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We investigate the motion of a charged particle in the process of acceleration up to relativistic energies
in a superhot turbulent current layer with three components of the magnetic field. We solve analytically
the relativistic equation of motion that has been averaged over the particle gyration in the magnetic
field. The obtained results are compared with numerical solution of the ordinary (without averaging)
equation of motion. The analytical solution describes a stable motion, i.e. when a particle remains in
the reconnecting current layer until it reaches its edges. The stability conditions are found imposed
on the electric and magnetic fields in the layer. Particles with positive and negative charges have
different behaviours. The numerical solution has confirmed the conclusions of the analytical approach.
Applications to solar flares are discussed.

Keywords: Acceleration of particles; Solar flares; Solar magnetic fields

1. Introduction

Acceleration of charged particles up to relativistic energies is one of the most interesting
problems of modern astrophysics (see, for example, [1–3]). According to solar observations,
accelerated electrons with energies 20 keV–1 GeV, which produce hard X-rays and γ -rays via
bremsstrahlung, may contain as much as 10% of the flare energy, i.e. about 1031 erg. The
energy content of protons with energies from 1 MeV to several gigaelectronvolts can exceed
1030 erg; the energization rate is about 1034–1035 s−1 [4–6].

At present, the almost conventional viewpoint is that the energy release in solar flares is due
to magnetic reconnection in reconnecting current layers (CLs). Here, the magnetic field energy
is converted into the thermal and kinetic energy of the plasma and accelerated particles (see,
for example, [7, 8]). The CL formation is confirmed by the theory of the superhot turbulent CL
[8, 9], as well as by laboratory experiments (see, for example, [10, 11]) and by recent Reuven
Ramaty High Energy Solar Spectroscopic Imager observations of solar flares [12, 13].

Inside the CL, the inductive electric field is directed along the current; this strong field exerts
positive work on charged particles, thus increasing their energy.
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262 A. V. Oreshina and B. V. Somov

The problem of particle motion in a CL has been considered many times. In a neutral
CL, characterized by a single magnetic-field component B0, a charged particle can spend an
infinite time and can take an infinite energy from the electric field [14]. However, under real
conditions, the magnetic field also has a non-zero transverse (to the CL plane) component B⊥
and longitudinal (parallel to the electric field) component B‖. Speiser [14] showed that even
a small transverse field changes the particle motion in such a way that the particle leaves the
CL after a finite time. This time is short and the energy is not sufficient in the context of solar
flares.

Litvinenko and Somov [15] found that the high longitudinal magnetic field increases the
acceleration time and, in this way, increases the efficiency of electron acceleration, thus allow-
ing one to explain the first step of electron acceleration in flares. The physical meaning is that
B‖ tends to keep particles ‘frozen’ and to confine them inside the CL.

Efthymiopoulos et al. [16] also considered the same problem. They argued that the condition
given by Litvinenko and Somov [15] is not sufficient to ensure stability of the orbits of
all accelerated electrons. Zones of instability exist for arbitrary high values of the longitudinal
magnetic field B‖. However, the width of these zones decreases as the value of the longitudinal
field increases. For super-Dreicer electric fields, which are typical for solar flares [8], these
zones are very narrow so that the criterion proposed by Litvinenko and Somov is an acceptable
approximation.

Another role of the longitudinal field B‖ was demonstrated by Zhu and Parks [17] for a
magnetotail-like CL. These authors showed, in particular, that, when the ratio B‖/B⊥ is greater
than a certain value, the ejection direction of particles becomes sign dependent.A similar effect
in a solar CL was obtained in numerical computations by Zharkova and Gordovskyy [18]; for
the ratio B‖/B0 > 10−2, there is separation of particles with opposite charges into the opposite
halves from the CL midplane.

Wood and Neukirch [19] presented the results of charged-particle orbit calculations in a
CL. They showed that an initially Maxwellian distribution function in the inflow region can
develop a beam-like component in the outflow region. A partial separation of accelerated
electrons and ions is also obtained.

Note that all the above-described studies consider non-relativistic particle motion in a CL.
The aim of our study is to investigate the trajectories of charged particles accelerating up to
relativistic energies in a superhot turbulent CL with three components of the magnetic field [8].

