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Perturbations of the pole position of the Earth’s axes of inertia due to its tidal and rotational 
deformations have been found. 
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1 INTRODUCTION 

The Earth’s mass redistribution generates temporal variations of the coefficients 
of geopotential, of the components of the tensor of inertia and as result leads to 
the variation of the orientation in its principal axis of inertia. The purpose of this 
paper is to study the motion of the Earth’s principal axis of inertia C&tC due to tidal 
deformations from the Moon’s and Sun’s attraction, and also due to its rotational 
deformations. To obtain corresponding corrections to values of the geopotential, 
coefficients ase determined with respect to the reference system CtqC. 

One investigation of this problem was made by Bursa (1983). In this paper we 
will use Ferrandiz and Getino’s paper (1993) in which in details of the periodic 
tidal variations of the coefficients of the second harmonic of the gopotential were 
described. The authors use the classical model of the Earth with an elastic mantle 
(model Takeuchi 2). For a description of the rotational deformations of the second 
harmonic of the geopotential in this paper classical expressions for the rotational 
deformations of the component of the tensor inertia are used. 

This investigation has an important significance for the determination of the 
main reference systems for different geodynamical studies, in satellite dynamics 
and for the theory of the rotation of the deformable Earth. 
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606 Yu. V. BARKIN AND J. M. FERRANDIZ 

Table 1. Secular variations of the zonal coefficients of the geopotential ( X ~ O - ~  l/cy) 

Authors, years Data of observations j 2  j 3  j 4  

Yoder et al., 1983 Lageos, 5,5y. -3.0 k 0.3 -1.0 - 
Rubincam, 1984 Lageos, 6,Oy. -2.6 f 0.6 - - 
Cheng et al., 1989 Starllete, 3y. -2.5 f 0.1 -0.1 f 0.3 0.3 f 0.6 
Schwintzer et  al., 27 sat. gravity -6.7 f 1.6 - - 
Marchenko, 1992 Etalon (21 months) -2.6 f 0.4 - - 

(6 months) 
Marchenko, 1992 Lageos (6y) -2.7 f 0.7 -0.1 f 0.6 0.3 f 0.8 

2 TEMPORAL VARIATIONS OF THE GEOPOTENTIAL COEFFICIENTS 

The Earth’s dynamical structure essentialy changes in time. The Earth experiences 
tidal and centrifugal (rotational) deformations, different kinds of geophysical and 
geodynamical changes in the atmosphere and tectonosphere. These processes lead 
to temporal variations of the geopotential coefficients. The dependence of these 
variations an the character and nature of the Earth’s mass redistribution can be 
secular, periodic or long-periodic. 

Experimentally, on the basis of a long series of highly accurate satellite obser- 
vations the secular variation of the JZ parameter of the Earth’s gravitational field 
was detected (Yoder et al., 1983; Chang et al., 1989 and others). 

In Table 1 (Marchenko, 1992) modern data about the experimental definition of 
the secular variation of the some zonal harmonic coefficients of the geopotential are 
given (obtained by different authors in recent years). Theoretical explanation of the 
observed secular variations J ,  and predictions of analogous variations of the other 
coefficients by the second and third harmonics of the geopotential is an important 
scientific problem. The principal role, here is played by the following mechanisms: 
sea level change, ice rebound, the lithosphere plates motion, etc. 

In the paper by Ferrandiz and Getino (1993) the periodical variations of the 
coefficients of the second harmonic of the geopotential due to tidal attraction of 
the Moon and Sun were studied. Their investigations have a theoretical character 
and use a classical Earth model with elastic mantle. The periodic variations of the 
standard coefficients J2, C ~ Z ,  S12, C21, ,521 of the geopotential were presented in 
the following form: 
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EARTH’S ROTATION 607 

Table 2. Main tidal periodic variations of the geopotential coefficients ( X ~ O - ~ )  

-31.81 1 0 0 -2 0 0.2033 0.0053 
27.55 1 0 0 0 0 1.0631 0.0276 
14.77 0 0 0 2 0 0.1764 0.0046 
9.12 1 0 2 0 1 0.1597 -0.0278 

