
This article was downloaded by:[Bochkarev, N.]
On: 6 December 2007
Access Details: Sample Issue Voucher: Astronomical & Astrophysical Transactions [subscription number 787481895]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Astronomical & Astrophysical
Transactions
The Journal of the Eurasian Astronomical
Society
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453505

A nonlinear multidimensional gravitational model R+R-1

with form fields and stabilized extra dimensions
T. Saidov a; A. Zhuk a
a Department of Theoretical Physics and Astronomical Observatory, Odessa
National University, Odessa, Ukraine

Online Publication Date: 01 October 2006
To cite this Article: Saidov, T. and Zhuk, A. (2006) 'A nonlinear multidimensional

gravitational model R+R-1 with form fields and stabilized extra dimensions', Astronomical & Astrophysical Transactions,
25:5, 447 - 453
To link to this article: DOI: 10.1080/10556790601119509
URL: http://dx.doi.org/10.1080/10556790601119509

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453505
http://dx.doi.org/10.1080/10556790601119509
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:1
6 

6 
D

ec
em

be
r 2

00
7 

Astronomical and Astrophysical Transactions
Vol. 25, Nos. 5–6, October–December 2006, 447–453

A nonlinear multidimensional gravitational model R + R−1

with form fields and stabilized extra dimensions
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We studied multidimensional gravitational models with scalar curvature nonlinearity of the type R−1

and with form fields (fluxes) as a matter source. It is assumed that the higher-dimensional space–time
undergoes Freund–Rubin-like spontaneous compactification to a warped product manifold. It is shown
that for certain parameter regions the model allows for freezing stabilization of the internal space
near the positive minimum of the effective potential, which plays the role of the positive effective
cosmological constant. However, the parameters of model should be fine tuned to obtain the observable
dark energy.
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1. Introduction

There are two great challenges in modern theoretical physics and cosmology. The first great
puzzle consists of the ‘dark side’ of our Universe. Recent observations of the luminosity
distances of type Ia supernovae, angular temperature fluctuations of the cosmic microwave
background on degree scales, and measurements of the power spectrum of galaxy clustering
indicate that our Universe is spatially flat with about 24% of its critical energy in non-relativistic
cold dark matter and about 72% in a smooth component having a large negative pressure
(dark energy). The latter results in the accelerating expansion of our Universe which began
approximately at a red shift z ≈ 1 and continues until the present time. On the other hand, there
is also the possibility that the late-time accelerating expansion of our Universe is caused by
modification of gravity on a Galactic scale. For example, it was proposed [1] to add a R−1 term
in the Einstein–Hilbert action to modify general relativity. It is clear that such modification
may affect the dynamics of the Universe at late times of its evolution and on large scales
where the scalar curvature becomes small. In fact, it was shown [1] that this term can give an
accelerating solution of the field equation without the need to introduce dark energy.
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448 T. Saidov and A. Zhuk

The second great challenge is the possible multidimensionality of our Universe which
naturally follows from theories unifying different fundamental interactions with gravity, such
as the string or M-theory. So, there is a great temptation to explain the dark matter and the
accelerating expansion of our Universe with the help of extra dimensions. However, it is
well known that the dynamic behaviour of internal spaces usually results in variations in
the effective four-dimensional (4D) fundamental ‘constants’ (e.g. gravitational constant, fine-
structure constant, etc.) [2, 3]. There are strong experimental bounds on such variations [4].
So, one of the main problem of higher-dimensional models lies in stable compactification of
the internal spaces. Scale factors of the internal spaces play the role of scalar fields moving
in our 4D space–time. Their dynamics are defined by an effective potential in dimensionally
reduced theory. Thus, the internal spaces are stabilized in the case of a minimum of this
potential [5]. Small excitations around this minimum look in our Universe like massive scalar
fields (gravitational excitons [5]) with Planck scale suppression of their interaction with usual
matter. Therefore, they may play the role of dark matter. Additionally, if the minimum of the
effective potential is positive, it contributes to the positive cosmological constant providing
acceleration of the Universe.

