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Using the ZEUS-2D code modified for the purposes of cloud collapse calculations, we explore the 
dynamics of diffuse interstellar clouds of various masses and initial number densities. We show 
that heating and cooling processes in interstellar clouds may have a significant effect on their 
dynamical behaviour. Associated with opacity and photoelectric heating, temperature gradients 
in the interstellar clouds may assist gravity and lower the Jeans mass. We provide some novel 
results on how the thermal instability and thermal shock waves can help a low-density, gravitation- 
ally stable, diffuse interstellar cloud to evolve into a dense protostellar core which then collapses 
gravitationally to form a star. 

KEY WORDS Interstellar clouds, collapse, numerical methods, hydrodynamics 

1 INTRODUCTION 

With the advent of millimetre and radio observations along with the observations in 
UV from satellite-based telescopes, our understanding of star formation processes 
has improved significantly. These observations have motivated various authors (cf. 
Elmegreen, 1987; Blitz, 1987; Mouschovias, 1987) to study the formation, structure, 
and dynamics of interstellar clouds, mostly in their diffuse state. On the other hand, 
exstensive numerical studies on how a cold (- 10 K) and dense (- g ~ m - ~ )  
molecular cloud core can collapse gravitationally to form a star or a binary system 
(Bodenheimer, 1968; Larson, 1969; Boss and Haber, 1982; Boss and Myhill, 1995, 
and others) have been undertaken. 

The gap between these two extreme studies, namely the question of how a diffuse, 
gravitationally unbound interstellar cloud can evolve into a protostar core, has 
recently been filled by the study of Tarafdar et al. (1985, 1989) and Prasad, Heere, 
and Tarafdar (1991). These authors have demonstrated that a diffuse cloud with 
a mass smaller than the Jeans mass can evolve into a cold, dense core due to 
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the thermal pressure force which assists gravity. Tarafdar et al. (1989) have also 
attempted to determine the mass-initial number density region where a thermally 
compressed, diffuse cloud can become gravitationally bound and collapse to form 
a star. However, they found it difficult to extend their study below the number 
density of 10 cm-3 due to time step limitations. Because they did not include an 
artificial viscosity in their Lagrangian code, the non-physical oscillations in the post- 
shock region imposed strict limitations on the time step due to the CFL condition, 
and the calculations could not be advanced in time. 

We have, therefore, used an Eulerian code developed on the basis of the ZEUS- 
2D code of Stone and Norman (1992, hereafter SN) to examine the behaviour of 
thermally compressed clouds of low densities. In Section 2, we describe the basic 
equations as well as some modifications made to ZEUS-2D to improve its efficiency. 
Also, we provide the results of two tests to show the code reliability for the cloud 
collapse calculations. In Section 3, we explore the dynamical behaviour of interstel- 
lar clouds in the whole mass-initial number density field. We give some novel results 
on how the thermal instability and thermal shock waves can help a low-density, dif- 
fuse interstellar cloud to evolve into a dense protostellar core which then collapses 
gravitationally to form a star. 

2 NUMERICAL ALGORITHMS AND TESTS 

2.1 Basic Equations 

The hydrodynamical evolution of an interstellar cloud is governed by the following 
set of partial differential equations 

DP - + p v - v  = 0 ,  
Dt  

Here, the dependent variables are the mass density p,  the velocity v ,  and the internal 
energy density e. The DIDt  denotes the Lagrangian derivative, 

_ _ _  - + v . v .  
Dt - at (4) 

Simple cooling (A) and heating (r) terms in equation (3) are given by 

A = 3.33 x 10-27T0.0987 exp( -87.87/T)n&& 

+ 1.7 x 10-24T0.5exp(-1.1528 x 105)n$6,, ( 5 )  
r = 10-~~nHexp(-2 x I O - ~ ~ I V ~ )  + 1.1 x 1 0 - ~ ~ n ~ p ,  (6) 
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R 
where NH = nH dr  is the column density of hydrogen from the surface of the 

cloud, 6, is the depletion factor of carbon, and p is the cosmic ray ionization rate in 
units of 1O-l’ s-l. The heating rate constitutes two parts - photoelectric heating 
and cosmic ray heating. No attempt has been made to include the effect of charge 
of the dust grains (cf. Draine, 1978). The cooling rate used is a simple cooling due 
to C I1 and CO as described by Tarafdar et al. (1989). The cooling and heating 
rates are the approximations to the chemistry balance equations and differ from 
similar approximations of Bochkixev (1992) only by numerical coefficients. 

Note that we have added terms that do not appear in Euler’s equations. This is 
to account for viscous stresses and dissipation due to an artificial viscosity Q. These 
terms are needed for an adequate treatment of discontinuities that may appear in 
the flow. The common practice is to use von Neumann and Richtmyer (1950) 
non-linear artificial viscosity. However, for a cloud collapse problem in spherical 
geometry (which is most relevant in this case), a tensor artificial viscosity must 
be used (Tscharnuter and Winkler, 1979; SN). Moreover, for some problems with 
strong shocks, it has been found that linear artificial viscosity is necessary to damp 
oscillations which can occur in stagnant regions of the flow (Norman and Winkler, 
1986). 