2. Mathematical description of the model

Let us consider the relativistic motion of a particle with mass m and charge q in a specified
electric field E(r) and a specified magnetic field B(r). The equation of motion is

dp
dt

= q

(
E + 1

c
(v × B)

)
, (1)

where

p = mv

(1 − v2/c2)1/2
(2)

is the momentum of the particle, v(t) is its velocity and c is the speed of light. It is required
to determine the particle trajectory r(t).
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Relativistic particle acceleration in a current layer 263

Equation (1) can be rewritten for dimensionless variables and functions, indicated by
asterisks:

t∗ = t

t0
, r∗ = r

r0
, v∗ = v

c
, B∗ = B

B0
, E∗ = E

B0
. (3)

Here, the timescale is

t0 = ω−1
0 , (4)

where ω0 = |q|B0/mc is the gyrofrequency of a non-relativistic particle in the characteristic
magnetic field B0; the length scale is

r0 = ct0 = mc2

|q| B0
. (5)

Thus, equation (1) becomes

dp∗

dt∗
= (sgn q)[E∗ + (v∗ × B∗)], (6)

where sgn q = q/|q| and p∗ = v∗/(1 − v∗2)1/2.
Let us choose the coordinate system so that the plane (x, z) coincides with the CL plane, the

z axis is parallel to the electric field, and the main component of the magnetic field is coaligned
with the x axis (figure 1). The electric and magnetic fields inside the layer are approximated
by the following expressions:

E = (0, 0, E), B = B0

(
−y

a
, −ξ⊥sgn x, ξ‖

)
. (7)

Here, a is the half-thickness of the CL, ξ⊥ and ξ‖ are the dimensionless constants defining
the transverse magnetic field component By and longitudinal magnetic field component Bz,
respectively. ξ⊥ > 0. Hence

E∗ = (0, 0, ε), B∗ = (−y∗δ, −ξ⊥sgn x∗, ξ‖), (8)

where

ε = E

B0
, δ = r0

a
= mc2

|q|B0a
, (9)

are dimensionless parameters of the problem.

Figure 1. Reconnecting CL and coordinate system.
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264 A. V. Oreshina and B. V. Somov

The dimensionless equation (6) takes the coordinate form (hereafter asterisks indicating
dimensionless values will be omitted)

ṗx = (sgn q)(ẏξ‖ + żξ⊥sgn x), (10)

ṗy = (sgn q)(−żyδ − ẋξ‖), (11)

ṗz = (sgn q)(ε − ẋξ⊥sgn x + ẏyδ). (12)

These equations determine the particle trajectory in the CL for the specified input parameters
ε, δ, ξ⊥ and ξ‖, and initial conditions x(0), px(0), y(0), py(0), z(0) and pz(0).

3. Analytical approach: searching for a stable solution

Let us search for a solution describing a stable motion of particles in the CL, i.e. the case
when a particle leaves the layer only as a result of either the limited length l along the z axis
or limited width 2b along the x axis.

In general, a charged particle in a magnetic field follows a spiral trajectory, which can be
presented as a combination of forward and gyratory motions: R(t) = r(t) + rL(t), where rL(t)

is a periodic function of time. Below we shall consider this forward motion, i.e. the motion
averaged over the particle gyration in magnetic field: 〈R(t)〉 = r(t) and 〈rL(t)〉 = 0.

3.1 First iteration

The particle does not leave the CL through its surfacey = ±a (in dimensional units) if it gyrates
in the vicinity of the plane y0 = constant < a inside the layer. Moreover, its mean velocity
and force balance in the y direction, i.e. perpendicular to the layer plane, must be zero:

〈y〉 = constant = y0, (13)〈py〉 = 0, 〈vy〉 = 0, 〈ṗy〉 = 0.