In the present paper, we consider a nonlinear gravitational multidimensional cosmological
model with action of the type R + R−1 with form fields as a matter source. We also include a
bare cosmological term as an additional parameter of the theory. It is assumed that the corres-
ponding higher-dimensional space–time manifold undergoes spontaneous compactification to
a manifold with a warped product structure of the external and internal spaces. Each of the
spaces has its own scale factor. A model without form fields and a bare cosmological constant
was considered in [6] where freezing stabilization of the internal space was achieved owing
to the negative minimum of the effective potential. Thus, such a model is of an asymptotically
anti-de Sitter type without accelerating behaviour of our Universe. It is well known that
inclusion of the usual matter can increase the potential to positive values [7]. One of the main
tasks of our present investigations is to observe such an increase. Indeed, we demonstrate
that for certain parameter regions the late-time acceleration scenario in our model becomes
reachable. However, the parameters of the model should be fine tuned to obtain the observable
dark energy. It is also worth noting that the effective potential in our reduced model has a
branch point. It gives the very interesting possibility of investigating transitions from one
branch to another by analogy with catastrophe theory or by similarity to phase transitions in
statistical theory.

2. General set-up

We consider a D = (D0 + D′)-dimensional nonlinear gravitational theory with the action
functional

S = 1

2κ2
D

∫
M

dDx (|ḡ|)1/2 f (R̄) − 1

2

∫
M

dDx (|ḡ|)1/2
n∑

i=1

1

di !
(
F (i)

)2
, (1)

where f (R̄) is an arbitrary smooth function of scalar curvature R̄ = R[ḡ] constructed from
the D-dimensional metric ḡab (a, b = 1, . . . , D). D′ is the number of extra dimensions. κ2

D

denotes the D-dimensional gravitational constant. In action (1), a form field (flux) F has a
block-orthogonal structure consisting of n blocks. Each of these blocks is described by its own
antisymmetric tensor field F (i)(i = 1, . . . , n) of rank di (di-form field strength). Additionally,
we assume that

∑n
i=1 di = D′ holds for the sum of the ranks.
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A nonlinear multidimensional gravitational model 449

Following [6–9], we can show that the nonlinear gravitational theory (1) is equivalent to a
linear theory R = R[g] with the conformally transformed metric

gab = �2ḡab = [
f ′(R̄)

]2/(D−2)
ḡab (2)

and an additional minimal scalar field φ = ln[f ′(R̄)]/A with a self-interaction potential U(φ)

given by

U(φ) = 1

2
e−Bφ

[
R̄(φ)eAφ − f

(
R̄(φ)

)]
, (3)

where

A =
(

D − 2

D − 1

)1/2

, B = D

((D − 2)(D − 1))1/2 . (4)

Furthermore, we assume that the multidimensional spacetime manifold undergoes spontaneous
compactification

M −→ M = M0 × M1 × · · · × Mn (5)

in accordance with the block-orthogonal structure of the field strength F , and that the form
fields F (i), each nested in its own di-dimensional factor space Mi(i = 1, . . . , n), respect a
generalized Freund–Rubin Ansatz [10]. Here, (D0 = 4)-dimensional space–time M0 is treated
as our external Universe with metric g(0)(x).

This allows us to perform a dimensional reduction of our model along the lines used in
[5–8, 11, 12]. The factor spaces Mi are then Einstein spaces with metrics g(i) ≡ e2βi(x)γ (i)

which depend only through the warp factors ai(x) := eβi(x) on the coordinates x of the external
space–time M0. For the corresponding scalar curvatures, R[γ (i)] = λidi ≡ ri holds (in the
case of the constant-curvature spaces λi = ki(di − 1), ki = 0 ± 1). The warped product of
Einstein spaces leads to a scalar curvature R̄ which depends only on the coordinate x of
the D0-dimensional external space–time M0: R̄[ḡ] = R̄(x). This implies that the nonlinearity
field φ is also a function of only x: φ = φ(x). Additionally, it can be easily seen [6] that
the generalized Freund–Rubin Ansatz results in the following expression for the form fields
(F (i))2 = f 2

i /a
2di

i , where f i = constant.
In general, the model will allow for several stable scale factor configurations (minima in

the landscape over the space of the volume moduli). We choose one of these (which we
expect to correspond to the current evolution stage of our observable Universe), denote the
corresponding scale factors as βi

0 and work further with the deviations β̂i(x) = βi(x) − βi
0.

