

is connected with small-scale turbulence. The dynamics of large vortices do not reflect the

structure of random fluctuations, being governed by the Navier–Stokes equations in which

the inertial terms dominate over the viscous terms. Accordingly, the structure of a vortex

develops as a result of the combined action of pressure gradients and transient forces arising

from velocity fields. Therefore, the formation of both large-scale vortices and the ensuing flow

structure must be described by the Euler equations.

Theoretical research on the accretion discs that form around gravitating compact objects has

also been conducted over many years. Recently, the problem of angular momentum transfer

in accretion discs has become prominent. Researchers’ interest in the problem is fuelled by

an observed link between the temperature of an accretion disc and the intensity of radiation

from the compact object during mass accretion onto the object. For intense mass accretion

onto a central object, there must be processes in the disc which transfer angular momentum

to its outer boundaries. In [4], turbulent viscosity was suggested for such a mechanism. It

shows that the accretion rate determines the heating of the accretion disc due to molecular

viscosity.

There have also been attempts to suggest magnetic viscosity for this mechanism. In [5],

it was shown that even the presence of a weak magnetic field renders a hydrodynamically

stable accretion disc unstable and results in turbulent flows inside the disc. This phenomenon

was first considered in [6], which showed that certain distributions of the magnetic field and

angular velocity result in an instability, which was termed magnetorotational instability. The

appearance of this instability causes a redistribution of angular momentum and its transfer to

outer boundaries of the disc.

The general belief is that the shear-flow turbulence viscosity is local and dynamic in character

and results in local emission of heat [7].An important problem is to explain the low temperature

of the disc, which is much lower than the temperature that would account for the observed

intensity of radiation at the given accretion rate. There are numerous studies which explore

the conversion of the kinetic energy of turbulent flows not only into heat but also into other

kinds of energy. This gave rise to an advection-dominated accretion [7].

In this paper, we consider the problem of the formation and evolution of large-scale turbu-

lence flow from initially small disturbances. The problem is of significant interest as regards

various disc flows under astrophysical conditions [8–11]. The formation of large-scale turbu-

lence makes it possible for angular momentum to be transferred by large turbulent structures

that form in shear flow in the accretion disc. The transfer of angular momentum by large

turbulent vortices does not result in any noticeable heating of matter. A process such as this

provides the required accretion rate accompanied by a comparatively low temperature of the

accretion disc. Thus, a new mechanism is suggested for the transfer of angular momentum in

accretion discs, which yields accretion characterized by smaller local heat emission.

2. Two-dimensional modelling of free shear flows

To examine the physical scenarios of the onset of turbulence, we performed an extensive series

of numerical simulations of free shear flows of an ideal compressible gas.
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The turbulence in free shear flows and in accretion discs 421

For simulations we used two-dimensional (i = 1, 2) Euler gas dynamics equations in

Cartesian coordinates:

∂ρ

∂t
+ ∇i(ρui) = 0,

∂(ρui)

∂t
+ ∇j (ρuiuj ) = −

∂P

∂xi

+ ρgi,

∂(ρE)

∂t
+ ∇j [(ρE + P)uj ] = ρgiui,

∂(ρC)

∂t
+ ∇i(ρCui) = 0,

E = ε +
uiui

2
.

The ideal gas law is used in the following form:

P = (γ − 1)ρε.

Here, t is the time, ρ is the gas density, p is the pressure, ε is the specific internal energy, E is

the full specific energy, γ is the ratio of specific heats, ui is the component of the gas velocity,

gi is the component of the gravitational acceleration and C is the virtual concentration for

visualization.

We used monotonic dissipative stable finite-difference schemes with positive operators

[1–3].

Figure 1. Development of large-scale vortices in a free turbulent shear layer. Streamlines are shown at instants
separated by equal time intervals, including the starting moment. The grey-scale value represents the concentration
of particles initially localized in the shear layer.
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422 O. M. Belotserkovskii et al.

Figure 2. Attraction of vortices with similar vorticity signs.

We analysed the evolution of a shear layer with a uniform velocity gradient. Figure 1

demonstrates that large vortices of diameter comparable with the shear-layer thickness develop

first. The vortex motion in a finite volume is generated by a pressure gradient. The shear layer

breaks up into large vortices, and smaller eddies develop in their wakes. At the final instant

of the simulation, the flow consists of a single vortex occupying the computational domain.

