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The results of some of our work and new research in which the motion of celestial bodies is considered
to be subject to dissipative interactions is generalized in this article. In a number of problems the
interaction of celestial bodies according to the law of universal gravitation is supplemented by a
dissipative force. In the framework of this model, the evolution processes are studied, stationary
configurations of an n-body systems are found, and their stability is investigated. In other problems
the model of the axisymmetric celestial body that consists of a solid core and a viscoelastic mantle is
considered. In such a model, the dissipation of energy under deformations is taken into account. The
tidal evolution of a planet rotational motion is analysed in detail. Also phase portraits are constructed
and an qualitative analysis of the global evolution of the dynamic characteristics of the Sun’s planetary
subsystems is presented on the basis of averaged evolution equations.

Keywords: Dissipative interactions; Model of viscoelastic celestial body; Energy dissipation under
deformations; Dynamic evolution of the Sun’s planetary subsystem

1. Introduction

The creation of high-precision theories of the motion of natural celestial bodies is a complicated
mathematical problem. It is known that gravitational and tidal moments play a dominating part
in the evolution of the dynamic characteristics of planets and their satellites in the Solar System
[1, 2]; the orbital motion and rotation around the mass centre change greatly as a consequence
of tidal interaction. The first fundamental research in this field was conducted at the end of
the nineteenth century by the celestial mechanic and cosmogonist George Darwin [1].

Adopting the Kozlov–Eneev [3] cosmogony theory as the model of formation of the Solar
System as a result of the evolution of the protoplanetary cloud that initially had a larger size
into protoplanets, it may be shown that at the initial stage of dynamic evolution of the Solar
System the tidal evolution of rotational motion of the planets played a particularly important
part in their formation. This evolution occurred several orders move quickly than in modern
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276 V. V. Bondarenko et al.

times. At present, because of the very weak tidal evolution of the rotations of the planets and
their satellites, the values of their angular velocities can remain close to the resonant values
for a long time, even if the corresponding resonant rotations are unstable. Dissipation leads
the system to evolve to a state of minimum total energy; therefore, for a system with tidal
dissipation, the resonant state may become the final state.

In the second part of the twentieth century, the advent of radiolocation astronomy with
its continuously improving high-precision methods of measurements led to the necessity to
correct and to develop the exist theories and to create qualitatively new theories of tidal
evolution of the rotational and translational motion of celestial bodies.

To study the evolution processes, researchers used a new theoretical model which considers
a planet as an elastic solid body with energy dissipation under deformations and the orbital
evolution of which is caused by the work of internal dissipative forces (without consider-
ing the thermodynamic processes); the planet itself executes translational–rotational motion.
Researchers have shown and emphasized that it is not correct to consider the evolution of
a planet’s rotational motion separately from its orbital motion and vice versa. Moreover,
the research carried out on the evolution processes in the motion of planetary subsys-
tems show the indissoluble ties between the evolutions of the dynamic characteristics of
translational–rotational motion of planets and their satellites.

The present method is characterized by a rigorous mathematical model. It is considered
that the layer is described by the linear viscoelasticity theory and the deformation process is
carried out quasistatically [4]. The model proposed permits us to obtain results mathematically
justified in an asymptotical sense for cosmogonic time intervals.

2. Three-body problem with dissipative forces

Let us consider the three-body problem in a classic statement for planar configurations subject
to dissipative forces depending on the rate of change in the distance between gravitating bodies.
Let the body with mass m0 be the attractive centre O; we ignore the effect of dissipative forces
from one side of this body with mass m0 (attractive center) acting on the other two bodies
(figure 1).

Figure 1. Coordinate systems for the description of motion in the three-body problem with dissipative forces.
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Gravitational–tidal evolution of planetary subsystems of the Sun 277

Let us set the dissipative force proportional to the rate of change in the distance between
the bodies of masses m1 and m2 in the form [5]

F Diss = −Q(r1 − r2, r ′
1 − r ′

2)r
−10(r1 − r2), (1)

where r1 and r2 are the radius vectors of the bodies of masses m1 and m2, respectively, relative
to the inertial coordinate system, Q > 0 is a constant coefficient depending on the physical
characteristics of the bodies (density, sizes, elastic and dissipative properties of the bodies),
and r is the distance between the bodies of masses m1 and m2, where r = |r1 − r2|.

