
This article was downloaded by:[Bochkarev, N.]
On: 12 December 2007
Access Details: [subscription number 746126554]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Astronomical & Astrophysical
Transactions
The Journal of the Eurasian Astronomical
Society
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453505

Supernovae as a powerful source of a gravitational
radiation
A. F. Zakharov a
a Institute of Theoretical and Experimental Physics, Moscow

Online Publication Date: 01 August 1999
To cite this Article: Zakharov, A. F. (1999) 'Supernovae as a powerful source of a
gravitational radiation', Astronomical & Astrophysical Transactions, 18:1, 5 - 15

To link to this article: DOI: 10.1080/10556799908203028
URL: http://dx.doi.org/10.1080/10556799908203028

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453505
http://dx.doi.org/10.1080/10556799908203028
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
12

:0
3 

12
 D

ec
em

be
r 2

00
7 

Astronomrcal and Astrophysical Transactions,  1999, 
Vol. IS, pp. 5-15 
Reprints available directly from the publisher 
Photocopying permitted by license only 

0 1 9 9 9  OPA (Overseas Publishers Association) N.V.  
Published by license under the Gordon and Breach 

Science Publishers imprint 
Printed in Malaysia 

Cosmology, Extragalactic Astronomy 

SUPERNOVAE AS A POWERFUL SOURCE OF 
A GRAVITATIONAL RADIATION 

A .  F. ZAKHAROV 
Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya, 25, 

11 7259, Moscow 

(Received January 20, 1997) 

We consider the gravitational radiation in the framework of the non-spherical symmetrical evolu- 
tion of SN. The scenario was considered by Imshennik recently. Unlike the gravitational radiation 
analysis, which was considered by Imshennik and Popov in the framework of the Peters and 
Mathews formalism, the gravitational radiation is analysed in the framework of the ( P I V ) ~ / ~  ap- 
proximation by Damour and Deruelle, and Lincoln and Will in our paper. It is shown that the 
eccentricity is more than 0.1 at the moment of filling by a low mass component of a Roche lobe; 
thus the conclusion of Imshennik and Popov is incorrect (that final eccentricity is less than 0.1). 
If the SN lies in the Large Magellanic Cloud (R = 50 Kpc), then we have the following estimation 
for the amplitude of gravitational waves: h % 8 x The frequency of emitted gravitational 
waves is about 1 kHa. 

KEY WORDS Gravitational waves, supernovae 

1 INTRODUCTION 

In the work of Imshennik (1992) a model of non-spherical symmetrical evolution of 
a pre-SN is considered. We recall the main stages of Imshennik’s scenario. 

Stage I. This stage consists of the formation of a rapidly rotating protoneutron 
star as a result of gravitational collapse. 

Stage 11. The formed protoneutron star can be unstable or becomes unstable if 
there are small perturbations, therefore a close binary system of neutron stars is 
formed; we define the system parameters from the laws of conservation of mass and 
angular momentum. 

Stage 111. There is a mutual decrease of the distance between the components of 
a binary system (since there is gravitational radiation), until the filling of the low 
mass component of a Roche lobe. 

Stage IV. There are mass losses of the low mass component and an unstable 
neutron star with a mass of about 0.1MO is formed. 
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6 A. F. ZAKHAROV 

Stage V. The unstable neutron star with mass 0 . l M ~  explodes and emits energy 
of about 1051 ergs, according to calculations by Blinnikov e t  al. (1990a, b). 

We consider the gravitational radiation of a binary system of neutron stars, and 
the parameters of a system are equal to  values which were considered in Imshennik’s 
paper (1992), namely, the mass of the protoneutron star is equal to  m = Mt = 2M0, 
and the momentum moment is equal to  Jo = 8.81 x lo4’ ergs/s. Unlike in the paper 
by Imshennik and Popov (1994), where the gravitational radiation was considered 
in the framework of the Peters (1964) and Peters and Mathews formalism (1963), in 
this paper the gravitational radiation is analysed in the framework of the approach 
of Damour and Deruelle (1981), using expressions of Lincoln and Will (1990). 