13.63 0 0 2 0 1 0.8342 -0.1453 
-6798.36 0 0 0 0 1 -0.8433 0.1469 

9.56 -1 0 2 2 2 0.0732 0.1417 
27.09 -1 0 2 0 2 -0.0569 -0.1102 

9.13 1 0 2 0 2 0.3854 0.7462 
7.10 0 0 2 2 2 0.0615 0.1192 

13.66 0 0 2 0 2 2.0124 3.8976 
365.26 0 1 0 0 0 0.1487 0.0039 
121.75 0 1 2 -2 2 0.0548 0.1060 
182.62 0 0 2 -2 2 0.9342 1.8090 

0.0053 
0.0276 
0.0046 
0.0012 
0.0063 

-0.0063 
0.0003 

-0.0002 
0.0014 
0.0002 
0.0072 
0.0039 
0.0002 
0.0034 

0.0486 
0.2543 
0.0422 

-0.1167 
-0.6099 
0.6167 

0.0914 
-0.1176 

-0.6192 
-0.0989 
-3.2339 
0.0356 

-0.0880 
-1.5011 

0.0486 
0.2543 
0.0422 
0.0171 
0.0891 

-0.090 1 
0.0051 

-0.0039 
0.0266 
0.0043 
0.1391 
0.0356 

-0.0009 
-0.0160 

i i 

where K ( . , , ) ( i )  are numerical coefficients (they are given in Table 2), 

Oi = mlrnllw + mzls + rn3F + m4D + m5R 

is a linear combination with numerical coefficients of the classical arguments of the 
Moon’s orbital theory: 

F = 1h.f QM, D = 1~ +gM + h M  - 1s - gs - hs, 

and l ~ ,  Q M ,  h M  and ls, gs, hs are Delanay variables for the Moon’s and Sun’s 
orbital motions; these are linear functions of time. p l v  are Andoyer’s variables, 
describing the daily Earth rotation with frequency n, + nk w w (w is the mean 
value of the Earth’s angular velocity). 

Variations of the parameters (1) are considerable and characterized by definite 
periods. For the 5 2  parameter these periods are given in Table 2 and are from a 
few days to 18.6 y. For others parameters (from formula (1)) these variations are 
quasidaily. 

These variations of the parameters (1) were detected in the principal axes of 
inertia of the Earth in its undeformed position. 

Redistribution of the Earth’s mass leads to definite displacements of the Earth’s 
principal axes of inertia (in the general case the orientation of these axes and position 
of the centre of mass of the Earth will by changed). 

The Earth’s deformations, caused by its rotation, also lead to additional varia- 
tions of the geopotential coefficients. Let W is the vector of the angular velocity of 
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608 Yu. V. BARKIN AND J. M. FERRANDIZ 

the reference system Cxyz; p ,  q and r are the components of this vector in the axes 
Cx, Cy and C z ,  respectively. 

Using the classical expressions of the variations of the components of the tensor 
of inertia for an elastic body, caused by rotational deformation for corresponding 
variations of the coefficients of the Earth’s second harmonic, we will have the fol- 
lowing representations (Bursa, 1983; Ferrandiz and Getino, 1991): 

where D1 is a coefficient which characterizes the elastic properties of the Earth’s 
mantle, and m and R are the mass and mean radius of the Earth. In ( 2 )  p ,  q,  T are 
functions of time. 

The values of the components of the inertia tensor and of the coefficients of 
the geopotential Cn,, Sn, depend on the reference system. The main interest 
in these values of present is for the principal axes of inertia; this is an important 
question for different dynamical investigations and for the correct interpretation of 
the Corresponding results. 

Therefore in the following paragraphs we will consider the questions of the prin- 
cipal moments of inertia of a deformable body, and the parameters Cnm, Sn, in 
the principal axes of inertia; we will also obtain some additional corrections to the 
values of the principal moments of inertia of the Earth and its parameters Czo, 
c22. 