The fluid equations with cooling and heating terms are closed by an ideal equa- 
tion of state which gives the gas temperature T as a function of the mass density 
p and pressure p (the interstellar cloud is assumed to consist of atomic hydrogen 

P 

only 1, 

and by the Poisson equation which determines the gravitational potential, 

V20 = 47rGp. (8) 

To solve equations (2) and (3), one also needs the relation between the pressure p 
and internal energy density e, which is p = (y - 1) e for an ideal gas (SN) with the 
ratio of specific heats y = 513 for a monatomic gas. 

These equations, written in spherical geometry, are solved using the method of 
finite differences with a time-explicit, operator split (multistep) solution procedure 
(SN). By allowing for a moving grid, one can follow global features of the flow (such 
as collapse or expansion) providing better resolution. Though it appears natural to 
solve explicitly the internal energy density balance equation (3) with J? and A terms 
by applying the ZEUS-2D technique, the resulting code is unstable due to the much 
higher dynamical time scale than that of cooling and heating processes. To achieve 
stability, one has to decrease the time step to prohibitively small values, so that the 
calculations cannot be advanced in time. Thus, we have a so-called stiff differential 
equation and it is well known that the only useful technique to solve this type of 
equation is to apply time-implicit schemes. 

Following the common strategy of the split operator method, we update the 
internal energy density by splitting equation (3) into two parts. The first part, 
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the change of the internal energy density e due to  advection and pressure work, is 
computed using the ZEUS-2D code, whereas the second part, the change of e due 
to heating and cooling, is computed using a fully implicit backward Euler scheme 
combined with Newton-Rapson (NR) iterations. A fully implicit scheme guarantees 
stability even if the time step greatly exceeds the cooling and heating time scales. 
To maintain accuracy, the total change in one time step is kept less than 20%. If 
this condition is not met, or if the system fails to  converge in 10 NR iterations, the 
time step is reduced, and a solution is once again sought. 

It may seem that Lagrangian codes are more relevant for collapse computations. 
However, we find that for some problems (such as shocks) the grid becomes so 
highly compressed that it hinders further progress due to the CFL condition and 
Lagrangian codes become useless. We can overcome this difficulty in the Eulerian 
codes like ZEUS-2D by choosing a specific grid velocity pattern ( e g  choosing the 
grid velocity vectors equal to the fluid velocity in the regions free from shocks and 
setting the grid velocity vectors equal to  zero wherever shocks occur). 

2.2 T h e  Hydrodynamical Test  Problems 

2.2.1 Pressure-free Collapse of a Sphere 

Standard test suites for hydrodynamic algorithms are widely available (see, e.g., 
SN). Although we have run all the tests given in the above paper, the results of 
only the two most relevant to our problem are presented. 

The first problem, the gravitational collapse of a homogeneous, pressure-free 
sphere, is a perfect test for one-dimensional radial advection in spherical coordinates. 
An analytic solution describes the collapse of every mass shell (Hunter, 1962), 

( r h o )  = cos2 P, (P lPO)  = c 0 c 6  P, (9) 

where P is obtained from 

P + 0.5sin2P = t E-- -Gp(O). (10) 

The free-fall time TR, defined as the time at which every mass shell reaches the 
origin ( r  = 0) simultaneously, occurs when P = n/2 and thus 

Following the work of SN we set up a homogeneous sphere of radius r = 1 in 
spherical coordinates with p = G = 1 initially, thus obtaining TR = 0.543. To 
obtain the gradient of the gravitational potential, one can integrate the Poisson 
equation written for the one-dimensional spherically symmetric case, 

R 

4aGpr2 dr. 
d@ 1 ~ l ~ = ~  =- ~2 J 0 
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Figure 1 The density distribution for the pressure-free collapse of a homogeneous sphere at 
t = 0.985 free-fall times using a stationary mesh. The dotted-dashed line - the ZEUS-2D code of 
Stone and Norman (1992); the dashed line - ZEUS-2D with momentum density correction; the 
dotted line - ZEUS-2D with momentum density and density flux correction. The analytic solution 
is denoted by the solid line. 

Since the density p is constant in every grid shell, the above integral can be 
numerically integrated at every time step, 

where T I  = 0 is the origin. 

2.2.2 Momentum Density Correction 

The test results using 200 grid points are shown in Figure 1 (for the sake of better 
resolution only T E [0,0.15] is plotted). As has also been found by SN, an anomalous 
spike occurs in the density in the first few zones near the origin (see the dotted- 
dashed line). Recently, Monchmeyer and Muller (1989) demonstrated that the 
error at the origin is a result of using a coordinate-centred staggered mesh. They 
found that, although the analytic solution yields the radial momentum density 
pv, as a linear function of the radius T ,  the finite-difference representation (pv,)i 
becomes an increasingly non-linear function of T towards the origin T = 0 (cf. 
equations (2.41), (2.42) of Monchmeyer and Muller, 1989). Therefore, momentum 
and matter are advected towards the centre with increasing velocities which results 
in the anomalous density spike. 