2 BASIC EQUATIONS AND EXPRESSIONS 

We recall the basic equations for the description of the motion of a coalescing binary 
system of neutron stars, and the equations include (p~s t )~ /~ -Newton ian  correction 
terms, since only the (~os t )~ /~ -Newton ian  correction term represents the domi- 
nant - radiation - reaction effects (Lincoln and Will, 1990). The following equation 
(Lincoln and Will, 1990) can be obtained for a relative acceleration of components 
of a binary system 

a = ( m / r 2 ) ) [ ( - 1  + A ) n  + Bv], (1) 

where a is the relative acceleration of components of a binary system, m = ml + 
m2, ml ,  m2 are the masses of the components of a binary system, T = 1x1, x = m, 
v = v1 - VZ, A and B define post, post-post and (~os t )~ /~ -Newton ian  correction 
terms. Writing these terms in the form A = Al +Az +A5/2 and B = BI + B2 + B5/2, 

we obtain the following expressions for these variables (Lincoln and Will, 1990) 

m 3 
1‘ 2 AX = 2(2 + q) -  - (1 + 3 7 ) ~ ’  + - r / f 2 ,  

15 
A2 = -3(12 + 297) (z) - q(3 - 4 7 7 ) ~ ~  - s ~ ( l  - 3r])i4 

4 r 
3 1 m m -7(3 - ~ v ) I J ~ + ~  + -7(13 - 47)-w2 + ( 2  + 2 5 ~  + 27’)-i2, 
2 2 T T 

+ 

B1 = 2(2 - q)+, 
1 .  
2 r 

B2 = -r [ ~ ( 1 5  + 4 7 ) ~ ’  - (4 + 417 + 87’)m - 37(3 + 27)i2] , 
8 m  m 
5 r  r 

B5p = --v- ( u z + 3 - ) ,  

where q = p / m ,  p = mlmz/m, and the dot over a variable means differentiation 
with respect to time ( d l d t ) .  Using osculating orbit elements (Abalakin et al., 1976) 
we obtain equations for a description of the motion of the binary system according 
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SUPERNOVAE 7 

to Lincoln and Will (1990). We recall that osculating orbit elements are used for an 
analysis of small perturbations of Keplerian orbits (Abalakin et  al., 1976). In the 
general case the Keplerian orbit is determined by six parameters: i, the inclination 
angle of the orbit relative to a reference plane; R,  the angle to the line of the 
ascending node; w ,  the angle between a line of node and the pericentric line; a, the 
semimajor axis; e, the eccentricity, and T ,  the time of pericentric passage. There 
are the following definitions (Lincoln and Will, 1990): 

x’ z rcos$ ,  
yl rsin$, 
z’ E 0, 

i (m/r)1/2esin($ - w ) ,  

p / r  E 1 +ecos($ - w ) ,  

r 2 7 j  = (rn/r)1/2, 

where ?I, is the angle in the orbit from the ascending node, p a( l  - e2), and the 
relations between the coordinates x, y ,  z and coordinates x’, y’, z’ in terms of the 
angles i, R are 

x E x’cosfl- y’sinRcosi +z‘sinRsini, (14) 
(15) 

z y’sini+z’cosi. (16) 

y 5 x1 sin R + y‘ cos 0 cos i - z1 cos R sin i, 

we resolve the perturbing acceleration into a radial component R, a component 
S perpendicular to  R in the direction of advancing angle 11, and the component 
of acceleration W,  which is perpendicular to  the orbital plane. So long as the 
acceleration is a linear combination of the vectors n and v, then W = 0, so the 
orbital motion is flat. Using osculating elements, we write the equations of motion 
of a binary system (Lincoln and Will, 1990) 

d i / d t  = 0 ,  
R = 0,  

e =  (p/rn)l/’Rsin($ - w )  f [e(r/p) + (1 + r / p )  cos($ - w)]S,  (20) 
ecj 

rnT 

= ( ~ / r n ) ’ / ~  [ - RCOS($ - w )  + (1 + r / p )  sin($ - w ) ~ ] ,  

( u / e )  [ ( r  + p )  sin($ - w )  - 3 ( ~ n p ) l / ~ e ( t  - T ) / ~ ] s .  