This effect is explained by the attraction of vortices with similar vorticity signs due to the

Zhoukovskij force (figure 2). The computation was performed with free-flow conditions set

on the upper and lower boundaries combined with periodic conditions at the upstream and

downstream boundaries.

Figure 3 shows the results obtained by computing the evolution of turbulence in a similar

shear layer, but with impermeability conditions set on the upper and lower boundaries. Here,

the onset of turbulence follows the scenario observed in the preceding simulation. However, the

final turbulent flow has a complicated pattern involving both large-scale vortices and smaller

structural elements. This result is due to interactions of the background flow with walls and

large-scale vortices.

Figure 4 illustrates the evolution of a Taylor–Couette flow from an initial state in which

the white fluid (with zero marker concentration) in the annular half-gap adjoining the inner

cylinder is at rest and the black fluid (with unit marker concentration) in the outer half-gap

rotates as a solid body having the angular velocity of the outer cylinder.

Figure 3. Flow analogous to that shown in figure 1, but confined between walls.
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The turbulence in free shear flows and in accretion discs 423

Figure 4. (a), (c), (e) ‘Marker’ concentrations and (b), (d), (f) vorticities in the Taylor–Couette flow at (a), (b)
t = 0.05, (c), (d) t = 0.1 and (e), (f) t = 0.2. The outer cylinder is rotating counterclockwise; the inner cylinder is at
rest.

The numerical results lead to the following conclusion about the onset of turbulence in

a flow. The development of turbulence begins with the formation of large vortices. Well-

developed turbulence should be modelled in the framework of the Euler equations, which

correctly describe the distribution of basic length scales [1]. Multiple small eddies merge

under the action of the Zhoukovskij force.

3. Three-dimensional modelling of free shear flows

To investigate the physical scenario of the onset of turbulence, we performed numerical

simulations of free shear flows of an ideal compressible gas.

For simulations we used three-dimensional (i = 1, 2, 3) Euler gas dynamics equations in

Cartesian coordinates with ideal gas law.

Let us consider the flow of matter in the integration domain (0 � x � Lx , 0 � y � Ly ,

−Lz/2 � z � Lz/2). The initial velocity u1 along the x direction is used in the following

form:

u1 = u0,
H

2
� z �

Lz

2
,

u1 = −u0, −
Lz

2
� z � −

H

2
,

u1 =
u0(2z)

H
, −

H

2
� z �

H

2
(constant gradient of u1).

The initial velocity along the y direction is equal to zero. The initial velocity along the z

direction has a small disturbance (1% of u1) inside the shear layer.

The boundary conditions are the following: periodic conditions for the x and y directions,

and impermeability conditions for the z direction.

Figure 5 shows the equiscalar surfaces of vorticity (|rot(u1, u2, u3)|) at successive time

moments for calculation with Lz = 1, H = 0.2, Lx = 2π , Ly = π .

In this case the onset of shear instability begins with the formation of large-scale vortices.

This time moment corresponds to t = 3 (figure 5). Further the instability is developed on the



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:1
3 

6 
D

ec
em

be
r 2

00
7 

424 O. M. Belotserkovskii et al.

Figure 5. Equiscalar surfaces of the vorticity at successive time moments for a calculation with Lz = 1, H = 0.2,
Lx = 2π and Ly = π .

surface of large vortices. The formed structures interact with each other and the walls. The

results of this process are shown in figure 5 at t = 4, t = 5, t = 6, t = 7 and t = 8.

Let us analyse the influence of the length of the shear layer on the evolution of the turbulence.

Three variants with different shear layer lengths Ly = 2π , π/2 and π/8 and with Lx = 2π ,

Lz = 2π and H = 1 were modelled. The results of these calculations are shown in figures 6–8.

Note that the value of the specific concentration is equal to 1 inside the shear layer and to 0

outside for the initial time moment.

It is shown that the evolution of the flow at the beginning has a quasi-two-dimensional

nature for all calculations (figures 6–8, t = 8). Further we can see that the nature of the

evolution continues to be quasi-two-dimensional longer for lower values of Ly . For the

last calculation (figures 6–8, t = 20) the flow possesses a quasi-two-dimensional nature to

the end.

4. Large-scale turbulence in accretion discs

Using the hydrodynamic approach, we consider an accretion disc rotating around a central

gravitating compact object (figure 9(a)). Assuming that the thickness of the accretion disc is

very small compared with its radius, we shall solve the problem in two-dimensional geometry.