Therefore, equation (11) becomes (on omitting the angular brackets)

0 = (sgn q)(−ży0δ − ẋξ‖). (14)

Hence,

ż = −ẋ
ξ‖
y0δ

, (15)

z = −x
ξ‖
y0δ

+ cy. (16)

So, the requirement of zero force in the y direction leads to the relation between the velocities
along the x and z axes given by equation (15). The proportionality coefficient −ξ‖/y0δ eqauls
the ratio of the magnetic field components, Bz/Bx , where Bx depends on the coordinate y0.
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Relativistic particle acceleration in a current layer 265

Taking into account equations (15) and (16), we find expressions for ẋ, x, ż and z from the
equations of motion (10) and (12):

ẋ = ε

ξ⊥
sgn x

1 + (ξ‖/y0δ)2
, (17)

x = ε

ξ⊥
sgn x

1 + (ξ‖/y0δ)2
t + c1, where c1 = constant = x(0), (18)

ż = −ẋ
ξ‖
y0δ

= − ε

ξ⊥
sgn x

1 + (ξ‖/y0δ)2

ξ‖
y0δ

, (19)

z = − ε

ξ⊥
sgn x

1 + (ξ‖/y0δ)2

ξ‖
y0δ

t + c2, where c2 = constant = z(0). (20)

v2 = ẋ2 + ẏ2 + ż2 ≈ ẋ2 + ż2 =
(

ε

ξ⊥

)2 1

1 + (ξ‖/y0δ)2
. (21)

Thus, in the first iteration, the velocities ẋ and ż do not depend on time. Note that y0 in the
equalities (17)–(21) remains unknown. It will be defined in the next iteration.

3.2 Second iteration

Generally speaking, the velocities ẋ and ż can be non-constants but with time they approach
these constants. Let us solve the equations of motion (10) and (12) in the second iteration; we
substitute the solution of the first iteration (17)–(20) in the right-hand sides of equations (10)
and (12) and find the new values of ẋ, x, ż and z.

Since we consider the relativistic case v ≈ 1, equation (21) can be rewritten as

v2 =
(

ε

ξ⊥

)2 1

1 + (ξ‖/y0δ)2
≈ 1. (22)

Let, in the denominator of this formula, the ratio

(
ξ‖
y0δ

)2

� 1. (23)

Then, from equation (22), we obtain

v2 =
(

ε

ξ⊥

)2 (
ξ‖
y0δ

)−2

≈ 1, (24)

(
ε

ξ⊥

)2

≈
(

ξ‖
y0δ

)2

� 1. (25)

Thus, condition (23) corresponds to the case of a strong electric field:

ε2 � ξ 2
⊥. (26)
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266 A. V. Oreshina and B. V. Somov

The solution of the first iteration (17)–(20) at (ξ‖/y0δ)
2 � 1 takes the simpler form

ẋ = ε

ξ⊥

(
ξ‖
y0δ

)−2

sgn x, (27)

x = ε

ξ⊥

(
ξ‖
y0δ

)−2

(sgn x)t + c1, where c1 = constant = x(0), (28)

ż = − ε

ξ⊥

(
ξ‖
y0δ

)−1

sgn x, (29)

z = − ε

ξ⊥

(
ξ‖
y0δ

)−1

(sgn x)t + c2, where c2 = constant = z(0). (30)

With allowance for equation (24), we note that

|ẋ| = |v|
∣∣∣∣∣
(

ξ‖
y0δ

)−1
∣∣∣∣∣ 	 1, |ż| ≈ |v| ≈ 1. (31)

Hence,

v2 = ẋ2 + ẏ2 + ż2 ≈ ż2. (32)

This means that the particle is predominantly accelerated in the electric field direction along
the CL.

Let us rewrite the equation of motion (12), integrating it over time and then substituting in
the right-hand side the function x(t) obtained in the first iteration (see equation (28)):

pz = (sgn q)

[
εt − ε

(
ξ‖
y0δ

)−2

t − c1ξ⊥ sgn x − 1

2

〈
y2

〉
δ

]
+ cz. (33)

In the course of time, the terms containing t will exceed the constant terms on the right-hand
side. Moreover, under the condition (23), the first term in the square brackets is much larger
than the second term. Therefore, the equation of motion (33) takes the form

pz = (sgn q)εt. (34)