Without loss of generality, we consider in the present section a model with only one
d1-dimensional internal space. (The difference between a general model with n > 1 inter-
nal spaces and the particular model with n = 1 consists of an additional diagonalization of
the geometrical moduli excitations). After dimensional reduction and subsequent conformal
transformation to the Einstein frame (along the lines used in [8]), the action functional (1) is

S = 1

2κ2
0

∫
M0

dD0x
(|g̃(0)|)1/2 {

R
[
g̃(0)

] − g̃(0)∂μϕ∂νϕ − g̃(0)μν∂μφ∂νφ − 2Ueff(ϕ, φ)
}
, (6)

where ϕ := −[d1(D − 2)/(D0 − 2)]1/2β̂1 and κ2
0 := κ2

D/Vd1 denotes the D0-dimensional
(4D) gravitational constant. Vd1 ∝ exp(d1β

1
0 ) is the volume of the internal space at the

present time.
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450 T. Saidov and A. Zhuk

Stable compactification of the internal space M1 is ensured when its scale factor ϕ is frozen
at the minimum of the effective potential

Ueff = ebϕ

[
−1

2
R1eaϕ + U(φ) + hecφead1ϕ

]
, (7)

where R1 := r1e−2β1
0 and h := κ2

Df 2
1 e−2d1β

1
0 > 0; for brevity we introduce the notation

a := 2

(
D0 − 2

d1(D − 2)

)1/2

, b := 2

(
d1

(D − 2)(D0 − 2)

)1/2

, c := 2d1 − D

[(D − 1)(D − 2)]1/2 .

(8)

3. The model and results

In this section we analyse the conditions of the compactification for a model with

f (R̄) = R̄ − μ

R̄
− 2�D. (9)

Then from the relation f ′(R̄) = eAφ we obtain

R̄ = q

( |μ|
s(eAφ − 1)

)1/2

, q = ±1, s = sgn(μ). (10)

Thus, the ranges of variation in φ are φ ∈ (−∞, 0) for μ < 0(s = −1) and φ ∈ (0, +∞) for
μ > 0(s = +1).

It is worth noting that the limit φ → ±0 (f ′ → 1) corresponds to the transition to a linear
theory: f (R̄) → R̄ − 2�D and R → R̄. On the other hand, equation (10) shows that this point
is a singularity R̄, R → ±∞ for the model (9).

For our model (9), the potential U(φ) (equation (3)) is

U(φ) = 1

2
e−Bφ

[
2qs(|μ|)1/2

(
s eAφ − s

)1/2 + 2�D

]
. (11)

It is well known (see, for example, [7, 8, 11]) that, in order to ensure stabilization and asymp-
totical freezing of the internal space M1, the effective potential (7) should have a minimum
with respect to both scalar fields ϕ and φ. It should be remembered that the minimum position
is chosen with respect to ϕ at ϕ = 0. Additionally, the eigenvalues of the mass matrix of the
coupled (ϕ, φ)-field system, i.e. the Hessian of the effective potential at the minimum position,

J :=
(

∂2
ϕϕUeff ∂2

ϕφUeff

∂2
φϕUeff ∂2

φφUeff

)∣∣∣∣∣
extr

, (12)

should be positive definite (this condition ensures the positiveness of the mass squared of
scalar field excitations). According to the Silvester criterion this is equivalent to the condition

J11 > 0, J22 > 0, det(J ) > 0. (13)

It is convenient in further considerations to introduce the following notation:

φ0 := φ|extr, X := (
s eAφ0 − s

)1/2
> 0 → X(s=−1) < 1. (14)
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A nonlinear multidimensional gravitational model 451

Then we can rewrite the potentials U(φ) and Ueff(ϕ, φ) and the derivatives of Ueff at an
extremum (possible minimum) position (ϕ = 0, φ0) as follows:

U0 ≡ U |extr = 1

2

(
1 + sX2

)−B/A [
2qs(|μ|)1/2X + 2�D

]
, (15)

Ueff |extrr = −1

2
R1 + U0(X) + h

(
1 + sX2

)c/A
, (16)

∂ϕUeff |extr = −a + b

2
R1 + bU0(X) + (ad1 + b)h

(
1 + sX2

)c/A = 0, (17)

∂φUeff |extr = ch
(
1 + sX2

)c/A − BU0(X) + qA(|μ|)1/2

2X

(
1 + sX2

)((A−B)/A) = 0, (18)

∂2
ϕϕUeff |extr = − (a + b)2

2
R1 + b2U0(X) + (ad1 + b)2 h

(
1 + sX2

)c/A
, (19)

∂2
ϕφUeff |extr = chad1

(
1 + sX2

)c/A
, (20)

∂2
φφUeff |extr = ch(c − A + 2B)

(
1 + sX2

)c/A + B(A − B)U0(X)

− qs(|μ|)1/2A2

4X3

(
1 + sX2

)((2A−B)/A)
. (21)

The most natural strategy for extracting detailed information about the location of the
stability region of parameters in which compactification is possible would consist in solving
equation (18) for X with subsequent back substitution of the roots found into the inequalities
(13) and equation (17). To obtain the main features of the model under consideration, it is
sufficient to investigate two particular non-trivial situations. Both of these cases are easy to
handle analytically.