Self-gravitation of the gas will be ignored.

Let the gas be an ideal compressible gas whose behaviour is described by a system

of two-dimensional Euler gas dynamics equations with dimensionless variables in polar

coordinates:

∂(rρ)

∂t
+

∂(rρu)

∂r
+

1

r

∂(rρv)

∂ϕ
= 0,
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The turbulence in free shear flows and in accretion discs 425

Figure 6. Equiscalar surfaces of the specific concentration. The time moments (from top to bottom) are t = 8, 12,
16 and 20. The lengths Ly of the shear layer are 2π , π/2 and π/8.



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:1
3 

6 
D

ec
em

be
r 2

00
7 

426 O. M. Belotserkovskii et al.

Figure 7. Equiscalar surfaces of the pressure. The time moments (from top to bottom) are t = 8, 12, 16 and 20.
The lengths Ly of the shear layer are 2π , π/2 and π/8.
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The turbulence in free shear flows and in accretion discs 427

Figure 8. Equiscalar surfaces of the vorticity. The time moments (from top to bottom) are t = 8, 12, 16 and 20.
The lengths Ly of the shear layer are 2π , π/2 and π/8.
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428 O. M. Belotserkovskii et al.

Figure 9. Assumed area with (a) an equilibrium disc configuration and (b) a disc configuration with a disturbance.

∂(rρu)

∂t
+

∂(rρu2 + rp)

∂r
+

1

r

∂(rρuv)

∂ϕ
= p + ρv2 + rρFgr,

∂(rρv)

∂t
+

∂(rρvu)

∂r
+

1

r

∂(rρv2 + rp)

∂ϕ
= −ρuv,

∂(rρe)

∂t
+

∂(rρuh)

∂r
+

1

r

∂(rρvh)

∂ϕ
= rρFgru,

e = ε +
V 2

2
= ε +

u2

2
+

v2

2
, h = e +

p

ρ
.

The ideal gas law is used in the following form:

p = (γ − 1)ρε.

Here, r is the radius, ϕ is the azimuthal angle, t is the time, ρ is the gas density, p is the

pressure, ε is the specific internal energy, e is the full specific energy, γ is the ratio of specific

heats, h is the total enthalpy, V = (u, v) is the gas velocity, u is its radial component, v is its

azimuthal component and Fgr = (−1/r2) is the radial component of the specific gravitational

force (here all variables are dimensionless).

Let us consider the flow of gas in the assumed area � = (R1 � r � R2) × (0 � ϕ � 2π)

(figure 9(a)). For the boundaries of the assumed region, we set free-flow boundary conditions.

For the initial state of the accretion disc, we select the analytical solution ueq ≡ 0, veq(r) > 0,

ρeq(r) and peq(r) used in [12], which is an equilibrium state obtained in [13] for a two-

dimensional model.

Note that the assumed region is selected so that its radius is about twice the typical radius

of an accretion disc, i.e. the region where most of the mass of a disc is concentrated.

To approximate the differential equations, we use the total variation diminishing

scheme [14–17].

To study the stability of accretion discs affected by small disturbances, let us introduce

disturbances for the azimuthal velocity component in the maximum density area of a disc

(figure 9(b)).

We use the grid ω = ωr × ωϕ as follows:

ωϕ =

{

ϕj ; ϕj = j × hϕ; j = 0, . . . , Nϕ; hϕ =
2π

Nϕ

}

,
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The turbulence in free shear flows and in accretion discs 429

ωr =

{

ri; ri = R1 + i × hr; i = 0, . . . , Nr; hr =
R2 − R1

Nr

}

.

The assumed area and the number Nr of points on r remain the same in all the variants of the

task: R1 = 0.15, R2 = 1.8 and Nr = 80.

In all the calculations below, the width of the disturbance band with respect to r in the

maximum density region is two grid cells. Here small sinusoidal disturbances for the azimuthal

velocity component are inserted in the equilibrium state of the accretion disc given by

v(r, ϕ) = veq(r)[1 + A sin(nϕ)],

where veq(r) is the azimuthal velocity in the stable state, A is the amplitude of the disturbances

and n is the number of periods in the interval 0 � ϕ < 2π .

Below we provide the results of two calculations with different initial disturbances of the

velocity depending on the angle.