Let point C be the barycentre of the bodies of masses m1 and m2; R is the radius vector of
point C. The expression for the system’s potential energy up to terms of order (r/R)3 has the
form

Π = −f m1m2r
−1 − f m0

(
−

(
m1m2

(m1 + m2)

)
r2R−3 − 3

2

(
m1m2

(m1 + m2)

)
(R, r)2R−5

)
, (2)

where f is the gravitational constant. Let us introduce the designation m = m1m2/(m1 + m2)

and rewrite equation (2) in the form

Π = −f m1m2r
−1 + 1

2
f m0mr2R−3[1 + 3 cos2(ϕ − ψ)], (3)

where the angles ϕ and ψ are determined according to figure 1.
The equations of mutual motion of the centres of mass of the planet and satellite in the

Delaunay variables L, Λ, � and g are derived from Hamilton’s variational principle

∫ t2

t1

[δ(L�′ + Gg′) − δH + δA] dt = 0, (4)

where δA is the elementary work of forces of gravitational interaction subject to the work of
elastic and dissipative forces on the possible motions of the system.

The canonical equations of motion of the considered system of bodies are represented in
the form

L′ = −∂H

∂�
+ Q�, �′ = ∂H

∂L
− QL,

Λ′ = −∂H

∂g
+ Qg, g′ = ∂H

∂Λ
− QΛ.

(5)

Here,

H = H0 + 1

2
f m0mr2R−3[1 + 3 cos2(ϕ − ψ)], (6)

where H0 = −(1/2)μ2m3L−2 is the Hamiltonian of the unperturbed problem; μ = f (m0 +
m1); QL, QΛ, Q� and Qg are the generalized forces corresponding to changes in the
coordinates L, Λ, � and g, respectively.

The expression for the work of dissipative forces on possible motions of the system is
determined by the relation

δA = −Q(|r ′
1 − r ′

2|)
(

(r1 − r2)

r
, δ(r1 − r2)

)

− Q(|r ′
2 − r ′

1|)
(

(r2 − r1)

r
, δ(r2 − r1)

)
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278 V. V. Bondarenko et al.

= −2Qr ′
( r
r
, δr

)

= −2Qr ′ δr. (7)

Since r = r(L, Λ, �), then ∂r/∂g = 0 and

δr = ∂r

∂L
δL + ∂r

∂Λ
δΛ + ∂r

∂�
δ�. (8)

Then system (5) can be rewritten as follows:

L′ = −∂H

∂�
− 2Qpr

m

∂r

∂�
, �′ = ∂H

∂L
+ 2Qpr

m

∂r

∂L
,

Λ′ = −∂H

∂g
, g′ = ∂H

∂Λ
+ 2Qpr

m

∂r

∂Λ
,

(9)

where pr is the generalized momentum.
Using the relations r = a(1 − e cos w), a = (L2μ−1m−2, e2 = 1 − Λ2L−2,

� = w − e sin w, cos w = (e + cos v)(1 + e cos v)−1 and ϕ = g + w (where w and v are the
eccentric and true anomalies, respectively), the Hamiltonian of the perturbed problem can be
rewritten as follows:

H = −1

2
μ2m3L−2 + 1

2
f m0mR−2(1 − e cos w)2[1 + 3 cos2(w + g − ψ)]. (10)

The generalized momentum pr is written in the form

pr = (2μm3r−1 − Λ2r−2 − μ2m4L−2)1/2 = μm3e sin wL−1(1 − e cos w)−1. (11)

Let us average the right-hand sides of the first two equations of system (9) over the fast
variables � and ψ . We obtain the averaged equations

Λ′ = 0, L′ = −2Qm−1Le2

(
1

2
+ 1

8
e2 + · · ·

)
. (12)

At t → ∞, e → 0, i.e. L → Λ, the orbits of motion of the points of masses m1 and m2

around the barycentre C tend to be circular.

3. Evolution of the motion of n gravitating hoops

Let us consider the problem of the evolution of inclinations of the planes of planetary orbits.
To simplify the problem, let us make the following assumption: we shall consider all orbits
as circular, having a constant radius. It is known that averaging the equations of motion over
fast angular variables in some sense is equivalent to ‘smearing’ a mass point along its orbit.
Therefore, let us consider the model problem of motion of n solid gravitating hoops, moving
along concentric spheres, instead of the problem of the evolution of inclinations of orbit planes.

Let mi and Ri be the hoop masses and radii, respectively. Let us take advantage of the
variables introduced by Zhuravlev and Klimov [6] and represent the angular moments of the
hoops in the form

Λi = 1

2
CiΩ i + Ciγ

′
i ei , Ω i = ei × e ′

i . (13)

Here, Ci are the moments of inertia of the hoops relative to the symmetry axis, ei are the unit
vectors of the symmetry axes of the hoops and γi are the angles of rotation of the hoops around
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Gravitational–tidal evolution of planetary subsystems of the Sun 279

the symmetry axis. The equations of motion follow from the theorem of change in the angular
momentum:

Λ′
i = 1

2
Ci(ei × e ′′

i ) + Ciγ
′′
i ei = Mi , (14)

where Mi = M Grav
i + M Diss

i are the moments of the forces acting on a hoop. The gravitational
moment is represented in the form

