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The spectral classification of stars in galaxies is a method of studying their stellar content. In 
particular, the distribution of spectral types in the stellar systems is a powerful diagnostic for the 
estimation of their composition, age and evolutionary state. The observational materials mainly 
used are spectral plates obtained with Schmidt telescopes. Such plates contain, generally, thou- 
sands of spectra. There are prism-plate libraries and digitized databases in several astronomical 
centres that can be fully exploited only with automated processing. Such a system for automated 
processing of stellar spectra on digitized objective-prism plates is presented. It is developed as a 
context under the MIDAS environment and provides tools for digital preprocessing of the images 
(rotating, correcting the tilt, calibration, etc.), for interactive and automated detection of the 
spectra, for spectra extraction as one-dimensional scans, and finally, for automated classification. 
Here we particularly present two subsystems of the context, automated detection, applying signal 
processing techniques to find the beginning of the spectrum, and the automated classification of 
objective prism stellar spectra, based on a supervised artificial neural network. 
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1 INTRODUCTION 

The analysis of the distribution of spectral types in stellar systems is a powerful 
diagnostic for the estimation of their composition, age and evolutionary stage. The 
main observing materials are prism spectral plates taken with Schmidt-class tele- 
scopes. Each plate contains thousands of spectra and there are prism-plate libraries 
and digitized databases in several astronomical centres that can be exploited for this 
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analysis. In order to deal with and to fully exploit the rich pool of spect,ral data, 
highly automated image processing and analysis tools need to be developed. 

In extracting the physical quantities from the digitized spectral plates there are 
three main stages: the detection of the beginnings of spectra, their image extraction 
and, finally, classification of the spectra. The purpose of this paper is to present: 

(1) a new, automated method for the detection of spectra, and 

(2) an artificial neural network based system for automated spectral classification. 

The detection method has been developed as part of the prism plate image 
processing context OBJPR (Pasian et al., 1997) under the Munich Image Data 
Analysis System (MIDAS SGNOV, 1996). The detection algorithm, based on signal 
processing methods, its implementation and some results from the tests of the new 
method, are given in Section 2. MIDAS as well as the Stuttgart Neural Network 
Simulator, SNNS v4.1 (Zell et al., 1996) were used to  develop the artificial neural 
network for automated classification. Its architecture, the training process and 
results from tests are presented in Section 3. 

High-quality film copies of IIIa-J plates taken with the 1.2 m UK Schmidt Tele- 
scope in Australia have been used for this study. The spectral plates have a disper- 
sion of 830 A/mm at H, and cover the spectral range from 3400 to 5000 A. The 
photographic material has been digitized at  the Trieste Observatory by means of a 
PDS 1010 A microdensitoineter and at  the Royal Observatory of Edinburgh using 
the Super-COSMOS measuring machine. 

2 AUTOMATED DETECTION OF OBJECTIVE PRISM SPECTRA 

The automated detection of objects is a common problem in image processing for 
astronomy and astrophysics. Previous work for automated classification of stellar 
spectra (von Hippel et al.,  1994), for spectral analysis of quasars (Hewett et al., 
1995), for galaxy classification (Lahav et al., 1996) or for galaxy redshift nieasure- 
ments (Tucholke and Schuecker, 1992; Schuecker, 1996), applied spectra detection 
based on already known coordinates of the corresponding stars (either determined 
for the purpose with the automated plate measuring system or taken from cata- 
logues). Our method is based on processing only the digitized prism plates without 
the need of the corresponding direct plates and utilizes signal processing techniques 
(Bratsolis, 1997). 

2.1 The Detection Algorithm 

The most important feature on which it is possible to rely for spectra detection 
on an objective prism plate is the beginning of each spectrum, characterized by 
the presence of intense gradients. Let us consider part of a digitized objective 
prism plate (Figure l (a)) .  This subima.ge consists of N x M pixels, and let I (z ,y)  
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denote the value of the pixel (x,y) where the x-axis is down the dispersion. The 
subimage itself can be considered as a set of M discrete one-dimensional signals 
ly(x) = I ( z , y ) .  The energy E, of a particular signal and its variation in decibels 
SNR, are defined as: 

N 

Ey = 2=1 C I; (x), SNR, = 20 log,, (mi:E,)) 

where the row with the minimum energy min(E,) is considered as background. 
Analysing this variation with an appropriate peak-picking algorithm we can iden- 
tify energy peaks corresponding to  stellar spectrum rows and separate them from 
spurious peaks (Figure l ( b ) ) .  The detection of such rows is the first step of the 
algorithm. 