(i) Variant 1. First, we consider the case (which forms the basis for the subsequent investi-

gation) where a disturbance with A = 0.2 and n = 10 is introduced for 0 � ϕ < 2π . A

grid ω is used, where Nr = 80 and Nϕ = 260. Figure 10 shows the isolines of the density

at different points in time and figure 11 shows isolines of the vorticity (rotV) at corre-

sponding points in time. The last point is at the stage of the process which corresponds to

a half-turn of the disc (the turn of the disc here represents the time required for the disc

matter in the maximum density area to rotate fully around the gravitating object).

(ii) Variant 2. We now turn to another variant where disturbances are introduced at A = 0.2

and n = 10 in (2π/10) � ϕ � (4π/10) and (12π/10) � ϕ � (14π/10). The grid ω is

Figure 10. Isolines of the density in variant 1.
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430 O. M. Belotserkovskii et al.

Figure 11. Isolines of the vorticity in variant 1.

used in the calculations, where Nr = 80 and Nϕ = 150. Figures 12(a) and (b) show the

vorticity isolines and density isolines respectively at an advanced stage of turbulence

evolution which corresponds to two thirds of a turn of the disc.

These calculations show that small disturbances introduced into a stable disc evolve, result-

ing over time in large-scale turbulence structures which persist for a considerable period of

time. This process cause a rearrangement of the flow in almost the entire region, although the

disturbance was introduced into only a small part of the area. Note also that the two structures

obtained in variant 2 are symmetrical and similar in quality to the structures from variant 1

(figures 10 and 11).

Figure 12. (a) Vorticity isolines and (b) density isolines at two thirds of a turn in variant 2.



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:1
3 

6 
D

ec
em

be
r 2

00
7 

The turbulence in free shear flows and in accretion discs 431

Figure 13. Vorticity at (a) two thirds of a turn and (b) 1.5 turns.

We made a series of calculations for amplitudesA ranging from 0.01 to 0.2, with disturbances

introduced in one- or two-cell bands, with different numbers of local disturbances (ranging

from 1 to 10 at n = 10 and from 1 to 20 at n = 20), and with various grids (from 40 × 130

to 320 × 1040). The results of the calculations show that the quality of the flow remains

unchanged.

Taking the calculation (i) (figures 10 and 11) as an example, let us look more closely at the

behaviour of the vorticity. Figures 13(a) and (b) show the character of vorticity in a part of

the region at the times which correspond to two thirds of a turn and to 1.5 turns respectively.

Large structures can be seen to form (figure 13(a)) which drift towards the outer boundary of

the region (figure 13(b)). However, the low density of the matter at the outer boundary (which

is lower than the density in the maximum-density region by the order of 5) means that there is

almost no outflow of matter. Also, in figure 13(a), vortex trails can be observed, and structures

are formed near the inner boundary of the area. It should be noted that it is very difficult to

discern any structures in the internal and external parts of the assumed area on the density

patterns because of the low density.

Consider also the character of the specific vorticity ((rotV)/ρ) in a part of the region

(figure 14) at the times corresponding to a third of a turn (figure 14(a)) and a full turn

(figure 14(b)). Figure 14(a) shows an instability that is starting to evolve and the forma-

tion of vortex trails. In figure 14(b), spiral structures are being formed (figures 10 and 11) and

well-developed vortex trails are shown.

It is of some interest to observe the change in the kinetic energy of the turbulence. As

mentioned above, first a disturbance of the azimuthal velocity component is introduced with

amplitude A ranging from 0.01 to 0.2. This corresponds to a disturbance energy from 0.001%

Figure 14. Specific vorticity at (a) one third of a turn and (b) one turn.
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Figure 15. Change in the kinetic energy of a turbulence over time (in disc turns) at initial disturbances of velocity
with A = 0.2 (solid curve) and A = 0.1 (full diamonds).

to 0.3% of the total initial kinetic energy. Figure 15 shows the change in the kinetic energy of a

turbulent flow over time (the kinetic energy of a turbulence here and below is the kinetic energy

of the radial motion of gas in an accretion disc). Time is measured in turns of the disc; the initial

disturbances of the velocity have amplitudes A = 0.2 and A = 0.1. On comparison of the two

graphs, it can be seen that the maximum values are very different. Later, when reaching

the quasistationary regime, the energy values are almost the same (by the quasistationary

regime we mean the state where the kinetic energy of the turbulent flow changes little over

time, oscillating around an almost constant value). For the variants with A = 0.01 and A =

