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1. Introduction

A deterministic prognostic model of the meteor component of natural space debris allows the
expected danger to be assessed not only qualitatively but also quantitatively in the artificial
body passage through a certain space region [1]. With this in view, the primary method is a
series of experiments based on a universal computer model for the formation and evolution
of a meteor complex in the case of the specific parent object. Great interest is at present
being expressed in the population of the Solar System and the dynamics of celestial bodies
in connection with widening the scope of space research and a continuous increase in space
routes. Planned space missions to such celestial objects as planets, planetary satellites, asteroids
and comets require the maximum precise information on space contamination by small bodies
of natural and artificial origin as well as on the evolution of the trajectories of their motion.
This information is necessary to establish the safest space regions and to determine the best
intervals between spacecraft launchings and missions. The problems of celestial body entry
into near space, including all catastrophic consequences appearing as a result of the passage
of these objects through the Earth’s atmosphere and the impact of the objects themselves or
their disintegration fragments on its surface, may be considered as geospace problems.

As small bodies of the Solar System in the process of evolution display an intricate behaviour
which is difficult to describe and to explain within a classical celestial–mechanical theory of
motion, it is necessary to develop methods for formalizing the probability process of sub-
stance ejection from a parent body at any space point and to study the models of newly
appearing classes of small bodies. Also, chance is an essential component of most natural
phenomena and a stochastic approach to solving the problems stated is considered to be
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appropriate [2]. Substance ejection processes are stochastic when the initial conditions of
ejection are unknown a priori. Substance ejection can result in the formation of a meteor
stream or associated phenomena. One of the criteria for establishing consanguinity between
a meteor complex and a supposed parent body is the similarity of orbits. Theoretical studies
together with computer simulation and a considerable body of observational data allow the
quantitative as well as the qualitative characteristics to be obtained when considering concrete
celestial objects.

2. Simulation

Recently, a fair amount of information has been published on some small bodies observed
over long time intervals and this permits a probabilistic simulation to be carried out using
input data which are considered to be reasonably reliable in terms of human knowledge.
Now a computer technology has been developed [3], which is based on a stochastic
model of formation and evolution of the orbits of meteor complex fragments formed in
the nuclei disintegration of specific comets. The technology has been developed according
to a module principle. It can allow one to expand its functions and to change the algo-
rithms applied when necessary. A set of programs consists of a server and five software
applications and has been constructed using the technology of dynamic data exchange. A
series of computer experiments has been performed on the disintegration of comets most
known for their numerous appearances: Comet Halley (26 appearances), Comet Tempel–
Tuttle (ten appearances), Comet Giacobini–Zinner (11 appearances), Comet Pons–Winnecke
(19 appearances), Comet Grigg–Skjellerup (18 appearances) and others. However, our stu-
dies of the formation and the dynamics of meteor complexes have been performed so
far within the unperturbed Keplerian motion as the calculations made showed insignifi-
cant changes in the fragment orbital elements under the action of non-gravitational effects
(the Pointing–Robertson effect, the Yarkovsky–Radzievsky effect, etc.) and secular planetary
perturbations [1, 4].

To take into account gravitational perturbations, a separate built-in module is being
developed now. The software part of the module is assumed to include the following
components.

(i) Gravitational disturbances in an N-body problem determined by numerical integration.
The RADAU program–Everhart algorithm [5] is used for N = 2 − 8.

(ii) Perturbations from a gravity potential of a major planet in the case of small bodies
approaching it. Analytical formulae of an intermediate non-Keplerian hyperbolic orbit,
which were developed previously on the basis of the symmetric version of a generalized
two-fixed-centre problem and which consider the oblateness of a central body [6] taken
as the planet of approach, are used.

(iii) Perturbations of the Earth’s gravity potential when a small body approaches it. Cal-
culations are performed according to the formulae for the intermediate hyperbolic
orbit which are based on a non-symmetric version of a generalized two-fixed-centre
problem.

