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The evolution of a natural system is characterized by a tendency to minimize its energy, and tidal 
evolution favours synchronism of spin and orbital motion. In this context we study the orbital 
evolutionary trends in synchronous binary motion, using a condition which favours minimization 
of energy of the system and reverts from the point mass approximation. Considering binaries to be 
subsystems of a microcanonical ensemble, we find that after tidal capture the equilibrium thermal 
distribution function favours high eccentricities. 

Results are applied to extended bodies with constituents, such as stellar systems. 

KEY WORDS Celestial mechanics, towards energy minimization, gravity softening, analytical 
methods 

1 INTRODUCTION 

Binaries axe the most common stellar systems and they influence the dynamical 
evolution of stellar systems. However, the two celestial bodies are extended objects 
and not point masses; hence an important aspect of the two-body problem is that 
of taking into account the extended nature of the two components. Also as nature 
favours minimization of total energy of the system, one should use a condition which 
favours the minimization of energy and softens the gravity of the components on 
that basis. The transfer of angular momentum between orbital motion and spin 
(rotation) probably takes place from the epoch of formation of celestial bodies; 
for example a galaxy spins up due to tidal torquing of neighbouring galaxies (e.g., 
Peebles, 1969). Hence this interchange is an important mechanism related to sta- 
tistical equilibrium and will determine the orbital characteristics of binary motion. 
In this context the orbital evolution of a binary system, under a condition which 
favours minimization of energy of the system, is of vital importance in dynamical 
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808 V. B. MAGALINSKY AND T. K. CHATTERJEE 

astronomy, as it is likely to throw light on the expected orbital parameters on the 
basis of statistical mechanics, as well as on the preferred states; this also necessi- 
tates a generalized formulation of the problem, so as to be applicable to binaries in 
astronomy. 

In a previous paper (Magalinsky and Chatterjee, 1997) we have studied the 
tidal evolution of a proto-planet as it condenses and orbits its primary, using a 
condition which favours the minimization of the energy of the system and reverts 
from the point mass approximation for the planet. Here, we extend the two-body 
problem, using a condition which favours energy minimization, as a consequence 
of which we revert from the point mass approximation; the rotations or spins of 
the bodies is taken into account, under synchronism with orbital motion. This is 
supported by the fact that tidal evolution favours synchronism, like the Earth-Moon 
system (e.g., Khentov, 1995). We analyse the expected distribution of the orbital 
parameters of the binary, on the basis of statistical mechanics, as perceived in the 
inertial frame corresponding to the centre of mass of the system and explore the 
preferred evolutionary trends. 

2 THEORY AND ANALYSIS 

2.1 Primitive Model 

We consider the binary motion of two extended bodies of given masses MI = Mz = 
M, and radius of gyration p1 and p2 (corresponding to their rotational inertia), 
softening the gravitational potential as, 

- GM2 U=-- 
R 

with 
RZ = r2 + p: + p i ,  

where T is the separation between the centres of the bodies and U is the mean value 
of u. 

The internal energy is considered in the form of a flux (see Appendix I). The 
Lagrangian function of the system consists of its orbital, spin (or rotational) and 
potential energies, the mean value being 

The softening of the gravity of the masses is achieved as a consequence of the 
approximation of the Newtonian attraction by means of a rigorous inequality, which 
favours a tendency towards minimum energy, as the potential energy is bounded 
from above by its average value, i.e. U 5 0 (see Appendix 11). The total energy of 
the system (in the configuration space of (T,  p ) )  defines the boundaries inside which 
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ORBITAL TRENDS IN SYNCHRONOUS BINARY MOTION 809 

the binary motion can take place, and we are interested in the case where the energy 
tends to a minimum. 

The orbital and spin angular momentums, I and s, can be obtained using the 
relations, 

whence 
7 - 2 6  = 21/21 

p 2 4  = s 
and 

(5 )  

where q5 and $ correspond to the azimuthal angles for orbital and rotational motion, 
respectively. 

In the inertial frame, corresponding to the centre of mass of the system, the 
Hamiltonian of the system is 

P,” Pp2 H = - + - + W  M 2M 
(Pr and Pp being the usual orbital and spin momentum respectively), where, 

s2 GM2 +--- w = -  l2  
2Mr2 2Mp2 R 

(7) 

W = E  (9) 

being the total energy of the system. 

2.2 Equilibrium and Dimensionless Variables 

The equilibrium values of T and p, denoted by TO and po are obtained by using the 
condition which favours minimum energy, min,, W ;  whence we get 

TQ = RQcosp 
po = RQsinp 

where 

& = -  j 2  
G M 3  

j = Z + s  
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810 V. B. MAGALINSKY AND T. K. CHATTERJEE 

1 cos2p = - 
j 

j being the total angular momentum of the system, such that our definitions imply 
cos2 B is proportional to the fraction of the angular momentum shared by the spin 
and the orbit. From equations (10)-(13) it follows that the orbital and spin periods 
coincide as a result of the tidal evolution. 