0.05, the values of the quasistationary regime are approximately the same as the obtained

results. Therefore, we can assume that, in the quasistationary regime, the kinetic energy of

the turbulence is determined by the initial kinetic energy and is independent of the energy

of the initial disturbance. This testifies to the physical validity of the assumption that large-

scale turbulences evolve in shear flows in accretion discs and also confirms the fact that, once

the disturbance formation has reached its peak, vortex structures do not disappear, the flow

remains turbulent in character, and, as shown in figure 13(b), large structures transfer angular

momentum to the outer boundaries of the disc.

Let us now analyse the change and redistribution of the angular momentum in the flow

obtained in the principal calculation (figures 10 and 11).

Figure 16 shows the distribution of the angular momentum along the radius at the initial

instant of time and at two full turns. Throughout the entire calculation, angular momentum is

thrown out of the zone where most of the matter is concentrated on both sides of the radius

and is redistributed. The maximum of the angular momentum decreases compared with the

initial value, and the region where the angular momentum is mainly concentrated widens.

At the graph which corresponds to two turns, the gas in front of the inner boundary of this

region at time zero, and particularly behind the outer boundary, acquires considerable angular

Figure 16. Redistribution of the angular momentum along the radius (ϕ = 0) at times t1 = 0 (full circles) and
t2 = 2 turns (open circles) and the difference between the angular momenta, M(t2) − M(t1) (solid curve).
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Figure 17. Trajectories for the gas particles.

momentum. The above-described redistribution of angular momentum can also be observed

in the graph for the difference of the angular momenta at the time when the disc material has

made two full turns and at time zero.

The overall angular momentum of the system remains almost unchanged, but it is

redistributed along the radius. We should note that the mass of the gas in the system also

remains virtually constant, i.e. the angular momentum is not redistributed owing to the flow

of matter outside the boundaries.

Let us now consider the behaviour of the entropy S = S0 ln(p/ργ ) + C (S0 = constant

and C = constant), and in particular how it changes over time. To achieve this, we set seven

equidistant points on the axis ϕ = 0 at time t = 0 and build seven trajectories for gas particles

that were at these points at time zero (figure 17). If we know the field of velocity at each check

point, we can draw a trajectory for the gas particles with very good accuracy. The deviation

from the mean value of entropy is about 5% along the entire trajectory which lies in the region

of maximum density and angular momentum (figure 18(a)) (this is the region where initial

disturbances are introduced and vortices are formed). Taking into account the approximate

calculation of the particle trajectory in Euler coordinates and the error margin that is inevitable

in this case, we can assume that the entropy S along this trajectory is a constant value. For

other trajectories, the deviation from the mean value does not exceed 1.5% (figure 18(b)),

which is also evidence of constant entropy along the trajectories. Therefore, the entropy in the

system is constant.

Figure 18. Entropy along (a) trajectory C and (b) trajectory D in figure 17. The time is in turns around the disc.
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Remember that there is no viscosity and heat conduction in the system, and the scheme

viscosity is small. The constant entropy means that the flow is almost adiabatic. Consequently,

the turbulent viscosity is low and cannot act as a mechanism for the redistribution of the angular

momentum. Thus, the redistribution of the angular momentum observed in the calculations is

related to the formation of large structures. It is these very structures that transfer the angular

momentum.

5. Conclusions

In free shear flow the origin of turbulence is connected with large scales. The Zhoukovskij

force plays an important role in the evolution of turbulence. The ratio Ly/Lx determines the

two-dimensional assumption. If (Ly/Lx) ≪ 1, then the two-dimensional model can be used.

The thin accretion disc concerned in our calculation satisfies this condition.

The disc configuration studied in this paper, with density at the boundaries that is several

orders smaller than the density in the centre, was chosen so as to exclude any impact of

boundary conditions.

The calculations carried out enable us to make several conclusions as to the development of

small disturbances. Small disturbances, introduced in a relatively small region of an accretion

disc in the state of stability, develop into large structures and spread over a considerable portion

of the assumed region. The resulting flow is turbulent in character.

These large structures play a major role in the redistribution of the total angular momentum

in accretion discs without any noticeable heating of the disc material. However, there is no

evidence in the calculations of any reductions in the total angular momentum of the disc

material, nor of any ejection of material.
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