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The subject of this paper is the numerical simulation of two-dimensional gravitational MHD col- 
lapse of protostellar clouds. A new numerical method was constructed to solve the equations of 
a two-component mixture including the effects of ambipolar diffusion, non-stationary ionization, 
and heating (cooling). The method was implemented in a two-dimensional code that simulates the 
MHD-collapse on a Eulerian cylindrical grid. The code uses the explicit monotonic Osher scheme 
which gives a third-order accurate approximation in space and a second-order approximation in 
time. The method was tested on several problems, one of which, isothermal gravitational collapse 
of a rotating protostellar cloud, is discussed in some detail. 

KEY WORDS Protostellar clouds, gravitational Collapse, numerical methods 

1 INTRODUCTION 

The theory of star formation is based on numerical simulations of the gas dynam- 
ics of protostellar cloud contraction. This theory explains the formation of single 
stars with different masses (see Palla and Stahler, 1994). The observational data 
of the last decade show that at the present time star formation occurs in rotating 
magnetized interstellar clouds (Dudorov, 1990; Basu and Mouschovias, 1994). Esti- 
mates of rotation velocities show that the specific angular momentum of protostellar 
clouds is larger by 4-5 orders of magnitude than the specific angular momentum 
of single stars (Basu and Mouschovias, 1994). The same is true of magnetic fluxes. 
The problem of the angular momentum and magnetic flux in star-formation the- 
ory should be solved within a self-consistent approach. But first the problems of 
the evolution of the magnetic flux and that of the angular momentum are solved 
separately in order to determine what processes are important in each case. 

The evolution of the fossil magnetic field was studied in several papers by A. Du- 
dorov (see Dudorov, 1990). It was shown that forming stars can have a large fossil 
field. The evolution of rotating protostellar clouds has until now been studied under 
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the assumption that the angular momentum is locally conserved (Burkert and Bo- 
denheimer, 1993). The contraction of a rotating magnetized cloud is fundamentally 
different from this case because the magnetic field can transport angular momentum 
from the central parts of the contracting cloud to the ambient molecular cloud and 
to the cloud envelope. 

Numerical computations in 1.5-dimensional approximation (Dudorov and Sazo- 
nov, 1987; Dudorov, 1990) show that the geometry and strength of the fossil mag- 
netic field of young stars, as well as the efficiency of magnetic braking, depend 
mainly on the degree of defreezing of the protostellar magnetic field (see Dudorov, 
1990). The degree of defreezing is determined by the efficiency of magnetic diffu- 
sional processes. Both ambipolar and ohmic diffusion of the magnetic field develop 
at the advanced stages of the collapse of protostellar clouds, when densities at the 
cloud centre and at  its boundary differ by 5-6 orders of magnitude. At the same 
time the ionization fraction decreases to such extremely low values that the non- 
stationary recombinational decay of the plasma becomes an important factor. 

The above-listed characteristics make it necessary to  carry out numerical simula- 
tions of the interstellar cloud collapse within a multicomponent model. In this paper 
we show that it is possible to apply to  this problem the modified Lax-F’riedrix-Osher 
method (Chakravarthy and Osher, 1983; 1985) (see Section 3). The results of test 
computations are briefly discussed in Section 4. 

2 STATEMENT OF THE PROBLEM 

2.1 Basic Equations 

Interstellar (protostellar) clouds consist of neutral (atoms, molecules and cosmic 
dust particles) and charged (electrons, ions and charged dust) components. In 
simulations of protostellar cloud collapse, the dust can be treated in a first approx- 
imation simply as a recombinational sink for electrons and ions, and the collapse 
dynamics can be described within a three-component model (electrons e, ions i, and 
neutrals n)  (see Gershman et al., 1984). 

Practical simulation of the MHD-collapse of protostellar clouds within a three- 
component model requires a complex procedure to make the motion of the com- 
ponents self-consistent. However, the need for this procedure disappears if we de- 
scribe the dynamics of MHD-collapse in a “diffusional” approximation (see Dudorov, 
1990), in which neutrals are considered to  be the main component of the interstellar 
cloud gas, while electrons and ions are viewed as a diffusional addition. Introduc- 
ing, besides the traditionally defined mass variables, two “diffusional” variables: the 
ionization fraction 

(1) 
Pe + Pi 

P 
7 P = P e + P i + P n  3: = ~ 

and the velocity of ambipolar diffusion 
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where v, and up are the mass velocities of neutrals and of the electron-ion plasma, 
and assuming that the ionization fraction is small z 5 we can transform the 
set of MHD equation for the three-component mixture to the following form: 

dP - + Vk(PWk) = 0,  at 

where 

is the Maxwell tension tensor, S is the ion source function, V = v + V A ,  Pp is the 
pressure of the plasma component, 7-l is the frequency of ion-neutral collisions, v, 
is the magnetic viscosity, q is the radiative flux, and Q is the cooling function. The 
set (3)-(8) was derived under the assumption that ions and electrons move with the 
same velocity due to the ambipolarity of the plasma. 