3 VALUES OF THE EARTH’S GEOPOTENTIAL COEFFICIENTS IN ITS 
PRINCIPAL AXES OF INERTIA 

The orientation of the principal axes of the Earth CtqC about the reference system 
of the Earth Cxyz will be represented by Eulerian angles $, 8, cp and by the system 
of direction cosines: 

all = cos((, x) = cos $ cos cp - sin II, sin cp cos 8 
a21 = cos(<, y) = sin $ cos cp + cos $ sin cp cos 8 
a31 = cos(<, z )  = sin cp sin 8 
a12 = cos(7, x) = - cos $J sin cp - sin $ cos cp cos @ 
a22 = cos(q, y) = - sin $ sin cp + cos $ cos cp cos 8 
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EARTH’S ROTATION 609 

a32 = cos(q,z) = coscpsin6’ 
a13 = cos((,s) = sin$sinO 
a23 = cos(<,y) = -cos$sinO 
a33 = c o s ( ~ , z )  = case (3) 

where $J is the precession angle, 8 is the angle of nutation, and p is the angle of 
rotation. 

The components of the inertia tensor of the Earth in the Csyz axes are defined 
by the formulae: 

where p is the Earth’s density, du is an elementary volume, and the integral is 
extended to the whole volume of the Earth. 

The components of the inertia tensor ( 4 )  are connected with the coefficients of 
the second harmonic of the geopotential by the relations: 

2 C - A - B  B - A  
J2 = 4 2 0  = 1 c22 = - 2mR2 4mR2 

E 
c21 = - 2mR2 ’ mR2 

F 
s22 = - D 

5 2 1  = - mR2 ’ (5) 

where m and R is the mass and the radius of the Earth. 

are 
With respect to the principal axes of inertia the components of the inertia tensor 
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610 Yu. V. BARKIN AND J. M. FERRANDIZ 

so the axes Cg'qC are principal, as here 

Fp = Ep = D, = 0. 

The parameters of the second harmonic of the geopotential of the Earth about 
the axes CtqC are defined by the formulae: 

2Cp - Ap - Bp 
2mR2 4 = -c;* = 

q2 = 
Bp - A, 
4mR2 

The Cartesian coordinates (z, y, z )  of the elementary volume of the body of the 
Earth do about axes Czyz and ( E ,  q ,  C) about axes CtqC, which are in formulae 
(4) and (6), are connected by the following transformation formulae: 

Substituting formulae (8) in to integrals (4), after some algebra, we obtain expres- 
sions for the components of the inertia tensor for non-principal axes through the 
principal moments (Tisserand, 1996): 

A = allAp + a:,Bp + a&Cp 
B = ailAp + ai2Bp + ai3Cp 
C = a&A, + ai2B, + ai3Cp 

-F = a l ~ a d ,  + a12a22B, + a13a23cp 
-E = a3lal1Ap + a32a12Bp + a33a13cp 
-D = a2la31Ap + a22a32Bp + a23a23Cp (9) 

Using well-known properties of the direction cosines (3), we can describe formu- 
lae (9) in the following form: 

A = A, + (Bp - A,)a?, + (C, - A,)af3 
B = Bp + (AP - Bp)agl + (C, - B,)a& 
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EARTH’S ROTATION 611 

Substituting formulae (10) into ( 5 )  we obtain analogous relations between the 
geopotential coefficients (5 )  and (7): 

c20 = 

c 2 2  = 

SZl = 
(721 = 
s 2 2  = 

The direction cosines of the principal axes of inertia are defined by the following 
system of linear homogeneous equations: 

where Ji = ( A p ,  Bp,  C,) (i = 1,2,3). 
The equations (12) are linearly dependent and admit solutions only for three 

values of J ,  which are the principal moments of inertia, defined as the roots of the 
cubic equation: 

J 3  + U P  + b J +  cc = 0 

where 

a = - ( A + B + C )  
bD = AB +AC+ BC - F2 - D2 - E2 
CC = -ABC + 2FED + AD2 + BE2 + CF2. 