(21) 

(22) 

= 

+ 
u[2r - ( p / e )  COS($J  - w )  - 3(rn/p)’/’e(t - T )  sin($ - w)]R 

We therefore choose the orbital plane to be the plane x - y and the line of 
ascending nodes is the x-axis. Thus, i = 0, R = 0. According to Lincoln and Will 
(1990), it is possible to  choose the angle $ = q5 (4  is the polar angle in the plane of 
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8 A.  F. ZAKHAROV 

the orbit). In this case the orbit is described by the following expressions (Lincoln 
and Will, 1990) 

where f E 4 - w .  Clearly, we have following expressions for the components of 
acceleration in this case 

R = (m/ r2 ) (A  ++B), 
S = (m/r)$B. 

The equation (28) can be used for changing the independent variable (instead of 
the time t it is possible to use the polar angle 4). Then we have following equations 
for the motion of a binary system 

1/2  
eA sin f + (F) B(l + e2 + 2e cos f )  

1 /’ de - = A s i n f + 2  (F) B(e+cosf ) ,  
d4 

Substituting expressions for the perturbations A and B in equations (31-33) we 
obtain equations for the variables e, w, p (Lincoln and Will, 1990) 

1 e2 - [ (56 - 47q) sin f - 37 sin 3f] 
8 

+ 

- (F)2 [ i (36+73q-8q2)s inf  

e2 
16 

+ (11 +317-3q2)esin2f+ -[(60+245q-64q2)sin3f 

+ 
+ 
+ 

(92 + 18177 - 327’) sin f] 
e3 
-[(2 + 2577 - 1617’) sin4f + 4(3 - 1177 - 10q2) sin 2f] 
8 
7 7 4  -e [15( 1 - 37) sin 5f - 3(73 + 5 3 ~ )  sin 3f 

128 
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SUPERNOVAE 9 

1 2(477 + 1617) sin f] 

512 
2 ( E )  [192cosf+16e(19+20cos2f) 
15 P 
2e2 (91 cos 3f + 269 cos f) 
e3(121 + 180cos2f + 35 cos4f) + 6e4(3 cos3f + 5 cosf)], (33) I - (3 - q) cosf + e[3 - ( 5  - 47) cos2fl 
P 
e2 
-[3qc0~3f + (8 + 217) C O S ~ ]  
8 

(F) [ i ( 3 6  + 737 - 8q2) cos f + e[(7 + 57 - 7q2) 

(11 + 317 - 3q2) cos 2f ]  
e2 -[(84 + 797 - 2 2 4 ~ ~ )  cos f + (60 + 2457 - 64q2) cos 3f] 
16 
e3 
-[(2 + 25q - 1 6 ~ ~ )  cos 4f - 2q( l+  24q) cos 2 f 
8 

(2 - 2177 + 48q2)] 

128 

lO(27 - 417) cos f]] 

I 

---e 7 4  [15(1 - 37) cos 5f + 3133 - 197) cos 3 f 

512 
( E )  [192 sin f + 320e sin 2f + 2e2(91 sin3f + 115 sin f) 

15 P 
5e3(7sin4f + 26sin2f + 18e4(sin3f + sinf)], 

4 (2 -~ )es in f+e - - [ -2 (2+  137+2v2)sinf)] ,  

1 1 
-(4 + 11q)esin2f + -7(33 - 277)e2 sinf 
2 4 

3q(3 + 2q)e2 sin 3f1 
4 
8 
5q (F) (8 + 18e cos f + 7e2 + 5e2 cos 2f + 2e3 cos f). 

rn 

P 

312 

3 QUASICIRCULAR ORBITS 

(34) 

(35) 