The minimum energy condition implies virialization, such that, 

At  this stage, it is convenient to introduce the following dimensionless variables 

E = Woh (where 0 < h < l), 
w = x - ~  C O S ~  p + y-2 sin4 p - 2e-I 

where 
z2 = x2 + y2 

2.3 Regions of Movement 

We analyse the regions in which binary motion is permissible, in the configurational 
space of separation, 2, and (linear) size, y, using polar coordinates 

2 = ecosa 
y = zsina.  

(17) 9 
Thus 

I)=-=tana 

determines the relative separation of the components with respect to their size. The 
sizes of the galaxies are determined by the angle they subtend at the centre of mass 
of the system, the angle a; p being its limiting value (in time), i.e. 

2 

r i a = @ .  
t-boo 

Using the energy condition (9), we obtain the limiting 

I f &  
h z(a) = 21,2 = - 

(18) 

values of e: 
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ORBITAL TRENDS IN SYNCHRONOUS BINARY MOTION 81 1 

with 

2 

A2 = (e~ga)~+(S) cos2 p , 

E is the orbital eccentricity; its maximum value for a given energy (determined by 
the parameter h) is 

€2 = 1 - 2h (2W 
and corresponds to the limiting value (p) of Q. 

The circular orbit for E~ = 0 defines the limiting value of a, a1 and cy2, deduced 
as 

C O S ~ Q ~ , ~  = h ~ 0 ~ 2 P f [ ( l - h ) ( l -  hCos22p)]1/2. (22) 
Between these two angles, the following relationships exist: 

tancrl tana2 = tan2 p .  (24) 
Denoting by (YO and a' the median value of Q and the half-width angle, respec- 

tively, we obtain, 

It is obvious from this analysis that the region of motion of the binary lies within 
the closed curve given by 

for a given energy. Its radial extent corresponds to the limiting value /3 of a, and is 
deduced to be 2~m/h. The centre of the region, defined by the curve, is displaced 
by a distance zo = l / h  from the origin of the coordinates (z,y). The angular size 
of the region is given by 

21,2 = (1 f E )  (27) 

a1 - a2 = arccos h'/2 = arcsin&,. (28) 
Notice that the limiting size of the region does not depend upon the orbital and 
spin angular momentum, but is defined by the energy parameter h, or the maximum 
eccentricity ern (for a given energy). 

2.4 Microcanonical Distributions of the Relevant Parameters of the Model 

We consider the binary systems to be subsystems of a microcanonical ensemble. 
The probablity density of the variables of the model in a microcanonical ensemble 
is given by the microcanonical distribution of Gibbs, as 

W(P,, Pp; 2, y; h, p) = R-16(E - H) (29) 
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812 V. B. MAGALINSKY AND T. K. CHATTERJEE 

(using the usual notation for the Dirac 6 function and the density of states 0). It 
follows that the distribution of the parameters in the configurational space ( x ,  y) is 
homogeneous and is given by 

W ( z ,  y; h, 8) = W(z,  a; h, 8) = const. (30) 

such that the calculation of the unidimensional probabilities reduces to the calcu- 
lation of the corresponding Jacobi determinants. 

As the orbital eccentricity depends only upon a, the above equation can be 
integrated between the l i t s  21,2, whence we obtain 

W ( E ;  h, 0) = const. - E - 121 
with the normalization, 1 W ( E )  de = 1, 

the explicit form being 

(32) 

const.&2(1- ~ ~ 1 - 1  sin2a(cos4 p sin2 a + sin4 p cos2 a 
C O S ~  p sin4 QC - sin4 p C O S ~  a 

W(&) = . (31a) 

The analytical cases of interest would be: (i) spin is insignificant (p = 0, imply- 
ing s/Z = 0); (ii) spin is dominant @‘ = n/2, implying Z/s = 0); (iii) spin and orbital 
angular momentum are equally important (p  = r/4, implying l / s  = 1). Neverthe- 
less, we find that in each case the distribution is almost insensitive to the orbital 
and spin angular momentum. In each case, the distribution of the eccentricity, for 
a given energy, has the form, 

with 

Thus the equilibrium distribution function is a monotonically increasing function 
of eccentricity, limited by its maximum value for a given energy. 