By Cordano’s formula we find: 

3 
A, = 

cp = A + B + C + 2 f i c o s ( 3  3 
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612 Yu. V. BARKIN AND J. M. FERRANDIZ 

where 
1 1 1 
6 p = - - (A  - C)2 - ;(A - B)2 - s(C - B)' - ( F 2  + E2 + D2) 

and the value of the angle 7 is defined by 

cosy = J% 
where 

q = $ [ a 2 ( 2 A - 3 B - 3 C ) f B 2 ( 2 B - 3 A - 3 C ) + C 2 ( 2 C - 3 A - 3 B )  

+ 
+ 9C( E2 + D2 - 2F2)] . 

l2ABC - 54FED + 9A(F2 + E2 - 2D2) + 9B(D2 + F2 - 2E2) 

Using the natural assumption about small inclinations of the corresponding axes 
of the systems Cgqc and Cxyz we obtain approximate expressions for the principal 
moment of inertia. In this case the moments F ,  E ,  D are small (with respect to 
the values A, B ,  C )  and we can obtain the solution of the cubic equation by the 
method of successive approximations. So with a third-order accuracy with respect 
the values F, E ,  D the expressions of the principal moments of inertia have the 
form: 

E2 2FED +-- = A+m A - C  ( A - C ) ( A - B )  
F2 

F2 0 2  2FED ' Bp = B+-+-- B - A  B - C  ( B - C ) ( B - A )  
D2 2FED +-- F2 

cp = '+= C - B  ( C - B ) ( C - A ) '  (13) 

It follows from Table 2 that tidal variations of the products of inertia for the 
Earth have order M 10-9C. On other hand the differences of the axial moments of 
inertia of the Earth are of the order: 

C - A M 1OU3C, C - B M 10-3C, B - A  M 10-6C (14) 

These values follow from relations ( 5 )  

B - C = ((720 + 2C22)mR2, C - A = (2C22 - C20)mR2, B - A = 4C2zmR2. 

For example, in accordance with the model of the Earth's gravitational field GEM6 

C20 = -1.0826 x C22 = 1.565 x lo-' 

and evaluations (14) hold. 
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EARTH’S ROTATION 613 

So, the second terms in the expressions A,, Bp (13) have order w 10-12mR2, 

The second and third terms in the expression for C, have order 10-15mR2, and 

As result here we have following approximate formulae for the principal moment 

the third have order w 10-15mR2, and the last have order w 10-’smR2. 

the last has order 10-1smR2. 

of inertia: 

c, = c (15) 
F2 B , = B + -  F2 A , = A + -  A - B ’  B - A ’  

or using formulae (5) 

A, = A - - m R 2  s;2 

Bp = B + - m R 2  s,22 

c 2 2  

c 2 2  
c, = c. 

Similar expressions for the parameters J,P, Cg2 are characterized by the following 
simple form: 

(16) 5,22 Jl = J2 = -C20, Cl2 = C22 + -. 
2 6 2 2  

Formulae (16) allows us to obtain the temporal variation of the parameter C!2. 
Substituting expression SS22 (1) formula (16) we have: 

From formula (22) we find that the variation of the parameter C,P2 contains 
additional terms: a constant (given by m = 0) and a periodic term with period 
T = 2n/(4w + 6,). Here we also have terms with periods that don’t depend on 
the Earth’s rotation. 

For the main terms in the variation 6Cg2 (22) we obtain the following additional 
terms to 6C22: 

(6C~2)~d = 0.0026 x lo-’ + 0.0020 x lo-’ cos 2 0  

- 0.0005 x lo-’ cos(4p + 4v - 4F + 40 - 4R) 
- 0.0021 x lo-’ COS(4p + 4v - 417 - 40) 

0.0020 x lo-’ cos(4p + 4v - 4F - 40  + 2D). - (18) 
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614 Yu. V. BARKIN AND J. M. FERRANDIZ 

The constant term in expression (18) gives the constant components of the 
differences of the principal and non-principal moments of inertia: 

Cp - Ap 
Cp - Bp 
Bp - A, 

= 
= 
= 

C - A + 0.0052 x 10-'mR2 
C - B - 0.0052 x 10-'mR2 
B - A + 0.0104 x 10-'mR2. 