As pz = ż/(1 − v2)1/2 ≈ ż/(1 − ż2)1/2 (see equation (32)), equation (34) can be rewritten in
the following manner:

ż

(1 − ż2)1/2
= (sgn q)εt. (35)

From this, we obtain the expressions for ż(t) and z(t) that are the result of the second iteration:

ż = εt

(1 + ε2t2)1/2
sgn q −→ 1 sgn q for t −→ ∞, (36)

z = sgn q

ε
(1 + ε2t2)1/2 + c2 −→ t sgn q for t −→ ∞. (37)

Thus, the velocity in the z direction is close to the speed of light: |ż| → 1. Particles with
different signs of charges move in opposite directions along the z axis.
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Relativistic particle acceleration in a current layer 267

Let us now determine the function x(t). For this, let us integrate the equation of motion
(10) over time and then substitute the obtained function z(t):

px = (sgn q)
[
y0ξ‖ +

( sgn q

ε
(1 + ε2t2)1/2 + c2

)
ξ⊥sgn x

]
+ cx. (38)

In the course of time, we shall have only the term with t on the right-hand side:

px = ξ⊥
ε

(1 + ε2t2)1/2sgn x. (39)

Taking into account equations (32) and (36), we note that

px = ẋ

(1 − v2)1/2
≈ ẋ

(1 − ż2)1/2
= ẋ(1 + ε2t2)1/2. (40)

Hence, the equation of motion (39) takes the following form:

ẋ(1 + ε2t2)1/2 = ξ⊥
ε

(1 + ε2t2)1/2 sgn x. (41)

Its solution (the result of the second iteration) is of the form

ẋ = ξ⊥
ε

sgn x, (42)

x = ξ⊥
ε

(sgn x)t + c1. (43)

So, the velocity in the x direction is low: |ẋ| 	 1. The motion does not depend on the sign of
the charge; particles move from the centre of the layer to its edges.

Now we find the plane y = y0, in the vicinity of which the particle executes gyrations. From
the force balance in the y direction (equation (14)) with allowance for the obtained functions
ẋ(t) (equation (42)) and ż(t) (equation (36)) it follows that

y0 = − ẋ

ż

ξ‖
δ

= −ξ⊥ξ‖
εδ

(1 + ε2t2)1/2

εt
(sgn x)(sgn q) −→ −ξ⊥ξ‖

εδ
(sgn x)(sgn q). (44)

A particle remains in the layer if the condition |y0δ| � 1 is fulfilled. It corresponds to the
inequality

ε2 � (ξ⊥ξ‖)2. (45)

The relativistic factor γ can be estimated using equality (32) and the obtained function ż(t)

(equation (36)):

γ = 1

(1 − v2)1/2
≈ 1

(1 − ż2)1/2
= (1 + ε2t2)1/2 −→ εt. (46)

Note that the solution of the first iteration (17)–(20) for y0 determined by the equality (44) is
identical with those of the second iteration for t → ∞, i.e. this fact is considered as evidence
of stability of the solution.

Considering other variants (relativistic case for (ξ‖/y0δ)
2 	 1 and also the non-relativistic

case [15]) in the same manner, we conclude that the results of the first and second iterations
do not coincide for any input parameters. So, stable solutions under these conditions are not
found. Thus, a stable trajectory of a particle in the CL exists in the strong electric field under
the conditions

ε2 � ξ 2
⊥ and ε2 � (ξ⊥ξ‖)2. (47)

The motion along the x axis is described by equations (42) and (43), and along the z axis by
equations (36) and (37); the particle gyrates near the plane y = y0 (equation (44)) inside the
layer.
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268 A. V. Oreshina and B. V. Somov

4. Numerical solution of the ordinary motion equation

The task of this section is to test the results of the analytical approach by an independent
method. We have solved numerically the ordinary (without averaging over the gyration)
equations of motion (10)–(12).

The computations were performed for an electron and proton (table 1). We have obtained
two trajectories for each particle: the first is for the weak electric field E = 3V cm−1, which
does not satisfy the stability conditions (47); the second is for the strong electric field E =
30V cm−1, for which the stability conditions are fulfilled.