3. Trajectory of a small body

When moving within the Solar System, the trajectory of a small body may be divided into three
parts as follows.
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3.1 First part of the trajectory of a small body

The largest part is when a body moves in a heliocentric orbit and experiences the greatest grav-
itational perturbations from major planets. This part of an orbit is considered in component
(i) of our module. The Everhart algorithm is a special implicit one-step algorithm constructed
from Runge–Kutta methods. It is based on the power expansion of an independent variable on
the right-hand side of the equation of motion. A special method for optimal subdivision into
substeps is applied (Gauss–Radau division). When all the calculations have been completed,
the power expansion coefficients are specified in successive approximations. The integration
step is controlled from the last term value in the power series expansion of an independent
variable. To this end, two input parameters are introduced into the algorithm: one setting the
precision of integration (LL) and another setting the order of power series expansion of a step
(NOR). A step is chosen automatically, provided that the last term of power expansion is less
than 10LL. The parameters are chosen according to the ratio 0.75 < NOR < 2LL, NOR being
chosen from a certain sequence of given numbers. The basic version of the RADA 27 program
(RADAU) uses computer representation of numbers with double accuracy and expansion of
the right-hand sides of equations to the twenty-seventh order. Figure 1 presents the results
obtained with the above algorithm (RADA-17 and RADA-27) for evolution of a semimajor
axis and longitude of the node of Comet Temple–Tuttle in its appearances from 1533 to 1899.
A diagram of these element variations constructed from observations is also given. It is clear
that observations fall within the calculation range from two algorithm modifications; calcu-
lations from RADA-27 are closer to the observations. Disintegration fragments of the comet
in its appearance in 1533 with the maximum and minimum deviations of Keplerian orbital
elements from the parent body orbit seem to bound the space area where the comet evolves.

3.2 Second part of the trajectory of a small body

If a body finds itself in the sphere of action of a giant planet, the orbit of a small body may
change abruptly when affected by the gravity of the approached planet; this planet may, in
some measure, even destroy the body (or may destroy it completely as in case of Jupiter
and Comet Levi–Schumacker). Therefore, it is essential to study the motion of a small body
in the time interval (even it is small) when it approaches a major planet. The trajectory of
a small body relative to the planet approached is often hyperbolic. As is well known, the
spherical harmonics expansion of the gravitational potential of the giant planets almost does
not involve odd harmonics. Therefore in calculations it is expedient to use an intermediate
hyperbolic orbit of the symmetric version of a generalized two-fixed-centre problem [7–11],
including perturbations from oblateness (the second harmonics in the potential expansion) of
the approached planet relative to which an intermediate orbit is constructed. The algorithms
are developed and a computer realization of four problems is performed.

Problem 1 is the transition from the elements of a heliocentric orbit of a small body to its
planetocentric coordinates (x, y, z).

Problem 2 is the calculation of the intermediate orbit elements relative to the planet
approached using planetocentric coordinates (x, y, z).

Problem 3 is the calculation of the planetocentric rectangular and cylindrical coordinates
at any time moment using the intermediate orbit elements obtained in the preceding problem.

Problem 4 is the inverse transition from a planetocentric orbit to a heliocentric orbit.
We now consider these algorithms in more detail.

3.2.1 Problem 1. This can be divided into two simpler problems.
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Figure 1. Variations in the Keplerian orbital elements of the disintegration fragments of the comet ((a) the semimajor
axis; (b) the longitude of an ascending node) for different observational dates. (a.u.; astronomical units)

Problem 1(a) is as follows: when the elements of a heliocentric orbit of a small body are
given, its rectangular coordinates (x′, y′, z′) are calculated from the elements in the solar
coordinate system. The equations used are well known (see, for example, [12]) and not
given here.

Problem 1(b) concerns the transition from the solar coordinate system to that associated
with the planet approached; this procedure is also well known from the literature [9, 12, 13].
As a result, we have a rectangular planetocentric coordinates (x, y, z) of a small body.

3.2.2 Problem 2. Let us change the coordinates from (x, y, z) to the ellipsoidal coordinates
(ξ, η, ζ ):

2ξ 2 = r2 − c2 + [(r2 − c2)2 + 4c2z2)]1/2, ξ ′ = ξ 2r ′ + c2zz′

ξJ
,
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η2 = z2

ξ 2
, η′ = ξz′ − ξ ′z

ξ 2
,

w = arctan
(y

x

)
,

(
cos w = cos

[
arccos

(
x

ρ

)]
,

i.e. sgn(cos w) = sgnx

)
, w′ = xy ′ − x ′y

ρ2
.