The distribution of the separation of the components, x, is obtained from equa- 
tion (31) as 

where y ( x )  is a positive root of the energy condition (9). This equation can be 
resolved analytically for the case of insignificant spin, s = 0, to obtain 

W ( z )  = const. - y(z) (34) 

[4x2 - (1 + hx2)2]”2 
X W(z)  = const.- 

1 + hx2 (35) 

where X I  < x < 2 2 ,  with z1,2 = 1/(1 ‘f E ~ ) ,  such that (for s = 0) the motion takes 
place within the ring defined by 2 1  and z2. 
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ORBITAL TRENDS IN SYNCHRONOUS BINARY MOTION 813 

Proceeding along 
equation (31) as 

the same lines, the distribution of the sizes, y, is obtained from 

W(y) = const. .y(x). (36) 
From equation (17) we see that the relative size, q, depends only upon Q: such that 
we obtain 

~ ( q )  = const. * &(a) cos2 Q (37) 
with the normalization 

J W(q)  dv = 1. 

2.5 Behavior of the System near Equilibrium 

We develop the energy in the vicinity of the equilibrium configuration (TO, po), using 
the last relation of equation (15), 

w = x - ~  C O S ~  p + sin4 p - 22-l. 

Assuming a small perturbation, 

we obtain, using the energy condition (9), 

a11t2 + 2a12trl+ a m 2  = €2, (40) 

where 
a11 = 1 + 3sh2 8, a22 = 1 + 3cos2 p, a12 = -3sinBcosP. 

This indicates that the motion is stable, as the perturbative motion is bounded 
by an ellipse about the point in question. The semi-major axis of this ellipse is 
inclined at an angle /3 to the x-axis, the lengths of the semi-major and semi-minor 
axes being A = E~ and B = ~ ~ / 2 ,  respectively. 

The distributions of the reduced separations and sizes is obtained as 

(414 
(41b) 

2 = xo + a;'[-a12q f (all€: - 477 2 ) 1/2 ] 
Y = YO + 42[-a12< f - 4t I. 2 112 

The limiting values of these variables is 

1/2 

a22 2 
a12G 2 

Y1,2 = yo - with c1,2 = k- 
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814 V. B. MAGALINSKY AND T. K. CHATTERJEE 

for the semi-minor axis B = 4 2 .  
Developing the energy in terms of the perturbative displacements [ and q,  and 

calculating the characteristic determinant, we obtain the normal frequencies of os- 
cillations as 

w4 - 3(2 + x)w2 + 8 = 0 (43) 

where 
1 
3 

x = 7 = cos2 p 

defines the ratio of orbital to total angular momentum; whence, 

(44) 

(45) 
3(2 + A) f (4 + 36X + 9X2)lI2 

4 2  = 2 

These two normal frequencies of oscillations in size and shape correspond to the 
Lissageou figures in the zy-plane. 

Note that all the statistical characteristics can be calculated by using the derived 
formulas in an elementary manner. 

3 RESULTS 

We have formulated a Hamiltonian treatment of the problem of the dynamics of 
two extended bodies (of equal mass) with two degrees of freedom, corresponding 
to their separation and effective size. The internal movement of the constituents of 
the bodies is taken into account by the hydrodynamic velocity corresponding to the 
mass distribution and the gravitational potential is considered in the form of a flux 
(see Appendix I). A study of the binary motion is conducted, taking into account 
the spins (rotations) of the two components under synchronism with the orbital 
motion, subject to a condition which favours energy minimization; we are led to an 
analytical treatment of the gravitational softening of the bodies, as a consequence 
of this condition (see Appendix 11). 

We determine the region within which the binary motion is confined and test 
its stability, finding it to  be stable. We consider binaries to be subsystems in 
a microcanonical ensemble and determine the equilibrium distribution function. 
We find that for bound binary systems, the equilibrium distribution of the system 
parameters favours high eccentricities, such that, following tidal capture, binaries 
are characterized by a state preferring high eccentricities. 

4 APPLICATIONS AND CONCLUSIONS 

This aspect of binary motion has important consequences for extended bodies 
with internal constituents, such as stellar systems, where the vast majority of the 
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ORBITAL TRENDS IN SYNCHRONOUS BINARY MOTION 815 

encounters involve a marginally bound capture, after which we have a slow bound 
binary orbit. The subject is reviewed by Karachentsev (1990) where he reflects 
upon the statistical equilibrium of binary galaxies. Many of the binary galaxies 
have their rotation and orbital periods of the same order, suggesting that their syn- 
chronous evolution may have characteristic trends. The equilibrium distribution of 
the parameters of bound binary systems, considering them to form a microcanonical 
ensemble, under the condition favouring minimization of energy, is a monotonically 
increasing function of eccentricity. 