M Grav
i =

n∑
j=1(j �=i)

(∫∫
(ri × ri )|ri − rj |−3fρiρj dsi dsj

)
, (15)

where f is the gravitational constant, ρi and ρj are the linear densities of the ith and j th
hoops respectively, and dsi and dsj . are the differentials of arc lengths of the ith and j th
hoops, respectively; integrals are taken over the ith and j th hoops. The dissipative moments
are represented in the form

M Diss
i =

n∑
j=1(j �=i)

(∫∫
(ri × rj )Qij|ri − rj | |ri − rj |−9 dsi dsj

)
, (16)

according to the expression for dissipative force given below; Qij = Qij > 0.
Let us transform the expression for the moments of the gravitational force (15) and dis-

sipative force (16) to a form convenient for further consideration. Consider separately each
integral (15) that is under the sign of summation. Let us use a specially introduced coordinate
system (figure 2). Then

∫∫
(ri × rj )|ri − rj |−3fρiρj dsi dsj = ei × ej

|(ei × ej )|
∫∫ (

ei × ej

|(ei × ej )| , (ri × rj )

)

× fρiρj |ri − rj |−3 ds dsj , (17)

Figure 2. Coordinate system for the calculation of the moment of forces for the interaction of hoops.
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280 V. V. Bondarenko et al.

i.e. the vector of the gravitational moment of the interaction of a hoop pair is parallel
to the line of intersection of planes of these hoops. Using expressions for ri =
Ri(cos ψi, sin ψi, 0), rj = Rj(cos ψj , sin ψj cos ϑij, sin ψj sin ϑij), where cos ϑij = (ei , ej ),
let us transform equation (17) to the form [7]
∫∫

(ri × rj )|ri − rj |−3fρiρj dsi dsj = (ei × ej )
∂

∂(ei , ej )

(∫∫
fρiρj |ri − rj |−3 dsi dsj

)
,

(18)

and, consequently,

M Grav
i =

n∑
j=1(j �=i)

[
(ei × ej )

∂

∂(ei , ej )

(∫∫
fρiρj |ri − rj |−3 dsi dsj

)]
. (19)

The dissipative moment, after some transformations, is represented as

M Diss
i =

n∑
j=1(j �=i)

Qij
( ∫∫

(ri × rj )|ri − rj |−10([(Ω i − Ωj ) × ri], rj )

+ ([(γ ′
i ei − γ ′

j ej ) × ri], rj ) dsi dsj

)
. (20)

From equations (14), (19) and (20) it follows that the system will be in equilibrium in the
following two cases.

(i) All e1 = e2 = · · · = e0, γ ′
1 = γ ′

2 = · · · = γ ′
0 (in this case, Ω1 = Ω2 = · · · = Ωn =

constant), i.e. all hoops are in one plane and rotate with the same angular velocity and
this plane also rotates with a constant angular velocity.

(ii) e1 = e2 = · · · = em = e0, em+1 = em+2 = · · · = el = e00, el+1 = el+2 = · · · = en ==
e000, the vectors e0, e00 and e000 are orthogonal, γ ′

1 = γ ′
2 = · · · = γ ′

n = 0 and Ω1 = Ω2 =
· · · Ωn = constant. In other words, the hoops are separated into three groups so that the
hoops of each group are in one plane and stationary relative to it. All three planes are
mutually orthogonal and rotate with the same constant angular velocity.

Let us prove that, in case (i), the equilibrium is asymptotically stable.
Let Ai = (1/2)Ci ; let us multiply vectorially each ith equation (14) from the left by e′

i and,
taking the formula of the triple vector product into account, we obtain

Aiei (e′′
i , e′

i ) + Ciγ
′′
i [e′

i × ei] =
n∑

j=1(j �=i)

[
ei (e′

i , ej )
∂

∂(ei , ej )

(∫∫
fρiρj |ri − rj |−1 dsi dsj

)]

+ (e′
i × M Diss

i ). (21)

By multiplying each equation in a scalar manner by ei and taking equation (14) into account,
we derive

∑
i

1

2
Ai(e′

i )
2 =

∑
i,j (i<j)

∫∫
fρiρj |ri − rj |−1 dsi dsj

−
∑

i,j (i<j)

Qij(Ω i − Ωj ),

∫∫
(ri × rj )|ri − rj |−10{([(Ω i − Ωj ) × ri], rj )

+ ([(γ ′
i ei − γ ′

j ej ) × ri], rj )}, dsi dsj ). (22)
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Gravitational–tidal evolution of planetary subsystems of the Sun 281

As the equations

Ciγ
′
i γ

′′
i = γ ′

i (ei , M Diss
i ) (23)

hold, then, adding equation (22) and summing equation (23), we obtain

∑
i

1

2
Ai(e′

i )
2 −

∑
i,j (i<j)