However, if the last term in equation (2.41) of Monchmeyer and Muller (1989) 
is multiplied by the correction factor 
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the radial momentum density becomes a linear function of radius T .  Thus, using 
ZEUS-2D notation and noticing that the radial momentum density corresponds to 
the specific .momentum s1 = pvl in ZEUS-2D, one finds that the left-hand side of 
equation (62) of SN should be multiplied by the correction factor 

Note that in cylindrical and Cartesian geometries f:"" must be set to unity. 
The result of the pressure-free collapse of a sphere as computed by ZEUS-2D 

with the correction factor f?" is shown by the dashed line in Figure 1 (using the 
same spatial and time steps as before). The anomalous spike near the origin totally 
disappears, which proves the necessity of specific momentum corrections in ZEUS- 
2D. This technique was first found to be successful in supressing the anomalous 
density spike by Boss and Myhill (1992). 

The correction fy was derived for the specific case of the pressure-free collapse 
of a sphere with the radial velocity being linearly dependent on the radius. In the 
case of isothermal or non-isothermal collapse of interstellar clouds the radial velocity 
was found to be almost linear near the origin. Thus, the use of the correction factor 
f;"" may be expected to reduce drastically the magnitude of the anomalous spike. 

2.2.3 Moving Mesh 

In many cloud collapse applications the computational mesh has to be moved with 
the fluid to maintain better resolution near the origin. Thus, if we allow the mesh to 
collapse with the cloud by setting the grid velocity vectors equal to the fluid velocity 
at every gridpoint (except for the boundaries), then the net density flux through the 
control volume interfaces is equal to zero and advection errors disappear. Obviously, 
in this case there is no need to use the corrections described above. 

Unfortunately, such a nice situation remains only in the spherically symmetric 
case. In two dimensions, however, the grid velocity vectors at each slice in 0 at 
a given T must be identical to preserve orthogonality. Thus, a common choice is 
(using ZEUS-2D notation of SN) 

It is clear now that the grid velocities in each grid slice in T do not necessarily 
coincide with the fluid velocity at each gridpoint, and the density flux through the 
control volume interfaces is non-zero. 

In fact, this may lead to even higher numerical errors in the density at  the origin 
than in the case of a non-moving mesh. For example, if the grid velocity is equal 
to half of the fluid velocity at each corresponding gridpoint (Figure 2, dashed line), 
then the anomalous density spike at the origin is even higher than in the case of a 
non-moving mesh (Figure 1, the dotted-dashed line). Indeed, any mesh motion will 
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Figure 2 The density distribution for the pressure-free collapse of a homogeneous sphere at 
t = 0.985 free-fall times using a moving mesh. The grid velocity is equal to half of the fluid velocity 
at each corresponding gridpoint. If the momentum density correction is not used, an anomalous 
density spike develops near the origin (dashed line). With the inclusion of the momentum density 
correction, the numerical solution becomes indistinguishable from the analytical one except for 
the region near the outer moving boundary (filled circles). The analytic solution is denoted by the 
solid line. 

result in the grid compression near the origin, and thus in the zone size decrease as 
compared to  the case of a non-moving mesh. The latter will immediately result in 
the increase of the spurious matter and momentum transfer, as it directly follows 
from equations (2.42) and (2.43) of Monchmeyer and Muller (1989). However, if 
the momentum density correction is used the anomalous spike vanishes and the 
numerical solution is indistinguishable from the analytic one except for the region 
near the outer moving boundary (Figure 2, filled circles). 

2.2.4 Sod Shock- Tube Test 

The second one-dimensional test is a Sod shock-tube problem, which tests all the 
transport and source terms including artificial viscosity. To compare with the results 
of SN we set up two discontinuous states, a hot dense gas on the left and a cool 
rarefied gas on the right, a t  t = 0, and let them interact. The initial conditions and 
the number of zones in a computational area are the same as in the paper of SN. 
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Figure 3 Results for the density (top left), pressure (top right), velocity (bottom left), and specific 
internal energy e / p  (bottom right) for the Sod shock-tube problem at time t = 0.245. In each case, 
the analytic solution is plotted as a solid line. 