This tendency of favouring high eccentricities was noticed in previous research 
work. N-body models of the expanding universe of Evrard and Yahil (1985), 
using an initial Poission distribution of particles with three-dimensional information 
on position and velocity, indicate that amongst half of the masses that 
double up to form pairs, about 75% are in highly eccentric orbits, which 
seem to have ceded from the Hubble expansion and fallen radially towards 
each other. This is also obvious for an initial homogeneous distribution of posi- 
tions and velocities of the binary components in phase space, as proportionately 
more phase space volume is available for higher values of eccentricities (cf. Jeans, 
1929). 

Recently, a critical study of binary galaxies has been conducted by Chengalur 
e t  al. (1993, 1994, 1995, 1996); in which they noted that the initial orbits must 
have been highly radial, favouring a high eccentricity and low energy. They find 
a small median value for the velocity difference distribution for wide galaxy pairs 
in low-density regions, suggesting that as the pairs are bound they are very likely 
to be near turnarounds (apocentres) of their orbits, which is indicative of the pairs 
being in almost radial low-energy orbits. As suggested by them and Evrard and 
Yahil, galaxies which feel their mutual two-body force will fall radially towards each 
other in orbits of high eccentricities, immediately after separation from the Hubble 
expansion. 

Chengalur et 02. find that, as for wide pairs, for close pairs also the velocity 
difference distribution has a small median value; the low impact parameter and 
slow velocity suggests that the close pairs have orbits similar to wide ones and thus 
indicates (as proposed by them) that high eccentricity orbits do not circularize eas- 
ily. Our results favour orbits of high eccentricities for tidal capture binary galaxies. 
Studies of the tidal evolution of a proto-planet as it condenses and orbits its primary 
indicate that the process of circularization of the orbits is a very slow and gradual 
one (Magalinsky and Chatterjee, 1997). Thus it is quite conceivable that both wide 
and close pairs are on high eccentricity radial orbits, and that the wide ones evolve 
to close ones. 
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816 V. B. MAGALINSKY AND T. K. CHATTERJEE 

APPENDIX I. INTERNAL ENERGY AND VELOCITY DISTRIBUTION OF 
THE BINARY COMPONENTS 

Let D(r i ,  t )  (i = 1,2)  define the mass distributions of the two extended components. 
We assume that the distributions have the form 

(AI.l) 

where 

pi = Pi( t )  

such that the symmetry of the distribution does not change with time and its evolu- 
tion reduces to a transformation of scale. We normalize this distribution according 
to 

(AI.2) 

whence it is evident that pi is the radius of gyration of the two bodies (corresponding 
to their moments of inertia about their spin axes). 

We denote by ui the hydrodynamic velocity at a point at a distance ~i from the 
centre of the body. According to the equation of continuity, 

all - + div (Du) = 0. at (AI.3) 

Obviously the flow field ui(r i , t)  corresponds to a potential flux; hence we obtain 
from (AI.l) and (AI.2), 

Pi ui = --ri, 
Pi 

(AI.4) 

such that the relative velocity of two constituent elements of the two components 
(of the binary) is given by 

u?. = r + (u1- u2). (AI.5) 

The kinetic energy of the relative motion is then given by 

Krel = 1 D(rl)D(rz)u; d3r1 d3r2 (AI.6) 

where we take into account the independent mass distributions of the components 
and use the reduced mass corresponding to the relative motion. 

Taking into account the previous equations, (AI.6) leads to the (mean) La- 
grangian in equation (3). 
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ORBITAL TRENDS IN SYNCHRONOUS BINARY MOTION 817 

APPENDIX 11. CONDITION FAVOURING MINIMIZATION OF ENERGY AND 
GRAVITY SOFTENING 

The Newtonian interaction between the two components is given in terms of the 
potential energy as 

U = -G 1 D ( T ~ ) D ( T ~ ) ( T  + T I  - r2l-I d3rt d3r2. ( AII. 1) 

According to (AI.1) and (AI.2), f is a distribution such that we can denominate 
the mean value of a quantity, A(E), as 

/ A ( O f ( 0  d t  = (A)  (AII.2) 

such that the mean value of U is given by 

B = -GM2([(r  + T I  - ~ 2 ) ~ I - l ’ ~ ) .  (AII.3) 

Noting that U is a convex function with respect to its argument (T + T I  - ~ 2 ) ~ ,  we 
can approximate U from above as Vex 5 U,,, where U,, and Uap denote the exact 
and approximate values of U, respectively, such that 

Vex U 5 6 = -GM2((r  + T I  - ~ 2 ) ~ ) - ” ~ .  (AII.4) 

from which we obtain an approximation for U from above, as 

- GM2 ULU=-- 
R (AII.5) 

where 

This approximation favours the minimization of energy. 

R2 = T2 f + pi. 
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