∫∫
fρiρj |ri − rj |−1 dsi dsj +

∑
i

1

2
Ci(γ

′
i )

2

=
∑

i,j (i<j)

Qij((((Ω i − Ωj + γ ′
i ei − γ ′

j ej ,

∫∫
(ri × rj )|ri − rj |−10

× ([(Ω i − Ωj ) × ri], rj ) + ([(γ ′
i ei − γ ′

j ej ) × ri], rj ) dsi dsj )

=
∑

i,j (i<j)

Qij

∫∫
(Ω i − Ωj + γ ′

i ei − γ ′
j ej , (ri × rj ))

2|ri − rj |−10 dsi dsj

≤ 0. (24)

In this case, equality to zero is reached only in the equilibrium position.
For equilibrium of type (i), the energy of the system will be its Lyapunov function

V =
∑

i

1

2
Ai(e′

i )
2 −

∑
i,j (i<j)

∫∫
fρiρj |ri − rj |−1 dsi dsj +

∑
i

1

2
Ci(γ

′
i )

2

+
∑

i,j (i<j)

∫∫
fρiρj |ri − rj |−1 dsi dsj

∣∣
(e′

i=e′
0)

−
∑

i

1

2
Ai(e′

0)
2 −

∑
i

1

2
Ci(γ

′
0)

2. (25)

From equation (25), it can be seen that V = 0 in the equilibrium position, V ′ < 0 in a
very small neighbourhood of the equilibrium position, V > 0 in the neighbourhood of the
equilibrium position. Thus, all conditions of the Lyapunov theorem are met and the asymptotic
stability of the equilibrium position position of type (i) is established.

For proof of the instability of the equilibrium positions of type (ii), let us draw attention to
the fact that, when the hoop planes deviate slightly from strict orthogonality, a moment arises
that tends to disturb the given equilibrium position and to put the hoops in one plane, and this
means instability.

The equilibrium position and its stability analysis obtained upon solution of the model
problem of the motion of n solid gravitating hoops moving along concentric spheres can be
used to study the evolution of the natural hoops of gigantic planets of the Solar System.

4. Regular features of tidal evolution in the rotational motion of a viscoelastic planet

4.1 Model of a deformable planet

Let us consider the model of a planet as an elastic solid body with the dissipation of energy
under deformations. A planet consists of a rigid part (a core) and an isotropic elastic layer.
In its undeformed state, the planet is dynamically compressed. The axis of symmetry of the
elastic part coincides with the axis of dynamic symmetry of the whole planet. Displacements
of particles of the elastic medium at the boundary with the rigid part are equal to zero, and the
rest of the boundary is free. The motion of the planet allows us to describe it in the framework of
classic dynamics, and its deformable states are considered without thermodynamic processes.
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The description of the deformable state of a celestial body is based on a modal approach,
small deformations being considered to be linearly elastic [8]. In the case of an axisymmetric
elastic part with axisymmetric boundary conditions, the vector of elastic displacement may
be written in the following form:

u(r, t) =
∞∑

k,m=0

[qkm(t)Vkm(r) + pkm(t)Wkm(r)], (26)

where qkm(t) and pkm(t) are the generalized normal coordinates (modal variables) describ-
ing the body motion corresponding to the inner degrees of freedom, and Vkm(r) and Wkm(r)
are the fundamental functions (natural models) of free oscillations of the elastic part, cor-
responding to the fundamental (natural) frequency νkm and satisfying the conditions of
orthonormalization.

The reference frame Cx1x2x3 is embedded in the rigid part. Its axes are directed along the
principal central axes of inertia of the undeformed planet, and Cx3 is the axis of symmetry.
The modal approach requires calculation of the following coefficients of the fundamental
functions:

bkmij =
∫

Vkmixj dx, ckmij =
∫

Wkmixj dx,

dx = dx1 dx2 dx3, (27)

where Vkmi and Wkmi are the projections of the vectors Vkm and Wkm on the axis Cxi .
The potential energy of linearly elastic deformations is given by the quadratic functional

E2[u]. The rheological properties of the planetary material are described by the Kelvin–Voigt
model with the use of the dissipative functional D[u ′] = χbE2[u ′], where χ is the factor
accounting for energy dissipation and where b is a positive constant.

The equations of motion consist of the equations governing the rotation of the planet as
a whole and the equations determining the deformation. The main assumption, which has a
solid physical basis, is as follows: the attenuation time of free oscillations of the elastic part
at the lowest fundamental frequency ν is much less than the characteristic time of motion of
the system as a whole. The equations for the normal coordinates qkm and pkm are singularly
perturbed; so investigation of such equations is usually carried out by the boundary layer
method (using equations with a small parameter and a higher derivative with respect to time).
The motion attained after attenuation of the oscillations with high fundamental frequencies
is a long-period motion. It corresponds to the regular part of the solution of equations for
the normal coordinates, which describes the forced oscillations of planet deformation. This
particular solution is applicable for determining the deformations in an asymptotic sense from
a certain time instant. It satisfies quasistatic equations for the modal variables. These equations
define the generalized coordinates qkm and pkm as functions of the variables that describe the
motion of the planet as a whole.