As a test of a numerical algorithm, the shock-tube problem demonstrates wheth- 
er the code can give the correct jump conditions and whether the artificial viscosity 
is capable of damping the oscillations that occur after the shock front, and at the 
same time not smaring the shock to an unacceptable degree. The results of the 
test are shown in Figure 3, where the solid line denotes the analytic solution to 
the shock-tube problem given by Hawley, Smarr, and Wilson (1984). Our results 
agree well with the test results obtained by SN (1992), having inherited the same 
numerical errors (e.g. overshoots). Also, it can be noticed that the amplitude of 
the specific energy fits better to the analytic solution than in the similar test of 
SN. 
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3 COLLAPSE OF NON-ISOTHERMAL, NON-ADIABATIC INTERSTELLAR 
CLOUDS 

3.1 Initial and Boundary Conditions 

Interstellar gas, unlike stars and other compact objects, has a low density and 
occupies a large volume, so that the energy released in the form of photons travels 
far from its place of origin, usually leaving the object where it originated. Thus, 
a cloud loses its internal energy throughout its entire volume and the speed of 
this process is characterized by the cooling rate A (ergs cm-3 s-l). The opposite 
process which takes place in the interstellar gas is volume heating due to background 
electromagnetic radiation and cosmic rays. It is characterized by the heating rate 
r (ergs cm-3 s-l). In general, I' # A due to dynamical motions in the ISM and, 
therefore, the interstellar clouds are non-adiabatic objects by nature. However, at 
the initial stage of collapse the cooling and heating characteristic times are much 
smaller than the dynamical time and the initial temperature distribution can be 
obtained by assuming a cloud to be initially in thermal equilibrium with I' = A. In 
general, the cloud is initially non-isothermal. 

In the ZEUS-2D code, the boundary conditions are set by specifying the val- 
ues of dependent variables in the ghost zones to be used by higher-order inter- 
polation methods in the transport step (SN). The exact form of the boundary 
conditions applied depends upon the geometry and physics of the problem being 
solved. For a spherically symmetric geometry the inner boundary condition is es- 
sentially a reflecting one, thus the mass density and internal energy density in the 
ghost zones are set equal to the corresponding values of their images among the 
active zones, while the velocity is set to zero on the boundary and reflected for 
the second ghost zone. The outer boundary conditions, on the other hand, are 
determined by physics of the problem. The common approach (Larson, 1969) is 
to assume that a cloud has a fixed outer boundary, thus allotting a constant vol- 
ume (and total mass) to it (the so-called constant volume boundary condition). 
This leads to v, = 0 at the outer boundary of the computational domain. This 
approach is strictly valid only for an isolated cloud in empty space. It is to be 
expected that such conditions may develop in some cases of star formation (Wood- 
ward, 1978). 

Another approach is to assume that a cloud is embedded in a diffuse interstellar 
medium of number density N 0.1 cm-3 and temperature - lo4 K which provides 
a constant outer pressure of order dyn cm-2. This constant outer pressure 
boundary condition is most commonly used in Lagrangian hydrodynamics codes. 
However, in Eulerian codes it is rather difficult to implement this condition prop- 
erly because the computational boundaries remain fixed in space. To study the 
effect of outer constant pressure on the dynamics of collapsing clouds with Eulerian 
codes in full generality, one should use the approach of Winkler and Norman (1986) 
who included the outer diffuse matter into the computational domain and treated 
the interstellar dense cloud and diffuse medium as two different phases using the 
technique of fractional volumes. 
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Figure 4 Initial number density - mass (no - M) diagram for non-isothermal interstellar clouds. 
The solid line shows the minimum mass Mmin of a cloud unstable to collapse as a function of the 
initial number density no. The dashed line (dotted line) is the Jeans mass of a cloud of initial 
number density no, mass M, and inner temperature Pn (outer temperature Tout). The dotted- 
dashed line shows the minimum mass of a cloud intrinsically unstable to  shell formation. 

In this paper we have used the constant volume outer boundary condition in 
order to identify the physical effects inherent to the cloud itself and avoid the 
complicated influence of the outer diffuse matter on the cloud dynamics. 

3.2 

The critical mass of an isothermal cloud unstable with respect to gravitational col- 
lapse is determined by the well-known Jeans criterion; i.e., TR < R/vsound, where 
TR = (3~/32Gpo)'/~ is the free-fall time (Hunter, 1962), R is the radius of the cloud, 
and Ussound is the speed of sound. The Jeans mass is then 

The Effect of Temperature Gradients - Lowering of the Jeans Mass 

where R is the universal gas constant, G is the gravitational constant, T is the 
temperature, and y is taken to be 513. As has been pointed out above, the inter- 
stellar cloud is usually non-isothermal. Therefore, it would be interesting to see 
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Figure 5 Collapse of the interstellar cloud of initial number density no = 200 ~ r n - ~  and mass 
M = lOOM0 shown at five different times: 1 N 1.43 Myr, 2 N 2.15 Myr, 3 N 2.8 Myr, 4 N 3.03 Myr, 
and 5 - 3.14 Myr. The density distribution is almost homogeneous in the collapsing core and 
drops down as I/r2 in the envelope. 

what effect a non-uniform temperature distribution and resulting pressure gradi- 
ents have on the dynamical behaviour of interstellar clouds of different masses and 
densities. 