According to the approach of Lincoln and Will we give a definition of quasicircular 
orbits of a binary system (Lincoln and Will, 1990). It is easy to see that the solution 
of the equations of motion with vanishing eccentricity is impossible, since at e = 0 
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10 A. F. ZAKHAROV 

we have from equations (34-36) that # 0. First we define of the quasicircular 
orbit in the framework of the (PN)2-approach as follows: $ = 1, i.e. the particle 
and osculating ellipse are rotated by the same velocity. We have f = 4 - w = const 
in this case; using the choice of initial value 4 it is possible to consider the following 
value: f = 7r. Thus, we obtain in the framework of the (PN)2-approach, that 
3 = $ = 0. It is easy to see that we have in the (PN)2-approach 

(36) 

It is easy to see also that the approximation for e is the solution also in the (F”)‘I2- 
approach (if we assume that) 

64 v u 3 / 2  f =7r+-- 
5 3-77 (37) 

We have the following equation in the (PN)5/2-approach for the coordinate u z 
which depends on the angle 4: 

- d‘ M 1 6 ~ ’ / ~ [ 4 / 5  + (1 - 77)uI. 
d4J 

It is easy to see that we have from the definition of quasicircular orbits, that the 
inequality Therefore 
the distance between the components continuously decreases. Clearly, that this 
inequality is invalid at some points of an elliptical orbit (if we assume an elliptical 
motion of binary system components). In fact, as long as 

< 0 is valid during the evolution of a binary system. 

r 41 
- M [l + ( 3  - 77)u - (6 + -7 + 2q2)u2]/u, m 4 

r^ G 

2 < 0, thus a binary system moves on an orbit as a spiral so that the distance 
between the components continuously decreases. 

4 EVOLUTION OF A BINARY SYSTEM WITH RADIATION OF 
GRAVITATIONAL WAVES 

We considered the evolution of a binary system which emits gravitational waves. 
We use the approach of quasicircular orbits. In fact, Lincoln and Will showed 
that the solution of the equations of motion of a binary system is general enough, 
since the general solution evolves into quasicircular orbits (Lincoln and Will, 1990). 
The rapid decreasing of eccentricity to small values was also shown in the paper 
(Imshennik and Popov, 1994). 
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SUPERNOVAE 11 

We consider the evolution of a binary system until the moment of filling by 
a low mass component of a Roche lobe, according to Imshennik’s model (1992). 
The critical value of the orbit radius is connected with the radius of the low mass 
component. Namely, we determine the value from the approximation by Masevich 
and Tutukov (1988): 

1 ?-CT - 
Rz 0.52(m2/m)0.44‘ 
-- (39) 

In this case the radius of the Roche lobe is determined as a spherical radius, and 
the sphere has the Roche lobe volume. 

5 RESULTS AND DISCUSSION 

We choose values of the mass of a protoneutron star and the momentum moment, 
which are equal to corresponding values from the papers by Imshennik (1992) and 
by Imshennik and Popov (1994), namely M = Mi = 2M0, and the momentum 
moment is equal to JO = 8.81 x ergs/s. We recall that the limiting value (see 
(Imshennik and Popov, 1994) b = m2/m = 0.205 (q = 0.163)) was obtained from 
the condition that the time of decreasing distance between components of a binary 
system (which is connected with the emission of gravitational waves) is equal to 
about 1 hour, and therefore q = 0.2, i.e. the value of this constant is about the 
limiting value. The gravitational wave form for different polarizations is determined 
by Lincoln and Will’s expressions (1990) 

- sin @[sin 9 

h ,  x - c o s 0 2  2p [ - s i n 2 9 + -  . ; [;l3l2 - -s inO(cos9+3cos39)  
R 

1 2 
- [ ;] [(37 - 97) sin 2 9  + 4(1 - 37) sin2 @(sin 2XP + 2 sin 49)] , (41) 

where 9 = - 4. The angles @, 0 determine the observer position, respectively 
the binary system. So if 0 = 0, 7r then the observer position is on the pole; if 
0 = 1~12, this corresponds to the observer position on the equatorial plane. The 
angle describes the rotation of the binary system. 
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12 A. F. ZAKHAROV 

554.588 554.593 554.598 554.603 
-0 2 

t( sec)  

Figure 1 
h x  (the dashed line) (‘7 = 0.2) for angles @ = 0, 0 = r/4.  