The second step is to fix in each detected row the beginning of the spectrum 
image. Let us now consider the one-dimensional signal of row 306 (Figure l(d)). 
In advance we applied to the digitized image appropriate filters resulting in an 
optimally smoothed spectrum scan (Figure l ( e ) ) .  Its derivative (Figure l(n) is 
used to determine the very beginning of the spectrum, the great change from the 
background. We find it by fixing the position of the maximal derivative which is 
leftward of the position of the row’s maximum value. This helps us to overcome 
false detections (absorption and emission features, defects) and to detect only the 
spectrum beginning, as the crosses on Figure l (c )  show. 

2.2 Image Sampling 

The sizes of the subimage, especially down the wavelength direction, are of cru- 
cial importance for the algorithm. In order to avoid missing two spectra on the 
same row, the subimage should be shorter than the spectrum length. Fixing the 
subimages length we have to put some restriction on its width in order to take 
into account the local signal-to-noise ratio that gives better detection limits for the 
peak-picking process. Both these imply that an image frame should be handled in 
pieces, subframes. 

Taking a subframe from an image, there are often spectra that begin near the 
subframe’s left or right end or are crossed by the bottom or top side. Such spectra 
probably could not be detected. To avoid this, a partial overlapping of the subframes 
in both axes should be applied. Having in mind the spectral image parameters, it 
is optimal to set the subfra,me sizes to  a value of about half of the spectral length, 
whereas the overlapping size is set to  about twice the spectral width. 

2.3 

The above algorithm is implemented in a procedure named DETSP, part of a gen- 
eral context OBJPR (Pasian et al., 1997) for objective prism image processing 
under MIDAS. The DETSF’ takes as input an image frame from a digitized spectral 

The Spectra Detection Procedure DETSP 
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plate and particular parameters for the spectra images (dispersion, length, width). 
The subframes overlapping can be applied to both axes (defaulted), only down the 
wavelength axis, or skipped altogether. In this way the online plots and/or images 
displaying (slowing the run) can be switched on/off. The output is a MIDAS format 
table with the detected spectra positions in world coordinates. It is suitable for use 
by the procedures of the OBJPR, say for extraction of the detected spectra images. 
The processing is carried out in four sequential stages: 

Image f rame preprocessing. The whole image frame is filtered by a sequence 
of median and smoothing filters. Then, a difference image is created holding the 
differences between the consecutive pixels of the filtered image down the wavelength 
axis. Finally, a coordinate grid is determined to fix subframes of the image frame 
in accordance with the overlapping mode. 

Following the fixed grid, all the subframes are 
sequentially processed by applying the signal detection algorithm to the filtered 
and to the difference subframes. 

Detection table processing. There are possible double detections of spectra 
near the edges of neighbouring subframes. For this reason, the table of detected 
spectra is now processed to remove the doubling; it is also sorted. 

We apply again the signal approach (as in stage 
subframe signal processing), but only to the detected spectra. Now, a new subframe 
is considered around the head of the detected spectrum, starting a little before its 
beginning. The subframe’s length is as before, but its width is only a little bigger 
than the spectral image width. The adjusted position table is finally sorted. 

Subframe signal processing. 

Fine adjustment  of detection. 

2.4 Results 

The DETSP procedure has been developed on a Hewlett-Packard HP C160 worksta- 
tion (64-bit CPU, 64MB RAM, HP-UX 10.20 operating system) under the MIDAS 
96NOV environment. Two frames from digitized high-quality copies of spectral 
plates taken with the 1.2 UK Schmidt Telescope have been used for tests. One is 
a 2048 x 2048 pixel frame from an image scanned by the Super-COSMOS facility 
at the Royal Observatory of Edinburgh. The other is a frame of 3001 x 1601 pixels 
from an image digitized by a PDSlOlOA microdensitometer at the Trieste Obser- 
vatory. The DETSP detected 553 spectra on the first frame (Figure 2) and 427 on 
the second (Figure 3). 