The solid line in Figure 4 shows the variation of the minimum mass of a non- 
isothermal cloud, which can collapse under its own gravity, as a function of the 
initial number density, whereas the dashed line (dotted line) is the Jeans mass as 
a function of the initial cloud density po and initial inner temperature T$ (initial 
outer temperature Tout). The lowering of the Jeans mass due to the temperature 
gradients, first pointed out by Tarafdar et al. (1985, 1989), is clearly visible. How- 
ever, in contrast to their calculations, which used a Lagrangian code, the present 
results show that the lowering of the Jeans mass is highly non-monotonic. The 
difference may be due to inadequate treatment of shocks in their Lagrangian code. 
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Figure 6 The initial pressure gradient force per unit mass V p / p  (the solid line) and initial gravity 
force per unit mass V4 (the dashed line) plotted for two clouds of M = 2 8 M 0 ,  no = 10 cm-3 and 
M = lOOM0, no = 200 ~ r n - ~ ,  respectively. 

Figure 4 shows that there are three distinct regions of initial cloud densities for 
which the non-isothermal temperature distribution plays an important role and 
gives rise to different phenomena. 

3.2.1 

First, let us consider the collapse of homogeneous, non-isothermal clouds of initial 
densities 50 < no < 3000 cm-3 and masses lying between the Jeans curve (dotted 
line) and solid line (Figure 4). This region will be referred to as the pressure-force- 
driven collapse for the reason given below. Figure 5 shows the density, temperature, 
and velocity distribution of the collapsing interstellar cloud of M = lOOMa and 
n = 200 cm-3 at different times. The density distribution exibits the classical 
behaviour with the homogeneous central core and the envelope whose density is 
proportional to l/r2. If this cloud were isothermal with the initial temperature 
equal to the lowerest value T = 16 K (at the centre), it would have the Jeans mass 
equal to l l l M 0  (Figure 4, dashed line) and could not collapse to form a protostar. 
Note that we give here the lowest estimate for the Jeans mass, with the highest 
being equal to 216Ma for the outer cloud’s temperature of 25 K (Figure 4, dotted 

Collapse due to Pressure Gradients 
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Figure 7 The ratio a = Vp/pV@ of the pressure force per unit mass to the gravity force per unit 
mass as a function of radius for the gravitational collapse of the interstellar cloud of M = lOOM0 
and no = 200 cm-3 shown at four different times: 1 - 1.6 Myr, 2 N 2.7 Myr, 3 N 3.1 Myr, and 
4 - 3.18 Myr. 

line). The reason why it ultimately collapses can be understood from the following 
considerations. For our sample cloud of M = lOOM0, n = 200 cm-3 and R = 1.7 pc 
the initial temperature To spans the range from 16 K in the centre to 25 K at the 
outer boundary. This initial temperature gradient gives rise to the inward (positive) 
pressure gradient force per unit mass V p / p  (Figure 6, solid line), which in turn gives 
the matter an additional inward radial momentum. As can be seen in Figure 7 (plots 
1, 2 ) ,  this additional inward force promotes gravitational collapse at the first stages 
of dynamical evolution leading to a higher degree of cloud compression than in 
the case of isothermal collapse, so that the initially Jeans stable cloud becomes 
unstable and collapses to form a protostar. After about 2.8 x lo7 yr the inward 
pressure gradient force disappears yielding the way to the outward pressure gradient 
force (as in the case of an isothermal cloud collapse), which is however too small to 
prevent the cloud from further gravitational contraction (Figure 7, plots 3, 4). 

The dynamical evolution of the cloud of initial number density n = 200 cm-3 and 
mass M = 55Ma which is lower than the critical mass in Figure 4 (the solid line), is 
plotted in Figure 8. The initial contraction (with the core density increase of about 
two orders of magnitude) is ultimately followed by the expansion phase to the almost 
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Figure 8 Non-star-forming evolution of the cloud of mass M = 55Ma and number density 
no = 200 cm-3 plotted at six successive times: 1 N 0.4 Myr, 2 - 1.9 Myr, 3 - 2.6 Myr, 
4 - 2.9 Myr, 5 N 3.3 Myr, and 6 N 4 Myr. Initial contraction is followed by the expansion phase. 
The latter manifests itself as a positive velocity distribution. 

initial diffuse state. As can be seen from Figure 9, which plots the ratio of pressure 
force to gravity force CY = Vp/pV+,  the initial contraction is due to the inward 
pressure force acting at the first stages of dynamical evolution (Figure 9, plots 1, 
2, 3). At the same time the inner most layers of the cloud become gravitationally 
unbound, because the outward pressure force overcomes the inward gravitational 
force CY < -1, and this tendency exists until all the cloud becomes gravitationally 
unbound and starts to expand (Figure 9, plot 4, 5). Further dynamical evolution 
is rather uncertain and probably depends on the initial conditions as well as on the 
mass and density of the cloud. At least clouds with masses slightly smaller than 
the critical mass given by the solid line in Figure 4 can exhibit clear oscillatory 
behaviour with successive contractions and expansions. When the cloud reaches its 
maximum contraction phase, the core density can be 102-103 times higher than the 
density at its maximum expansion phase (Prasad et al., 1991). 
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Figure 9 The ratio a = Vp/pVQ, of the pressure force per unit mass to the gravity force 
per unit mass as a function of radius during the dynamical evolution of the interstellar cloud 
of M = 55Mo and no = 200 shown at five different times: 1 - 0.6 Myr, 2 N 2.2 Myr, 
3 N 2.5 Myr, 4 N 2.8 Myr, and 5 - 4.1 Myr. 