4.2 Evolution equations of motion and their analysis

If the mass centre of a planet is rotating along a circular orbit in a central gravitational field of
forces while the planet is subjected to tides, then the evolution of its motion is described by
the following equations [9]:

I2 = −k{I2[λ1(1 + 2x2 − 3x4) + 4λ2(3 + 2x2 + 3x4)]
− 4Cω0x[4λ2(1 + x2) + λ1(1 − x2)]},
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I3 = 4k{I2x[(4λ2 − λ1)(1 − x2) − 8λ2]
+ Cω0[(λ0 + λ2 − λ1)(1 − x2)2 + 2(4λ2 − λ1)x

2 + 2λ1]} (28)

k = 9

8
ε3κω0C

−1, ε = ω0

ν
, κ = χbν, x = I3

I2
,

λ0 = ρ2

∞∑
m=0

(c0m11 − c0m33)
2σ−2

0m , λ1 = ρ2

∞∑
m=0

(b1m23 − b1m32)
2σ−2

1m ,

λ2 = ρ2

∞∑
m=0

b2
2m12σ

−2
2m , σim = νim

ν
(i = 0, 1, 2), ki, λi > 0.

Here, I2 is the magnitude of the proper angular momentum vector G of the planet; I3 is the
projection of G on to the normal n to the orbital plane; x = cos δ, where δ is the angle between
the vectors G and n; ω0 is the angular velocity of the mean orbital motion of the mass centre
of the planet; ρ2 = constant is the density of its elastic part.

For further investigation of the evolution of the system considered, it is reasonable to proceed
to the variables Ψ = C−1I2 (Ψ is the angular velocity of proper rotation of the planet) and x.
According to equation (28), we have

Ψ = −kΨ12(Ψ − Ψ1), Ψ1 = Ψ11ω0

Ψ12
,

x ′ = −kΨ −1Ψ22(Ψ − Ψ2), Ψ2 = Ψ21ω0

Ψ22
,

Ψ11(x) = 4x[λ1(1 − x2) + 4λ2(1 + x2)],
Ψ12(x) = λ1(1 − x2)(1 + 3x2) + 4λ2(3 + 2x2 + 3x4),

Ψ21(x) = 4[λ0(1 − x2)2 + λ1(1 − x2) + λ2(1 + 2x2 − 3x4)],
Ψ22(x) = x[3λ1(1 − x2)2 + 4λ2(1 + 2x2 − 3x4)],

sgn Ψ11 = sgn Ψ22 = sgn x, Ψ12, Ψ21 > 0.

(29)

Let us construct a phase picture of the system motion (figure 3). It follows from the first
of equations (29) that, for Ψ > Ψ1(x), the derivative Ψ ′ < 0, and the rotation of the planet
decelerates; if Ψ < Ψ1(x), then Ψ ′ > 0, and the rotation of the planet accelerates. Using the
expressions

dΨ12

dx
= x

dΨ11

dx
,

dΨ11

dx
= 4[λ1(1 − 3x2) + 4λ2(1 + 3x2)],

dΨ1

dx
= ω0

(
dΨ11

dx

)
(1 − x2)[λ1(1 − x2) + 4λ2(3 + x2)],

(30)

it may be shown that Ψ1 is an odd and monotonically increasing (if λ1 < 8λ2, as is assumed)
function of x with the asymptotes Ψ = ±ω0. It follows from the second of equations (29) that,
for x > 0, the value of x increases or decreases provided that the spin rate Ψ of the planet
satisfies the relations Ψ < Ψ2 or Ψ > Ψ2, respectively. For x < 0, the inequality Ψ > Ψ2

always holds (since Ψ2 < 0); so the value of x increases monotonically, while |x| decreases.
Stationary tilts δ of the rotational axis correspond to the values x1 = 1 and x2 = −1 when the
axis is directed upwards and downwards respectively along the normal to the orbital plane
(δ1 = 0 and δ2 = π).
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Figure 3. Phase portraits of the evolution of the rotational motions of planets: 1, Mars; 2, Uranus.