In order to  test this method, experts detected spectra on these frames using 
a standard method of detection on direct and spectral plates. The comparison 
showed that DETSP had missed 13 spectra on the first and 17 on the second 
frame (errors < 2.5% and < 4%, respectively). A careful analysis showed that the 
missed spectra are mainly too faint, so they are unusable for further processing (e.g. 
automated classification). So, applying the new method, practically all the spectra 
were automatically detected (true-positive detections > 96%). It is worth pointing 
out that despite the presence of late M-type and carbon stars on the frames there 
were no false detections. 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
11

:4
3 

12
 D

ec
em

be
r 2

00
7 

... ̂
 

-. 
, 

H
 

m
 E 

F
ig

ur
e 

2 
P

ro
ce

du
re

 D
E

T
SP

 t
es

t 
- 

th
e 

20
48

 x
 2

04
8 

pi
xe

l f
ra

m
e 

lp
31

r.
 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
11

:4
3 

12
 D

ec
em

be
r 2

00
7 

STELLAR SPECTRA 419 

h 
B 
t 

r) 
u 0 
u, 17 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
11

:4
3 

12
 D

ec
em

be
r 2

00
7 

420 I. BELLAS-VELIDIS et  al. 

3 AUTOMATED CLASSIFICATION OF OBJECTIVE PRISM SPECTRA 

The automation of spectra classification is a difficult task because no clear set of 
logical rules can be given. In this case, it is preferable to replace the classical logic 
systems by others with vague conclusions and associative recall - to replace the exact 
match with the best match. We developed an automated method for classification 
of objective prism spectra applying such a system, namely a supervised artificial 
neural network. 

3.1 Artificial Neural Networks 

Artificial neural networks (ANN) are connectionist systems consisting of many prim- 
itive units which are working in parallel and are connected via directed links (Fig- 
ure 4).  The main processing principle of these units is the distribution of activation 
patterns across the links similarly to the basic mechanism of the human brain. The 
knowledge is stored in the structure of the links, their topology and weights which 
are organized by training procedures. The link connecting two units is directed, 
fixing the source and the target unit. The weight attributed to the link transforms 
the output of the source unit to  an input on the target. Depending on the weight, 
the transmitted signal can take a value ranging from highly activating to highly 
forbidding. 

The basic function of a unit is to  accept inputs from other units acting as sources, 
to activate itself, and to produce one output that is directed to units -targets. Based 
on their topology and functionality, the units are arranged in layers. The layers can 
be generally divided into three types: input, hidden, and output. The input layer 
consists of units that are directly activated by the input pattern. The output one 
is made by the units that produce the output pattern of the network. All the other 
layers are hidden and directly inaccessible. 

"-UNIT 

S T 
0 A 

4; u \  R -  

E 

T 
C / 
E 

S 
INPUT HIDDEN HIDDEN OUTPUT 

LAYERS 
S 

Figure 4 
ANN layers. 

Artificial neural network structure. Left: a unit (neuron) and its functions; right: the 
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A supervised ANN has to  be used for the problem of classification. It must 
be trained by applying a learning procedure during which the weights are properly 
adjusted, and there are many different learning algorithms. Choosing the proper 
one is one of the first steps in developing an ANN. On the other hand, in order to 
train, verify and to test such a system, sets of input patterns with the corresponding 
outputs need to  be prepared in advance. 

The most efficient implementation of ANNs has been achieved by developing 
special hardware systems (Hecht-Nielsen, 1990). But , the increase in processing 
power and speed of computer systems gave rise to very effective software simula- 
tors of ANNs running on general-purpose computers. One is the freely distributed 
Stuttgart Neural Network Simulator - SNNS (Zell e t  al., 1996). It has powerful and 
flexible tools for developing, training, and testing different ANN architectures and 
provides a user-friendly graphical interface. 

3.2 ANN for Automated Classification of Spectra 

The SNNS v4.1 running on a HP C160 workstation has been used to develop the 
ANN for spectra classification. As it is suggested for classification problems (Zell et 
al. , 1996), we applied the so-called feed-forward architecture with full connection. 
The links are strictly directed from input toward the output without recursion, and 
all the elements of a given layer are connected with all the elements of the following 
layer. An updating mode that follows the network topology and a randomize mode 
for initialization of the link weights were chosen. 