2.2 

The collapse of a rotating magnetized protostellar cloud can be studied in an ax- 
isymmetric approximation if the initial uniform magnetic .field B is parallel to the 
vector of angular velocity of the cloud s2 = [ T , v ] .  In this case the problem of col- 
lapse initiated by gravitational instability or by ambipolar diffusion can be solved 
on a two-dimensional computational domain (0 5 r 5 R, 0 5 z 5 2). The initial 
conditions for the collapse of a rigidly rotating spherically symmetric cloud with 
mass larger than the critical value for gravitational instability are: the initial values 
of density po or radius Ro, and values of the parameters a, @, 7, which are the 

The Initial and Boundary Conditions 
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ratios of the initial values of, respectively, the internal, kinetic and magnetic energy 
to the absolute value of gravitational energy. Therefore, the initial conditions are 
given by: 

(13) 
p =  po, 5 = 20, & = &o, 
V = o ,  V A = ~ ,  B=Bo.  

Conditions on the outer boundary are the same as for contraction of a self- 
gravitating cloud of a given size. The normal components of the mass velocity and 
the velocity of ambipolar diffusion should vanish, and the azimuthal components of 
the velocities should be continuous: 

= 0. 8% 
21, = 0, - 

dn 

The magnetic field satisfies, on the outer boundary, the conditions of smoothness 
of the field lines: 

d B  
- = 0. 
iJn (15) 

Similar boundary conditions are used for the density, internal energy and the ion- 
ization fraction. 

The boundary conditions on the axis of symmetry and in the equatorial plane 
satisfy the requirements of axial and reflective symmetry. The boundary conditions 
for the mass velocity and the velocity of ambipolar diffusion are: on the rotation 
axis 

8% - 0; VT =21, = o ,  - - 
dr 

in the eauatorial Dlane 
= 0, v, = 0. 8% - 

dz dz 
The magnetic field on the rotation axis satisfies the conditions: 

and in the equatorial plane it satisfies the condition of smoothness of the field lines 
(15). 

3 NUMERICAL METHOD OF SOLUTION 

3.1 The Specific Character of the Numerical Simulation of MHD-Collapse 

When we simulate MHD-collapse, we must take into account the following specific 
features of the set of equations (3)-(11) with initial and boundary conditions (13)- 
(18): 

(1) The strongly non-stationary character of collapse requires a numerical method 
which gives a high-order approximation in time. 
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(2) The strong non-homogeneity of the solution on the computational domain and 
a large decrease in the cloud size during the collapse are compatible only with 
implicit methods. This is due to  the fact that the classic Courant-F’riedrichs- 
Lewy (CFL) condition for explicit methods leads to time steps which are 
much smaller than the characteristic time of cloud evolution, if there are large 
variations of density, pressure and the Alfven speed from the cloud boundary 
to its centre. Explicit schemes do not allow simulation of advanced stages of 
the collapse. 

(3) If the simulation uses a fixed grid, the dynamic concentration of gas to- 
ward the cloud centre during the collapse may lead to  a situation when the 
whole process is concentrated in a few cells. Therefore, for high accuracy we 
should use not only high-order approximations in space, but also an adap- 
tive (moving) grid whose cells concentrate at the centre of the computational 
domain. 