The variational equation for the first steady-state motion is written as

�′ = 8kΨ −1[4λ2Ψ − ω0(4λ2 + λ1)]�, x = 1 − �. (31)

It follows from equation (31) that the motion x = x1 is stable for Ψ < Ψ̃ , where Ψ̃ =
ω0(1 + λ1/4λ2), and unstable otherwise. The second steady-state motion x = x2 is unstable
for arbitrary values of the angular velocity of the rotation of the planet. The function Ψ2 is
odd with respect to x and has the asymptote x = 0; for x → ±1, the relation Ψ2 → Ψ̃ holds.
Calculating the expression for ∂Ψ2/∂x, which for brevity is not presented here, it can be
demonstrated that, for x > 0 (0 < δ < π/2), the function Ψ2 has a minimum Ψ∗, Ψ∗ > ω0

while, for x → 1, ∂Ψ2/∂x → +∞.
The differential equation for the phase trajectories of the system (29) is written in the

following form:
dΨ

dx
= Ψ Ψ12(Ψ − Ψ1)(Ψ − Ψ2)

−1Ψ −1
22 . (32)

It is seen from equation (32) that, for the values |x| = 1, i.e. when the rotational axis of
the planet is situated close to the orbital plane normal, |dΨ/dx| → ∞. With this orientation
of the rotational axis, the relative change in the spin rate of the planet proceeds much more
quickly than the evolution of the axial tilt δ. For the values of the angle δ ∈ [π, π/2](x ≤ 0)

corresponding to the proper rotation of the planet, reversed with respect to the orbital motion
of the mass centre, the inequality dΨ/dx < 0 always holds, and the spin rate of the planet
decreases monotonically.

The above analysis allows us to reveal some regular features of the tidal evolution of the
rotational motion of a deformable planet.

(i) All the final motions approach the same limiting pattern, which is forward rotation with
the spin rate equal to the angular velocity of the mean orbital motion of the mass centre.

(ii) In the end, the rotational axis of the planet tends to be aligned with the normal to the
orbital plane.

The evolution process depends on the initial conditions, which correspond to one of three
sets of phase trajectories. In the case of motion along the trajectories of the first set, initially
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the rotational axis twins towards the orbital plane (the value x = cos δ > 0 decreases). On
intersection with the curve Ψ2(x), the value of δ′ equals zero. Then a decrease in the angle δ

is observed, and the rotational axis restores its direction along the normal to the orbital plane.
In the motion along the trajectories of this set, the angular velocity of the proper rotation
decreases monotonically to the value ω0.

The phase trajectories of the second and third sets correspond to evolution with a turnover
of the rotational axis of the planet, when the rotation changes its direction from reverse to
forward. Here, the tilt angle δ monotonically decreases to zero; however, the spin rate Ψ may
evolve in various ways. In the case of the second set of phase trajectories, the monotonically
decreasing function Ψ approaches asymptotically the limiting value ω0 (as well as for the
first set of trajectories), whereas the angle δ approximately equals zero. It is noted that, for
x < 0, the magnitude of the inclination of the phase trajectories |dΨ/dx| at a fixed x increases
with increase in the actual value of Ψ . Thus, the prevalence of the effect of the evolution
of rotational axis tilt is not observed. For the third set of the phase trajectories, the angular
velocity Ψ initially decreases to values smaller than ω0. On intersection with the curve Ψ1(x)

the condition Ψ ′ = 0 occurs; then Ψ increases monotonically and approaches asymptotically
the value ω0, when the angle δ is approximately equal to zero. In the phase portrait the
position of the planets Uranus (the second set) and Mars (the first set) in the modern era are
indicated.

Let us consider Uranus as an example. The inclination of the proper rotational axis of this
planet with respect to the orbital plane is δ = 98◦. The period of Uranus in orbit (having a small
eccentricity of 0.046) around the Sun equals 84 years and 8 days, while the period of the proper
rotation equals 10 h 49 min. Also, the following values are taken: Ψ (0) = 1.61 × 10−4 rad s−1

and ω0 = 2.37 × 10−9 rad s−1; therefore the condition Ψ 
 ω0 holds.
It should be noted that Uranus at present performs a reversed rotation. It follows from the

foregoing analysis that this planet performed a reversed rotation in the past as well. While the
fast spinning of the planet continues, the rotational axis will be situated close to the orbital
plane [9, 10].

5. The three-dimensional modification of the deformable planet–satellite problem in
the field of an attractive centre

5.1 Model problem: the motion of a natural satellite in the field of a viscoelastic planet

Let us describe the natural motion of the mass centre m2 of the planet and the mass centre
m1 of the satellite relative to the barycentre in the Delaunay variables L, Λ, H , �, g and
h; Λ = |Λ| is the orbital angular momentum of the mass centres of the satelite and the
planet, � is the mean anomaly, h is the longitude of the rising node, g is the angular
distance of pericentre and cos i = HΛ−1. The rotations of the planet are characterized by
the angular momentum vector G and the vector K, where K = G + Λ is the general angular
momentum of the system; δ > 0 is the angle between the vectors G and K. The assumption
regarding purely axial rotation means that the vector G is guided along the symmetry axis of
the planet.