While the reversal of collapse is readily understandable and seems likely in real 
clouds, the successive oscillations are much less likely, because real clouds may not 
be conservative systems and various dissipative mechanisms can be present which 
may ultimately suppress the oscillations. Following Prasad et al. (1991) we shall 
refer to the area below the critical mass in Figure 4 as the non-star-forming region. 

3.2.2 Shock-driven Collapse 

As can be seen from Figure 4, the lowering of the Jeans mass is non-monotonic and 
most effective for interstellar clouds of low densities 5 < no < 50 ~ r n - ~ .  Figure 10 
shows the density, temperature, and velocity (the ratio of the radial velocity v, to 
the speed of sound v,) distribution for the sample interstellar cloud of M = 28M0 
and n = 10 cm-3 during its dynamical evolution. At the first stages of evolution a 
compression wave develops, which then propagates inward and steepens to become 
a shock wave (shown by the arrow in Figure 10). The shock front appears in this 
figure as a discontinuity in the density and velocity distribution smeared over 2- 
3 computational zones due to an artificial viscosity. This low intensity Mach - 
1.5 shock wave compresses and sweeps UD the matter to the core, which after a 
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Figure 10 Shock-driven collapse of the interstellar cloud of number density no = 10 cm-3 and 
mass M = 28M~ plotted at seven successive times: 1 N 4.5 Myr, 2 - 4.9 Myr, 3 N 5 Myr, 
4 N 5.05 Myr, 5 - 5.1 Myr, and 7 - 5.2 Myr. A well - developed shock wave c c  Mach N 1.8 is 
shown by the arrow. 

small period of rebounce becomes gravitationally unstable and collapses to form a 
protostar. 

In Figure 11 we plot the ratio of the pressure force per unit mass to  the gravity 
force per unit mass a = Vp/pV@ as a function of radius for the same sample 
interstellar cloud. The insert in Figure 11 shows a very large value of a - 1000- 
2000 which monitors the presence of the shock wave propagating to  the centre. 
However, at the same time the core is not gravitationally bound a < -1 (in full 
agreement with the Jeans criterion for the cloud of M = 28Ma and n = 10 ~ m - ~ )  
and tends to  expand outward (Figure 11; plots 1, 2). After the time t N 5 x lo6 yr 
the shock wave reaches the centre compressing the matter by about 5 orders of 
magnitude, thus triggering a pure gravitational collapse of the core 0 < a < -1 
(Figure 11; plot 4). The ratio a < -1 for the outer part of the cloud indicates 
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Figure 11 The ratio a = Vp/pV+ of the pressure force per unit mass to the gravity force per unit 
mass as a function of radius for a shock-driven collapse of the interstellar cloud of M = 28Mo and 
no = 10 ~ r n - ~  shown at four times: 1 N 3.9 Myr, 2 N 4.9 Myr, 3 N 5.1 Myr, and 4 - 5.22 Myr. 

that it is not gravitationally bound (plot 4; Figure 11). However as the shock wave 
passes through the cloud, it gives the matter a high inward momentum. Thus, the 
outer part still falls onto the core, though with gradual deceleration. The mass of 
the collapsing core is about 0.4Mo which corresponds to - 1.5% of the initial cloud 
mass. 

To understand the reason why a shock wave occurs during the dynamical evo- 
lution of interstellar clouds of densities 5 < no < 50 ~ m - ~ ,  let us again look at 
Figure 6. In the case of a low-density cloud n = 10 cm-3 the initial inward pres- 
sure force per unit mass V p f p  is larger than in the case of a high-density cloud 
n = 200 ~ m - ~ ,  whereas the gravity force per unit mass V@ is relatively small. 
Therefore, the former plays a dominant role, and because at the first stage of dy- 
namical evolution the pressure gradient Vp is a non-linear , outwardly increasing 
function of radius, it gives rise to a pressure wave, which propagates inward and 
steepens to become a shock wave. This effect is similar to  that found by Winkler 
and Newmann (1980) in their calculations of solar-type star formation and referred 
to as the formation of the first shock wave. 
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Figure 12 Thermal-instability-driven collapse of the interstellar cloud of mass M = 4000M0 
and number density no = 3 cm-3 shown a t  six successive times: 1 N 0.7 Myr, 2 N 0.9 Myr, 
3 - 1.5 Myr, 4 N 1.58 Myr, 5 N 1.71 Myr, and 6 - 1.83 Myr. 

Although the non-linear pressure force V p l p  also initiates a pressure wave in 
the case of an interstellar cloud of n = 200 ~ m - ~ ,  this pressure wave does not 
develop into a shock wave. The latter happens due to the fact that for the cloud 
of n = 200 cm-3 the gravity force plays a dominant role giving rise to the density 
and pressure increase at the core as in the case of isothermal collapse. The growing 
pressure at the core destroys the unequality pl < p2,  where pl and p2 represent the 
pressure upshock and downshock, respectively - an essential condition for the shock 
wave to propagate. 