3.2 

The set of equations (3)-(8) can be written in the following vector form: 

The General Scheme of Computation 

d u  dF dG 
d t  dr dz 
- - - + - + - = R ,  

where u is the vector of conservative variables, F and G are the vectors of flux 
in the radial and vertical directions, and R is the vector of sources. The system 
of conservation equations (19) was solved numerically by the Lax-F’riedrix-Osher 
method (Chakravarthy and Osher, 1985). The fluxes in the original numerical 
scheme (for simplicity we shall consider only the radial direction) 

are calculated according to  the following algorithm. First we find the fluxes using 
the Lax-F’riedrix method: 

where 
X i + l / z  = m p  (I$Ii I%+, I )  ; 

X k  - are the eigenvalues of the hyperbolicity matrix 

dF A = -  
dU 

of the system (19). The Lax-F’riedrix scheme (21) is a monotonic conservative 
scheme which gives a first-order approximation in space. 
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To increase the order of approximation of the scheme while preserving its mono- 
tonicity Osher suggested correcting fluxes (21) according to  the following formula: 

HiS.112 = H&1/2 - 4 - ' minmod (Hi+312,/3Hi+l12) 

minmod (2, y)  = sign (x) max 0, min (1x1,~ sign (x))) . ( (27) 

The scheme gives a third-order approximation in space if 4 = 1/3, and a second- 
order approximation otherwise. The stability condition for the Lax-Friedrix-Osher 
scheme can be written as: 

At = 4 min (T) . 
5 - 4 + P U +  $1 

An approximation of the time derivative in (19) can be obtained using, for example, 
a second-order Runge-Kutta method. 

To apply the described numerical scheme to the set of equations (3)-(8) we 
need first to  find the eigenvalues of the corresponding hyperbolicity matrix. After 
calculations we found the following set of eigenvalues: 

where 
B a=- 

=' 

The z-part of the numerical scheme is constructed in the same way. We should 
note that for z = 1 formulae (29) are different from the formulae of an ideal MHD 
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(Koldoba et al., 1992) because the set (3)-(8) was derived under the assumption 
that the ionization fraction is small. 

The Poisson equation for the gravitational potential is solved by the Douglas- 
Rachford AD1 method (see Godunov and Ryabenky, 1977), but our computations 
use a non-uniform grid, and therefore we cannot use the standard Douglas-Rachford 
algorithm to find the sequence of timesteps. Therefore we give an empirical itera- 
tional sequence (see Black and Bodenheimer, 1975). 

4 TESTING OF NUMERICAL CODE 

We tested our code on several problems with known (exact or approximate) ana- 
lytical solutions: 

(1) decay of an arbitrary discontinuity (Landau and Lifshitz, 1988); 

(2) computation of the gravitational potential for various model density distribu- 
tions; 

(3) spherically symmetric isothermal collapse (Shu, 1977); 

(4) isothermal collapse of a rotating cloud (Therebye et al., 1984); 

(5) isothermal collapse of a cloud with a frozen-in magnetic field (Galli and Shu, 
1993). 

Below are the results of one of the test computations: isothermal collapse of a 
rotating cloud with initial values of parameters QI = 0.12, p = 0.03 on a 100 x 100 
grid. To avoid large gradients on the cloud boundary, the cloud density in the 
boundary region was taken in the form of an exponentially decreasing function. 
The cloud itself initially had a spherical form with radius Ro = 0.9 and density 
po = 1. 

The results are given in Figures 1 and 2. Figure l ( a )  shows the distribution 
of density for tl = 0.8721tff. By this time due to the action of the centrifugal 
force the central part of the cloud becomes an oblate spheroid with the axis ratio 
approximately 0.75. By the time tz = 1.0053tff (see Figure l ( b ) )  the cloud becomes 
even more oblate with the axis ratio decreasing to < 0.5. The central density at 
this point increases to M 65. The density distributions on the axis of summetry and 
in the equatorial plane for t = 0, t = t l ,  t = tz  are shown in Figures 2(a,b) .  Also 
shown is the curve p oc ?, which represents the self-similar solution for isothermal 
spherically symmetric collapse. On the axis of symmetry rotation produces a non- 
uniform density profile that is less steep than the curve r 2 ;  in the equatorial plane 
the density profile becomes steeper with time. 
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Figure 1 The contours of density distribution for t = 0.8721tff (4) and t = 1.0053tff  ( b )  
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Figure 2 
t = 0.0, t = 0.8721tff and t = 1.0053tff. The slope of the straight line equals -2. 

Density distributions on the axis of symmetry (4) and in the equatorial plane ( b )  for 
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5 CONCLUSIONS 

We have constructed and tested a two-dimensional MHD code for simulation of 
gravitational MHD collapse. The tests have shown that the code is accurate enough 
for this class of problem, but still an implicit code is desirable for simulation of 
advanced stages of the collapse. 
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