4 THE EARTH'S POLE MOTION CAUSED BY ITS TIDAL DEFORMATIONS 

Equations (12) are easy to solve with respect direction cosines: 

DE + F ( C  - J i )  
Ai 

a1i = 

(ED + F ( C  - J . ) ) ( D ( A  - J.) + FE)  
( E ( B  - J.) + F D ) A i  a2i = 

D ( A  - J.) + FE 
Ai 

a3i = 

where 

A$ = 

+ 
D 2 ( A  - Ji)' + E2(B - Ji)' + F2(C - Ji )2  

2FED(A + B + C - 3 4  + F2E2 + F2D2 + E2D2. (20) 

Substituting in formulae (19), (20) the values of the principal moments of inertia 
Ji = (Ap,  Bp, C,) defined by the approximate formulae (15 ) ,  after some reduction 
we obtain the following approximate expressions for the direction cosines: 

all E 1, 

Now on the basis of formulae (8), (21) we find the following approximate values 
of the Cartesian coordinates of the Earth's poles of the inertia axes Ct, Cr] and C i  
in the coordinate system Cxyz: 

XE % R, 
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EARTH’S ROTATION 615 

Let us now give a description in detail of the poles of inertia Pc and Pc, caused 
by tidal deformations of the Earth, with respect to the reference system Cxyz, 
which is the system of principal axes in the undeformed state of the Earth. 

Using the relations (5) we describe the formulae for the coordinates of the poles 
Pc and Pc (22) in the following form: 

where Cgo, Ci2 are constant values of the parameters C20, (222 for the undeformed 
Earth, and K ’ z l ,  SS21, SS22 are tidal variation, defined by formulae (1). 

We will use the parameters of the Earth’s gravitational field from model SEIII 
and reduce it to their principal axes of the undeformed Earth. The Cx axis forms 
an angle of 14’5 with the corresponding Greenwich axis and displaced to the West. 
In the reference system Cxyz, corresponding values of the parameters (720 and (722 

are: 
Ci0 = -1082.6370 x lo-*, Cg2 = 1.7711 x 

Let us now substitute formulae (1) into (23). As a result we obtain the final formulae 
for the coordinates of the poles of the polar and equatorial axes of inertia: 

The numerical values of the coefficients (25), which define the dependence of the 
pole coordinates on time axe presented in Table 3. 
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EARTH’S ROTATION 617 

Let us also present brief formulae for the coordinates of the pole Pc saving only 
the main terms in (24) on the basis of Table 3: 

+ 
- 
+ 
+ 

Yc = 
- 

+ 
+ 

-18.99 sin(p + v - 2 F  - 20)  
8.81 sin(p + v - 2 F  + 2 0  - 2Q) 
3.64 sin(p + v - I M  - 2F - 2Q) 
3.62 sin(p + v - 0) 
3.58 sin(p + Y - 2F - a) 
1.49 sin(p + v - ZM) 
1.49 sin(p + v + ZM) 
-19.11 C O S ( ~  + v - 2F - 2R) 
8.87 C O S ( ~  + u - 2 F  + 2 0  - 20)  
3.66 COS(P + v - En/r - 2F - 20) 
3.65 COS(P + v - a) 
3.61 C O S ( ~  + Y - 2 F  - Q) 
1.50 C O S ( ~  + v - ZM) 
1 . 5 0 ~ 0 ~ ( p  + Y + ZM). 

Here the amplitudes are given in metres. For the main motion of the pole Pg (26) 
we have an ellipse with semiaxes ag = 19.11m and 4 = 18.99m (with eccentricity 
eg = 0.112) and with a period close to one day. 

The displacements of the equatorial axis of inertia C[ achieve big values. We 
describe the main kinematical effects in the motion of this axis by the formulae: 

y~ = 7.02 x 103(m) sin(2p + 2v - 2F - 2Q) 

zc = 18.98(m) sin@ + v - 2F - 2Q). (27) 

Thus the displacements in the equatorial plane for the C[ axis are kilometres. 
Let us discuss the mechanical context of the kinematical effects obtained above 

in the Earth’s polar axes of inertia. 
The solar and lunar tidal influence sufficiently changes the geometry of the 

Earth’s mass and generates the remarkable displacements of the poles of the Earth’s 
principal axes of inertia on its surface. The large amplitudes of the perturbations 
(26)’ (27) (in particular for the equatorial axis of inertia) are due to the small ellip- 
ticity of the Earth’s ellipsoid of inertia. Then nearer to the body by its dynamical 
structure to the body with concentric distribution of density then more “fill” the 
orientation of the axes of inertia to the changes of densities. 