This shock-driven collapse is to be distinguished from the compression of in- 
terstellar clouds by shock waves formed around H I1 regions. In the last case, the 
shock wave comes from outside, whereas in the first case it develops during the 
actual collapse due to non-linear inward pressure gradients, which in turn arise as 
the result of the finite transparency of interstellar clouds, and the heating effect of 
the background electromagnetic radiation always present in the ISM. 
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Figure 13 The ratio a = V p / p V @  of the pressure force per unit mass to the gravity force 
per unit mass as a function of radius during the dynamical evolution of the interstellar cloud of 
M = 4000Mo and no = 3 cm-3 plotted at five different times: 1 N 0.8 Myr, 2 N 1.53 Myr, 
3 - 1.6 Myr, 4 N 1.83 Myr, and 5 N 1.86 Myr. 

3.2.3 Thermal Instability and Collapse of Low-density Interstellar Clouds 

As can be seen from Figure 4, the critical mass for the interstellar clouds of low 
densities n 5 5 sharply increases. This is due to the fact that the clouds 
of such low densities and masses of a few hundred solar masses or less become 
transparent to the outer electromagnetic radiation and heated to almost uniform 
temperature. Therefore, the pressure gradient force is small and cannot give rise 
to a shock wave and provide the core with the necessary degree of compression. 
Nevertheless, the critical mass shown by the solid line in Figure 4 is well below the 
Jeans mass shown by the dashed line. This indicates the presence of some other 
compression mechanism, which ultimately brings a gravitationally stable cloud to 
the point where it starts collapsing under its own gravity. 

Figure 12 shows the density, temperature, and velocity (the ratio of the radial 
velocity v, to the speed of sound v,) distribution for the sample inter-stellar cloud 
of M = 4000Ma and n = 3 cm-3 during its dynamical evolution. By the time 
t - 1.6 x lo6 yr, an almost homogeneous plateau develops near the centre with 
its density increasing very fast in time. Velocity profiles show the development of 
supersonic flow of Mach - 3 at later times near the centre of the cloud. All these 
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Figure 14 Time-dependent evolution of the density p (the solid line), pressure p (the dashed 
line), and temperature T (the dotted line) at the centre of the interstellar cloud of mass M = 
4000Mo and initial number density no = 3 ~ m - ~ .  The scaling factors are po = g ~ m - ~ ,  
po  = 6 x dyn cm-2, and To = 80 K. 

indicate the onset of gravitational collapse of the initially Jeans stable cloud. This 
collapsing core has the mass of - 0.5Mo which is equivalent to - 0.01% of the 
initial cloud mass. Note that in this case there is no evidence of the development 
of a shock wave and the core is compressed to the critical density with the help of 
some other mechanism. 

Figure 13 shows the dynamical evolution of the same interstellar cloud in terms 
of the ratio of the pressure gradient force per unit mass to the gravity force per 
unit mass a = Vp/pV9.  As can be seen from plot 1, the initial pressure force per 
unit mass Vp/p  is inward directed (a > 0 )  and much larger than the gravity force 
per unit mass V 9 ,  so that Vp/p  acts to compress the matter in the centre of the 
cloud. For the time being, a very large inward pressure force develops near the 
centre 0.05 5 T 5 2 pc (hereafter referred to as a pressure force spike), whereas in 
the centre the outward pressure force starts opposing the gravity (a < -1). The 
inward pressure force pushes the matter towards the centre contributing to a density 
increase in the core. Thus, the ratio a gradually decreases approaching the critical 
value a = -1, where gravitational collapse occurs. By the time t - 1.8 x lo6 yr, 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:5
8 

12
 D

ec
em

be
r 2

00
7 

INTERSTELLAR CLOUDS 427 

1 0 9  

10-12 

1043 

10-4 1 0 3  10-2 10-1 100 101 102 
Radius (pc) 

Figure 16 Pressure distribution during the collapse of the interstellar cloud of mass M = 
4000Mo and initial number density n o  = 3 cm-3 plotted at the same times as in Figure 12. 
The arrow shows the direction of propagation of the density gap caused by thermal instability. 

the density reaches its critical value and the core starts collapsing under its own 
gravity, which corresponds to 0 < Q < -1 (Figure 13; insert, plots 4 and 5). Note 
that in contrast to the shock-driven collapse, where such a pressure force spike 
moves inward in accordance with the actual shock position and grows in magnitude 
as the shock intensity increases (Figure 11; insert), here the pressure force spike 
propagates outward, decreasing gradually in magnitude (Figure 13, plots 2, 3, 4, 
and 5). 