At the moment t = 0, particles are on the layer surface: y = a/r0 (in dimensionless units).
The initial velocity v(0) = 0, which corresponds to the acceleration of initially thermal
particles.

Figures 2–5 present the numerical results for an electron, and figures 6–9 those for a proton.
The grey curves correspond to the weak electric field, and the black curves to the strong field.
The time dependences are shown of the particle coordinates x(t), y(t) and z(t), the velocity
components vx(t), vy(t) and vz(t), the total velocity v(t) = (v2

x + v2
y + v2

z )
1/2 and the rela-

tivistic factor γ = 1/(1 − v2)1/2. Note that all values are in dimensionless units. To estimate
the corresponding dimensional value, we have to multiply the time by t0, the coordinates by
r0, and the velocity by the speed of light.

The numerical results confirm the analytical conditions of stability (47). Let us look at the
curves y(t) in figure 3.At the initial time the electron is on the layer surface: y(0) = 1.87. Then

Table 1. Values of the parameters for the numerical computations.

Value for the following variants of the computations

Electron Proton

First Second First Second
trajectory trajectory trajectory trajectory

Constants
m (g) 9.11 × 10−28 9.11 × 10−28 1.67 × 10−24 1.67 × 10−24

q (CGSE units) −4.8 × 1010 −4.8 × 1010 4.8 × 1010 4.8 × 1010

Input parameters
E (CGSE units) [20] 10−2 10−1 10−2 10−1

B0 (G) [20] 100 100 100 100
ξ⊥ = Bz/B0 5 × 10−4 5 × 10−4 5 × 10−4 5 × 10−4

ξ‖ = By/B0 0.1 0.1 0.1 0.1
a (cm) [21] 32 32 32 32

Characteristic values
ω0 = |q|B0/mc (s−1) 1.8 × 109 1.8 × 109 9.6 × 105 9.6 × 105

t0 = ω−1
0 (s) 5.7 × 10−10 5.7 × 10−10 1.0 × 10−6 1.0 × 10−6

r0 = c t0 (cm) 17 17 3.1 × 104 3.1 × 104

Initial conditions
x(0) 100 100 100 100
y(0) = a/r0 1.9 1.9 10−3 10−3

z(0) 0 0 0 0
vx(0), vy(0), vz(0) 0 0 0 0

Dimensionless parameters
δ = r0/a 0.53 0.53 980 980
ε = E/B0 10−4 10−3 10−4 10−3

Stability conditions Not fulfilled Fulfilled Not fulfilled Fulfilled
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Relativistic particle acceleration in a current layer 269

Figure 2. Electron coordinate x(t) and velocity vx(t) obtained from the numerical solution of the ordinary (without
averaging) equation of motion: grey curves, unstable trajectory; black curves, stable trajectory.

Figure 3. Electron coordinate y(t) and velocity vy(t).

Figure 4. Electron coordinate z(t) and velocity vz(t).

Figure 5. Electron velocity v(t) and relativistic factor γ (t).
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270 A. V. Oreshina and B. V. Somov

Figure 6. Proton coordinate x(t) and velocity vx(t) obtained from the numerical solution of the ordinary (without
averaging) equation of motion: grey curves, unstable trajectory; black curves, stable trajectory.

Figure 7. Proton coordinate y(t) and velocity vy(t).

Figure 8. Proton coordinate z(t) and velocity vz(t).

Figure 9. Proton velocity v(t) and relativistic factor γ (t).
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Relativistic particle acceleration in a current layer 271

it moves to its centre. In the unstable case (the grey curve), the electron turns back and leaves
the layer at the moment t = 2.8 × 104. In the stable case (the black curve), it continues the
movement inside the layer in the vicinity of the plane y = 0.1, which is in good agreement with
the analytical estimation (44). As follows from the plot vy(t), this movement has a gyratory
character. However, in the unstable case, the gyratory amplitude increases with time, and the
mean value vy(t) is non-zero. In the stable case, the amplitude decreases with time, and the
mean velocity along the y axis is zero. The numerical results for protons confirm the stability
conditions, too (see figure 7).