Here, c is the constant of a generalized two-fixed-centre problem; c = R0(−J2)
1/2, where R0 is

the equatorial radius of the central body, e.g. Jupiter; r2 = x2 + y2 + z2 (r is the magnitude of
the radius vector of a point); V 2 = x ′2 + y ′2 + z′2 (V is its velocity, and x ′, y ′, z′ and ξ ′, η′, ζ ′
are the velocity components); ρ2 = x2 + y2; r ′ = xx′ + yy′ + zz′; J = ξ 2 + c2η2; J′ = ξ ′2 +
c2η′2.

The arbitrary constants of integration of the differential equations of motion including
the energy constant h (for the hyperbola h > 0) are calculated, and new arbitrary constants
a < 0, e > 1, |s| � 1 are introduced instead of them:

2 h = V 2 − 2U, c1 = xy ′ − x ′y, 2c2 = JJ′ − V 2r2 − 2Uc2η2,

U = fm0ξ

J

(m0 is the planet mass and f is the gravitational constant),

a0 = − fm0

2 h
, e2

0 − 1 = 4hc2

f 2 m2
0

, 1 − s2
0 = − c2

1

2c2
, p = a(1 − e2) < R0

and a small dimensionless parameter ε = c/p; all necessary values will be presented as a
power series ε:

ai+1 = a0[1 + ε2
i (e

2
i − 1)(1 − s2

i ) − ε4
i s

2
i (1 − s2

i )(e
2
i + 3)],

e2
i+1 = 1 + (e2

0 − 1){1 − ε2
i (1 − s2

i )(3e2
i + 1) + 2ε4

i [3e4
i + 4e2

i

+ 1 − s2
i (5e4

i + 2e2
i + 1) + 2s4

i (e
2
i − 1)e2

i ]},
s2
i+1 = 1 − (1 − s2

0 )[1 − ε2
i s

2
i (e

2
i − 1) + ε4

i s
2
i (e

2
i − 1)(e2

i + 3 − 4s2
i )].

The last three equations are solved by an iteration method. Then, the constants are deter-
mined [7, 9] for an intermediate orbit: a, e, s, ω, �, M (and ψ).When c = 0, the orbit becomes
Keplerian and its constants are denoted as follows: a and e are the semimajor axis and eccen-
tricity respectively, p is the orbital parameter, ψ is the true anomaly, s is the sine of the angle
of inclination, ω is the angle which is π/2 different from the angular pericentre distance of an
ascending node and � is the longitude of the Keplerian orbit ascending node. By analogy with
the Keplerian orbit this allows the constants of an intermediate orbit to be called its elements.

3.2.3 Problem 3. An algorithm for problem 3 (see the formulae in [7–9]) is developed
similarly.

3.2.4 Problem 4. This problem is inverse to problem 1 and realizes the change from a
planetocentric orbit to a heliocentric orbit. As in the case of problem 1, the equations applied
were taken from the same literature sources. The algorithms developed were used to study the
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motion of comets in their approach to Jupiter [10]. Two passages of Comet Brooks 2 through
Jupiter’s sphere of action were taken as the reference passages. To assess the relation between
the orbital changes and the accuracy of input data (i.e. the coordinates of the comet’s entry
into Jupiter’s sphere of action), the coordinates (x, y, z) and the radius vectors of the orbits for
the reference examples have been varied ten times with a 0.002 step for all the coordinates.
The calculation results are presented in figures 2 and 3.

According to Dubyago [13], after the close approach of Comet Brooks 2 in 1886 to Jupiter,
satellites appeared. This provided evidence of the partial disintegration of a comet or ejec-
tions from it. Our calculations confirm notable variations in the coordinates and the radius
vector of an orbit relative to Jupiter when leaving its sphere of action (figure 2). In the
passage of 1922, the approach was much less. Changes in the coordinates x and y were
greater but of opposite sign, which resulted in a parabolic deviation of the radius vector
(figure 3).

3.3 Third part of the trajectory of a small body

The third part of the trajectory of a small body seems to be essential when a body approaches
the Earth and there is a danger for our planet. In this case, it is necessary to determine the
real-time trajectory of a hazardous object. In calculations the intermediate hyperbolic orbit
from a non-symmetric version of a generalized two-fixed-centre problem including perturba-
tions from the second and the third harmonics in the gravitational potential expansion of the

Figure 2. Passage of Comet Brooks in 1886.
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Figure 3. Passage of Comet Brooks 2 in 1922.

central body [14] may be useful. Algorithms describing the motion of a small body have been
developed and are now being realized.
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