In the unperturbed motion (when tidal deformations are absent) the planet uniformly rotates
around the symmetry axis with an angular velocity Ψ = C−1G. The rotation axis of the planet
and the orbit plane precess around the vector K which is motionless in inertia space; the
angular velocities of the precessions are equal. It follows from analysis of the unperturbed
motion of the system that when the vectors G and Λ occur with a nutational motion relative
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to the inertia axis, the following expressions are of the same order of magnitude:

(cos δ)′ ≈ μ1R
−3(A − C)G−1, (cos i)′ ≈ μ1R

−3(A − C)Λ−1, (33)

where A and C are the equatorial and centroidal moments of intertia respectively of the
planet; μ1 = f m1, where f is the gravitational constant. The mass centres of the planet and
the satellite rotate along unperturbed elliptic orbits around the barycentre. The pericentres
precess in the plane of orbits with an angular velocity of the order of g′ ≈ (cos i)′.

In the perturbed motion the forced deformations of the planet are considered and the regular
features of the tidal evolution of the viscoelastic planet–satellite system are studied.

Let us now consider the fast axial rotation of the planet (Ψ 
 n). The averaged equations
of orbital–rotational motion keeping the terms dependent Ψ have the forms [11]

G′ = −kΨ [λ1α
2(1 + 3z2) + 4λ2(3 + 2z2 + 3z4)]Φ2(e),

Λ′ = kΨ z[λ1α
2 + 4λ2(1 − z2)]�2(e), L′ = Λ′Φ1(e)

Φ2(e)
,

x ′ = −kΨ αz(1 − x2)1/2G−1[3λ1α
2 + 4λ2(1 + 3z2)]Φ2(e),

y ′ = kΨ (1 − y2)1/2Λ−1[λ1α
2 + 4λ2(3 + z2)]Φ2(e),

z′ = kΨ α2{Λ−1[λ1α
2 + 4λ2(3 + z2)] − zG−1[3λ1α

2 + 4λ2(1 + 3z2)]}Φ2(e),

(e2)′ = 2(1 − e2)ΦΦ−1
2 L−1Λ′.

(34)

We introduce the following notation here.

x = cos δ, y = cos i, z = cos(δ + i),

α = sin(δ + i),

Φ1(e) = 1 + 15

2
e2 + 45

8
e4 + 5

16
e6, (35)

Φ2(e) = (1 − e2)1/2

(
1 + 2e2 − 21

8
e4 − 3

8
e6

)
,

x, y, Φ1(e), Φ2(e) > 0, Φ = Φ1(e) − Φ2(e)(1 − e2)−1/2 > 0.

The coefficients kλ1 and kλ2 characterize the moments of tidal forces and must be extended
and estimated subsequently on the basis of astrometrical and geophysical measurements. They
may be determined approximately.

The obtained averaged equations permit us to study numerically the evolution of natural
planetary subsystems of the Solar System which are very far from the Sun; this does not permit
us to take into account the influence of the gravitational tides from the Sun on the evolutionary
process.

Based on the example of the Neptune–Triton system let us carry out a qualitative analysis
of the evolution in the framework of the two body problem. The dynamic characteristics of
the system are such that we may assume that there is fast axial rotation of the planet Neptune
and that the orbit of Triton is a circle as its eccentricity is small. The analysis of evolutionary
equations of the system obtained from equation (34) for e = 0 permits us to make the following
quality deductions: the magnitude of the angular momentum vector G of the planet decreases
monotonically (the rotation of the planet slows down) for any inclinations of Triton’s orbit
with respect to the equatorial plane of the planet; the reversed orbit of Triton changes to a
forward orbit in the course of time; the magnitude of the orbital momentum vector Λ of the
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system decreases monotonically, and the semimajor axis of the orbit decreases correspondingly
(figure 4).

The global picture of tidal evolution of the planet–satellite system in the plane of the
parameters n, β = e2 is presented in figure 5. The phase trajectories separate into two sets
(the direction of the motion of a representative point is shown by the arrows). In the case of
motion along the trajectories of the first set, initially (when n > n2) the satellite approaches the
planet (the value of n increases and the eccentricity of the orbit decreases). It follows from the
equation for phase trajectories that an intersection of phase trajectory with the curve n2(β)

the value of the inclination of a line tangent to the trajectory equals zero. For n1 < n < n2,
the phase trajectories turn so that, for n → n1, |dn/dβ| → ∞. In the end, when n > n1, a
monotonic increase in the eccentricity e is observed, and the satellite moves away from the
planet (n decreases). There is a set of initial conditions, e.g. representative points belonging
to a separatrix. The separatrix intersects the curve n2(β) at the point (e = 0, n = Ψ ) which
is only one stationary point of the system. All phase trajectories that are below the separatrix
are the second set. In the case of motion along these trajectories the semimajor axis and

Figure 4. Plots of the relations of evolutionary variables with time in the Neptune–Triton system.
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288 V. V. Bondarenko et al.