The initial experiments pushed us to  the back-propagation learning procedure. 
For a given input pattern, the output errors, the differences between the real and 
the desired output pattern, are propagated back to the previous layer (hidden). 
The weights of the links between the two layers are properly updated in order to  
minimize the errors. Then, the corresponding differences from the old weights are 
considered to be errors of the hidden layer and are similarly propagated one layer 
backward. This continues until the input layer is reached. The learning is repeated 
for each pattern in the training set. Then the whole cycle is repeated again and 
again until either a predefined minimum in the error or maximum number of cycles 
are reached. A modification of this learning mode (with a “momentum term” and 
experimentally fixed parameters) that leads to better and faster convergence in the 
error space, was finally used. 

The neural network architecture strongly depends on the input and output pat- 
terns. A general inspection with MIDAS of the objective prism spectra scans 
convinced us that there is more than enough to  use the initial 256 pixels with 
starting point a little before the spectrum head (range about 3600-5400 A). The 
extracted digitized scans were classified by experts and cover the spectral types 
from B to M and C (carbon stars). We fixed for output seven spectral types 
(B, A, F, G, K ,  M, C) and, additionally, an “unknown”. These facts led us 
to fix the ANN with input layer of 256 units, and the output one of 8 units. 
For the experiments we used one hidden layer of 64 units (Figure 5). The very 
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Artillcial Neural Network for spectral Classlflcatlon Artltldal NeuraJ Network for Specld Classlficatlon 
NNet "3% BeckPropMomTen" NNet ,6511 BackRopMornTen" 

B A  F G K M C  B A F G K M C  
Exputs Spactml Typa E x p u t ~ E p ~ s b l l  q p n  

Figure 6 The artificial neural network classifications vs. expert spectral types (the vertical bars 
show the classification weights). Left: ANN trained with 35 patterns; right: ANN trained with 65 
patterns. 

first trials showed that by normalizing the scan values we achieved significant im- 
provement of the ANN training. This simple pre-processing was adopted here- 
after. 

3.3 Experiments and Results Analysis 

The experimental database consisted of 140 digitized spectra. After an inspection, 
two training sets were chosen: a small one of 35 spectra including 5 scans per 
spectral type and a larger one (65 spectra) with five more scans per type (for B-M 
stars). Firstly, in order to  fix the general parameters and to obtain an estimation 
of the internal quality of the network architecture we trained the network with the 
whole input/output pattern set (E140n) of 140 normalized scans. This allowed us to  
choose the appropriate functions to initialize, update and train the ANN. No more 
than 400 cycles, taking about 30 seconds (on HP C160), where needed to stabilize 
the learning at about 0.05 sum squared error per output unit (the output can take 
a value between 0.0 and 1.0 for spectral type). 

Two independent tests were carried out using the two different training sets. All 
the 140 patterns were used in the verification of the trained ANN. The results from 
the E065n and E035n tests are summarized in Figure 6. For each input pattern, 
its spectral type (found by experts) and the ANN-classified (the weight is shown 
by the vertical bar), are given. In both tests the general properties are about the 
same, despite the different number of learning patterns. The misclassified objects 
are stars of either early or late subtypes. In all such cases the weights are small (less 
than 0.5). There is no misclassification of more than one spectral type with weight 
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greater than 0.2. In a few cases stars were classified as belonging to two types with 
nearly equal, but very small weights. The analysis of their spectra showed that they 
are either under- or overexposed. 

4 CONCLUDING REMARKS 

The procedure DETSP presented in this paper implements a highly efficient algo- 
rithm for automated detection of spectra. However, being implemented using the 
MIDAS command language, it is too slow, exclusively due to an extensive use of 
disk access. Our next step is to create it as a program in C, runnable by MIDAS, 
with optimal use of memory. 

The experiments with artificial neural networks showed that it can be used 
successfully for automated spectral classification. The ANN can classify previously 
unknown spectra with an accuracy of one spectral type. In order to improve the 
accuracy, a larger training set should be used and maybe a more sophisticated 
architecture. The SNNS allows us to “output” the trained ANN as a program in 
C, runnable by a procedure of the OBJPR context under MIDAS. 
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