The results of the stable motion (black curves) in the x and z directions also agree well
with the analytical predictions. The main acceleration occurs along the electric field (z axis),
vz ≈ −0.9 for the electron and vz ≈ 0.9 for the proton, i.e. it is close to the speed of light, and
particles with different charges move in opposite directions (figures 4 and 8). The velocity
vx ≈ 0.5 agrees with the analytical estimation ẋ = (ξ⊥/ε) sgn x (equation (42)), the electron
and proton move in the same direction (figures 2 and 6). The relativistic factor γ (figures 5
and 9) is well described by equation (46): γ = εt .

5. Application to solar flares

Continuum emission in solar flares in hard X-rays (20 keV–1 MeV) and γ -rays (1 MeV–1 GeV)
is produced primarily by bremsstrahlung from non-thermal electrons with kinetic energies K =
20 keV–1 GeV. γ -ray emission is produced also by high-energy protons with K = 10 MeV–
10 GeV (see, for example, pp. 149 and 165 of [5]).

The total energy E of a relativistic particle is composed of the rest mass mc2 and the kinetic
energy K:

E = mc2 + K = mc2γ. (48)

Hence,

γ = 1 + K
mc2

. (49)

For relativistic particles, γ greater or similar 2. So, relativistic electrons accelerated during a
flare are characterized by the factors γ = 2–2 × 103, and protons by the factors γ = 2–11.6.

According to our model, γ = εt = (E/B0)t = 10−3t . Therefore, the observed values γ are
acquired by electrons during the dimensionless time t = γ /ε = 2 × 103–2 × 106 or the actual
(real) time 1.1 × 10−6–1.2 × 10−3 s. During this time, relativistic electrons overcome the
distance 3.4 × 102–3.6 × 107 cm. For protons, the acceleration time is 2.0 × 103–1.2 × 104

in dimensionless units or 2.0 × 10−3–1.2 × 10−2 s. The corresponding distance is 6.0 ×
107–3.6 × 108 cm.

6. Discussion

The analytical results obtained here remain valid as long as changes in the magnetic field are
on timescales and length scales much larger than the period and gyroradius. The gyroradius
of the proton in the general case turns out to be too large and does not satisfy these conditions.
Nevertheless, the numerical solution of the ordinary (without averaging over the gyration)
equation of motion for proton confirms all the analytical results: the stability conditions and
the character of the stable motion.

In our work, we draw a conclusion about different trajectories of protons and electrons that
could lead to charge separation, but it would be accompanied by a modification of the electric
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and magnetic fields. Allowance for this effect is outside the scope of this work. It will be taken
into account in future.

7. Conclusion

An analytical solution of the equation of relativistic motion is obtained. The solution describes
the stable motion of a charged particle in a reconnecting CL, when a particle leaves the layer
through its edges, and not through the surface.

The stability conditions are found corresponding to a sufficiently strong electric field:

ε2 � ξ 2
⊥ and ε2 � (ξ⊥ξ‖)2.

They are rewritten in dimensional values:

E2 � B2
y and E2 �

(
ByBz

B0

)2

.

The character of the stable motion is found. Acceleration dominates along the electric field,
up to the speed of light: ż → 1 sgn q. Particles with positive and negative charges move in
opposite directions along the z axis. The velocity in the perpendicular direction in the layer
plane is non-zero but significantly lower:

ẋ = ξ⊥
ε

sgn x 	 1.

Motion in this direction does not depend on the charge sign; all particles move from the centre
of the layer to its edges. Also, particles gyrate in the vicinity of the plane

y0 = −ξ⊥ξ‖
εδ

(sgn x)(sgn q).

The relativistic factor γ = εt .
The analytical results can be applicable for a wide range of physical conditions: from active

regions in the solar atmosphere to coronae of accretion discs and so on.
For the case of magnetic reconnection in the solar corona, the analytical results have been

compared with the numerical solutions of the ordinary (without averaging over the gyration)
equation of motion. It has confirmed the conclusions of the analytical approach.

The obtained results can be used in the future to develop more detailed models, which will
be able to obtain spectra of accelerated particles, their dependence on the total energy of a
flare and so on.
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