Figure 4. Continued.

the eccentricity of the orbit decrease monotonically; moreover, when e ≈ 1, the velocity of
evolution of n increases (the value |d n/dβ| → ∞ for β → 1).

Let us note that the assumption that the angular velocity of the planet rotation is constant
is physically well founded if the condition G(0) 
 Λ(0) holds. However, for trajectories
from the first set for a sufficiently small value of n (i.e. for a sufficiently distance between
the satellite and the planet) the values G and Λ may be of the same order. In this case the
results obtained in this formulation of the two-body problem are not acceptable and it is not
correct in particular to make the deduction regarding a further monotonic decrease in n. In
the phase portraits (figure 5) the representative points corresponding to Phoebus and Demos
are indicated. At the present time the radius of Phoebus’s orbit is decreasing monotonically,
and Demos is moving away from Mars; moreover the eccentricity of its orbit continues to
decrease. A further monotonic decrease in the mean motion of Demos will occur on increase
in the eccentricity.

5.2 Motion of the planet–satellite system in the field of an attractive centre

The qualitative character of the evolutionary processes of the planet–satellite system in the field
of an attractive centre is presented in figure 6. A phase portrait of the evolutionary processes
follows from the differential equation

dΨ

dn
= ηn(1 − Ψ Ψ −1

∗ )(n − Ψ )−1, (36)

with

β, η, n∗ > 0, Ψ∗ = n(1 + β)−1, β ≈ O(1),
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Figure 5. Phase portraits of the evolution of the motions of satellites in the field of a massive planet: 1, Demos; 2,
Phoebus.

Figure 6. Phase portrait of the evolution of a planet-satellite system in the field of an attractive centre: ◦, the
Earth–Moon system.

where n∗ represents the mean motion of the barycentre along the orbit. As β > 0, then,
according to equation (36), Ψ∗(n) < Ψ = n; moreover, for an increase in n, the function Ψ∗
is asymptotic to the straight line Ψ = n. The inflection point of Ψ∗ is the point β = 0.6. In
the cases when Ψ > n or Ψ < Ψ∗, dΨ/dn > 0; for Ψ∗ < Ψ < n, dΨ/dn < 0. When Ψ → n,
then |dΨ/dn| → ∞; for Ψ = Ψ∗, dΨ/dn = 0. Let us consider the function

F = n5(y − y∗)N−1. (37)

The polynomial N(y) has only one root y0, namely N(y0) = 0; moreover, y0 > y∗ = n∗.
It may be shown that the straight lines Ψ = n and n = n0, where n0 = y0, are asymptotes for
F . The stationary point of the function F = F(y) for y < y∗ is in the interval (15/19)y∗ <

y < y∗. It follows from equation (37) that, in the cases when Ψ > F (for y < y∗), n < Ψ (for
y ≤ y0) and n < Ψ < F (for y > y0), the value dΨ/dn > 1 and the variable Ψ changes more
quickly than n. For Ψ > F(y, y0), Ψ < Ψ∗(y � y∗), the value dΨ/dn > 1 and Ψ changes
more slowly than n. It should be noted that for small values of n the plots of the functions F

and Ψ∗ are nearly the same. Therefore, if the condition n � n∗ holds, then during the tidal
evolution process a representative point of the system arrives in the neighbourhood Ψ∗(1 − δ),



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
12

:5
6 

5 
D

ec
em

be
r 2

00
7 

290 V. V. Bondarenko et al.

where 0 < δ = O(nn−1∗ ) � 1 and will move along the curve Ψ = Ψ∗ while the condition
n � n∗ holds.

Let us consider the Sun–Earth–Moon system and determine the place of the representative
point of the Earth–Moon system in the phase portrait (figure 6). The important relation Λ ≈
4.94G, where G is the value of rotational angular momentum of the Earth and Λ is the
orbital momentum of the system, should be noted. Therefore the values of G and Λ may be
considered to be of the same order of magnitude and it is necessary to consider the evolution
of the variables Ψ and n jointly. As can be seen in the phase portrait at the present time the
Moon is moving away from the Earth and the rotation of the Earth is decelerating. Here, the
angular velocity Ψ of the Earth’s rotation decreases more quickly than the mean motion n

of the Moon: Ψ ′ = 55.4n′. In this connection the Sun’s tidal exposure of the Moon to the
Earth decreases relatively. The phase portraits that were obtained on the basis of the averaged
equation of two model problems may have a basic role in studying the evolutionary processes
in the Solar System under the action of gravitational tides.
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