3.1 Zero effective cosmological constant: �eff = 0

The condition �eff = Ueff |extr = 0, results in the relations

R1 = 2d1 h
(
1 + sX2

)c/A = 2d1

d1 − 1
U0(X), d1 � 2, (22)

which enable us to obtain (from equation (18)) a quadratic equation for X with the following
solutions:

X(p) = qs
d1

2(d1 + 1)

[
−z + p

(
z2 + 4s

d2
1 − 1

d2
1

)1/2
]

, z ≡ 2�D

(|μ|)1/2
, p = ±1, (23)

where, for s = −1, |z| � z0 ≡ 2(d2
1 − 1)1/2/d1 < 2.

Simple analysis shows that a zero minimum of the effective potential occurs only if
μ < 0 (s = −1), p = +1, q = +1 and z ∈ (z0, +∞). z = z0 is the exceptional value because
the minimum degenerates for d1 = 4.

3.2 Decoupling of excitations: d1 = D0

It can be easily seen from equation (8) that, in the case d1 = D0, the parameter c = 0 leads
to the condition ∂2

ϕφUeff |extr = 0 (see equation (20)). Thus the Hessian (12) is diagonalized.
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This means that the excitations of the fields ϕ and φ near the extremum position are decoupled
from each other.

In spite of the fact that we does not use the condition �eff = 0, in the case d1 = D0 we
obtain exactly the same equation for X as in the previous subsection. Thus its solution has the
form (23). However, the parameters now satisfy the following conditions:

R1 = 4

[
1

3
U0(X) + h

]
, �eff(X) = 1

3
U0(X) − h > 0, J11 = 2

3
[9h − U0(X)] > 0 (24)

and from the positivity of �eff and J11 we obtain

h >
1

16
R1 >

1

9
U0(X) >

1

3
h > 0. (25)

In the case when d1 = D0, these relations naturally coincide with the similar relations in [7]
because here we do not use the explicit form of the potential U(φ). However, the expressions
for J22 are different.

Similar to the previous case, the analysis shows that a positive minimum of the effective
potential occurs only if μ < 0 (s = −1), p = +1, q = +1 and z ∈ (z0, +∞).

The conditions (24) and (25) clearly demonstrate the typical problem of stable compact-
ification in multidimensional cosmological models. Here, a positive minimum occurs if the
parameters are positive and the same order of magnitude: �eff ≈ R1 ≈ U(X) ≈ h > 0. On the
other hand, in Kaluza–Klein models the size of the extra dimensions at the present time should
be b(0)1 � 10−17 cm ≡ 1 TeV−1. In this case, R1 � b−2

(0)1 ≈ 1034 cm−2. Thus, for an effective
cosmological constant we obtain a value which is many orders of magnitude greater than the
dark-energy value of about 10−57 cm−2 observable at the present time The necessary small
value of the effective cosmological constant can be achieved only if the parameters R1, U(X)

and h are extremely fine tuned to each other. We see two possibilities to avoid this problem.
Firstly, the inclusion of different form fields or fluxes may result in a large number of minima
(landscape) [13–16] with a sufficiently large probability of finding oneself in a dark-energy
minimum. Secondly, we can avoid the restriction R1 ≈ b−2

(0)1 ≈ 1034 cm−2 if the internal space
is Ricci flat: R1 = 0. For example, the internal factor space M1 can be an orbifold with branes
at fixed points (see the corresponding discussion in [17]).

Another very interesting feature of the model under consideration is the multivalued form
of the effective potential. As can easily be seen from equations (7) and (11), for each choice
of μ, the potential U(φ) (and consequently Ueff ) has two branches (q = ±1) which join
smoothly with each other at φ = 0. It gives the very interesting possibility of investigating
transitions from one branch to another by analogy with catastrophe theory or in a similar way
to phase transitions in statistical theory. However, as we mentioned above, the point φ = 0
corresponds to the singularity R̄, R → ±∞. Thus, the analogue of the second-order smooth
phase transition through the point φ = 0 is impossible in our model. However, there is still the
possibility for the analogue of the first-order transition via quantum jumps from one branch
to another.
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