The gravitational wave for the polarization h+ (the solid line) and for the polarization 

The radius of a low mass star with mass m2 = 1.1 x g (similarly to  Imshen- 
nik and Popov (1994)) is equal to about 13.32 km (see, for example Zeldovich 
and Novikov (1971)). We assumed that there is a coalescence of a binary system 
according to the approach of quasicircular orbits. 

It is known that the amplitude waves formed at  the Earth will have the amplitude 
(Lincoln and Will, 1990; Zakharov, 1996) 

m 100Mpc 
2.8Ma R ’ hobs M 7 x 10-23(477)- 

therefore if the SN lies in the Large Magellanic Cloud ( R  = 50 Kpc), then h M 8 x 
The frequency of the emitted gravitational waves is about 1 kHz (Zakharov, 

1996) (Figure 1). Thus the source of the gravitational radiation may be observed 
using the VIRGO detector, a t  least in principle. 

The gravitational radiation luminosity in the PN-approximation is equal to the 
following expression (Lincoln and Will, 1990) 

1 2(33 + 4377)E + 3(8 + 2177)m/r - -(20 3 + 377)? 2 
1 
3 

+ 7m/r) - -i2(21E + 23m/r - 6 i 2 )  
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1.8 : 

LPU/LWw : 
1.6 : 

1.4 - 

13 

7)=0.2 

Figure 2 The ratio of LPM (gravitational luminosity in the framework of the Peters and Mathews 
approximation) and LWW (gravitational luminosity in the framework of the Wagoner and Will 
approximation) as the function of the number of revolutions. 

1 1 1 
3 

+ (1 - 377) [8v' (17E - lOm/r) - -iz (144E - 440m/r + 105i') 

+ 397m/r) 

+ 4 ( m / ~ ) ~  - i2(319E - 349m/r + 297f2/4) 

where 

1' 17 
4 

1 - (3 - V)U + (15 + -7 + 2q2)u2 , 

(43) 

The ratio of LPM and LWW is presented in Figure 2. We see that the Peters- 
Mathews approximation gives a greater value of the gravitational radiation than 
the Wagoner-Will approximation for the probIem. 

In Figure 3 the dependence of the eccentricity on the number of revolutions of 
a binary system is presented. Thus, the eccentricity is about 0.12 at the moment 
when the distance is minimal. Thus, the conclusion of Imshennik and Popov (1994), 
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14 A .  F. ZAKHAROV 

N 

Figure 3 The dependence of the eccentricity on the number of revolutions (q  = 0.2). 

that  the eccentricity is smaller than 0.1 at the final moment, is incorrect. This is a 
natural consequence of the non-vanishing post-Newtonian parameter value (which 
is about 7%). The final eccentricity is about 0.11 in the case of the limiting value 
of the mass ratio d = mz/m = 0.205. Nevertheless, we have a decrease of the 
eccentricity for binary systems with small post-Newtonian parameters, for example 
such as the binary pulsar PSR 1913 + 16, where a post-Newtonian parameter of 
about lov6 is obtained. 

We remark that the considered system is the sample in which the post-Newtonian 
parameter is not too small, especially at the moment of minimal distance between 
components and certainly it, is necessary to  take into account post-Newtonian terms. 
If we consider a vanishing value of the post-Newtonian parameter in the problem 
there is the possibility of obtaining incorrect conclusions, similar t o  the results of the 
paper (Imshennik and Popov, 1994), namely the conclusion about the monotonie 
reduction of the eccentricity during the evolution and the conclusion that the final 
value of the eccentricity is less than 0.1. 

More detailed discussion of the problem was presented in the recent paper (Za- 
kharov, 1996). 
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