The trajectory of the poles of the axes of inertia of the Earth with respect to 
the axes Cxyz is conditionally periodic and is characterized by the frequency of the 
Earth’s rotation and by set frequencies of the theory of the orbital motion of the 
Moon. 
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618 Yu. V. BARKIN AND J. M. FERRANDIZ 

5 THE MOTION OF THE PRINCIPAL AXES OF INERTIA OF THE EARTH, 
CAUSED BY ITS ROTATIONAL DEFORMATION 

Let us now consider the motion of the Earth’s principal axes of inertia CtqC relative 
to the reference system Czyt , caused by rotational deformation of the Earth’s elastic 
mantle. The axes Cxyz correspond to the principal axes of inertia of the Earth in 
the undeformed position of its mantle. 

The rotational deformation of the Earth gives the following variations of the 
components of the Earth’s inertia tensor (Getino and Ferrandiz, 1991): 

A = A0 +6A,  
F = S F ,  E = 6 E 1  D = 6 D  

B = Bo +6B,C= Co +SC 

where 

6A = Dow2 + D1(w2 - 3p2) ,  
6B = Dow2 + D1(W2 - 3q2) ,  

6F = 3DlPq 
6E = 3D@T 

6C = D0w2 + D1(w2 - 3r2),  6E = 3Dlqr. (29) 

Here w is the modulus of the vector of the angular velocity 55 of the reference 
system Czyt;  and p ,  q and r are components of this vector with respect to the axes 
Cx, Cy and Cz .  Do and D1 in (34) are small constant coefficients, characterized 
by the elastic properties of the mantle. 

So the coefficient D1 gives an increasing AC of the polar moment of inertia of 
the Earth due to its rotational deformation (Getino and Ferrandiz 1991) 

AC = -2D1wi1 ac = 0.2358204 x mR2 

Variations of the components of the Earth’s inertia tensor (28)’ (29) define the 
corresponding variations of the geopotential coefficients (from ( 2 ) ) .  Therefore for a 
description of the pole’s motion (for principal axes of inertia Ct  and CC) we will 
again use formulae ( 2 2 ) .  We have: 

3RDlpr 3RDlqr xc = - 
A0 - CO’ 

3 R D y  ZE = - 3RDipr 
co - A0 

& = Bo - co 

yc E! a 
where Ao, BO and CO are constant values of the moments inertia in the undeformed 
position of the Earth. 

For the parameters used in this work we obtain: 

~c = R * 0.3258 (2) yc = R 0.3277 (g )  
W 
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Formulae (30) allow us to give a simple geometrical interpretation. The pole of 
the principal axis of inertia of the Earth Pc due to its rotational deformation is 
a displacement about the position for the undeformed Earth and describes a tra- 
jectory similar to the trajectory of the pole P, of the Earth’s rotation (reduced 
approximately by three times, q = R .0.33-, yc = R .0.33-) (Bursa, 1983). 

The vector G is situated in the plane which is formed by axes Cz and Cc. For 
example, for Chandler’s pole motion in a circle with angular radius 01’3 a similar 
Pc pole motion will be in a circle with angular radius 0: 1. Some perturbations of 
the poles of principal axes of inertia of the Earth due to its rotational deformations 
are discussed in an another paper (Barkin, 1997). 

For example, the variations of the angular velocity components for the model 
of the Chandler motion of the Earth’s pole (Ferrandiz, Getino, Barkin, 1995) are 
given by the following elliptical functions: 

P 4 
W W 

- 0.7212~10-’~sn2u (31) 

where u = &(t - t o ) ,  TCH = 449d is Chandler’s period, t o  = Oh15Sept.1990 is a 
initial moment of the time. 

Formulae (30), (31) now permit to obtain the corresponding variations (or per- 
turbations) in the motion of the principal axes poles of the Earth (also in the 
elliptical functions) : 

P 9 6r 
- = 1 .2231~10- ‘~n~ ,  - = - 1 . 2 2 8 9 ~ 1 0 - ‘ ~ ~ ~ ~ ,  - - 
W W W 

2 = 0:08219.cnu, R !!L = -01108307. snu, R 
- yc = 01.1000016 ’ snu + m u ,  = -01108219. mu. 
R R 

Analogous perturbations take place in the motion of the Earth principal axes of 
inertia due to rotational deformations with annual, semiannual and other periods. 
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