To understand the reason why this large inward pressure force develops, let 
us look at Figure 14, which shows the time evolution of the density, pressure, and 
temperature at the centre of the interstellar cloud of M = 4000M0 and n = 3 ~ m - ~ .  
During the time t 5 9 x lo5 yr the density and pressure are growing due to the 
initial inward pressure force V p / p ,  while the temperature remains almost constant. 
At the time t - 9 x lo6 yr the pressure force changes its sign at the centre of the 
cloud, becomes outward directed, and starts opposing the gravity. The latter results 
in a small rebounce. However, after the time t - 1.2 x lo6 yr the density starts 
growing again, while the pressure is decreasing. The latter happens to be due to 
very effective cooling at number densities n - 20-120 ~ m - ~ ,  so that the temperature 
falls by about two orders of magnitude in a short period of time - lo5 yr initiating 
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a sharp pressure decrease in the centre of the cloud. As a consequense, the inward 
pressure force develops (note, that the density in the layers slightly away from 
the centre has not yet reached the necessary value for effective cooling to occur). 
This inward pressure force pushes the matter towards the centre (Figure 13), thus 
initiating a further density increase. The latter in turn leads to more effective 
cooling and, therefore, a further temperature and pressure decrease in the centre of 
the cloud. This unstable situation continues until the central density grows by about 
two orders of magnitude, where the cooling becomes not so effective to support the 
pressure decrease (t - 1.5 x loe yr, Figure 14). Then, the central pressure starts 
growing again and the process stabilizes. However, by that time the layers of the 
cloud neighbouring the centre have reached the necessary degree of compression and 
the above mechanism repeats there. 

The phenomenon described above is well known as a thermal instability (Field, 
1965). Figure 15 shows the development of a pressure gap associated with the 
thermal instability, so that the outer matter slides down this gap contributing to 
the density increase in the core. This pressure gap has a tendency to propagate 
outward, as shown by the arrow in Figure 15. As we believe, a good analogy can be 
a chain reaction with the initial inward pressure force increasing the core density 
of a cloud to its critical value and thus triggering the onset of thermal instability, 
which then propagates from inside out leaving in its wake matter of higher density. 
This process continues until the core density reaches the critical value and starts 
collapsing under its own gravity (Figure 14, t 2 1.5 x lo6 yr; Figure 12, plot 6). 

As one goes down the vertical line of specified density n = 3 ~ m - ~  in Figure 4, 
the radius of the corresponding interstellar cloud decreases. Consequently, the ini- 
tial temperature distribution approaches the isothermal one, for which the inward 
pressure gradient force becomes negligible. Therefore, when one comes to the crit- 
ical line in Figure 4, the inward pressure force becomes so small that it cannot 
provide the core of the corresponding cloud (w 1500M0 and n = 3 cmV3) with the 
necessary degree of compression for the onset of thermal instability (n 2 20 ~ m - ~ ) ,  
and the cloud bounces back to the almost initial diffusive state. 

3.3 

The effect of higher outer electromagnetic radiation (ten times more than the normal 
radiation field adopted in the previous calculations) on the critical mass of a cloud 
unstable to gravitational collapse is shown by the solid line in Figure 16. The 
curve has shifted to the right and slightly down, so that the thermal-instability- 
driven collapse can now be triggered in the more dense clouds of n 5 35 cm-3 as 
compared to the case of normal background radiation. Shock-driven collapse also 
occurs in a different range of initial number densities 35 < n < 400 ~ m - ~ .  Indeed, 
as the outer radiation increases, interstellar clouds of low density n < 35 cm-3 and 
low mass m 5 a few x 102M0 become heated to almost homogeneous temperature. 
Consequently, the radial pressure gradients become not steep enough to initiate 
the development of a shock wave. On the other hand, as the density increases, the 
interstellar cloud becomes more and more opaque to the outer radiation. Connected 

The Effect of Higher Outer Electromagnetic Radiation 
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Figure 16 The minimum mass Mmjn of a cloud unstable to collapse as a function of the initial 
number density no. The dashed line corresponds to the background outer radiation field, whereas 
the solid line shows the effect of a higher outer radiation field (10 times the background one). The 
Jeans mass is denoted by the dotted line. 

with the density increase, differentiation of the temperature between the central and 
outer part of the cloud leads to the development of steep radial pressure gradients, 
an essential condition for a shock wave to occur. Therefore, physical conditions for 
the development of a shock wave, namely the steep radial pressure gradients, are 
now met for more dense interstellar clouds of 35 < n < 400 ~ m - ~ .  

In the case of dense clouds n > 500 cmW3 a small lowering of the critical mass 
with respect to the critical mass for a normal radiation field (the dashed line} is 
also noticable. This is probably associated with the steeper radial temperature 
distribution in the case of higher outer radiation field than in the case of a normal 
radiation field. 

4 CONCLUSION 

We have adopted the single-temperature approximation, because most of our calcu- 
lations lie in the range of temperatures of 10-5000 K.  In this range of temperatures 
the direct influence of ionization on hydrodynamics is small. However, ionization is 
important for cooling of the interstellar gas (cooling due to C 11). We admit that 
strong shocks can ionize the interstellar gas and this process may be important 
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for an adequate treatment of interstellar chemistry. However, as can be seen in 
Figure 10, shocks in our calculations are weak, Mach r+: 2. 

Magnetic fields are important for cloud collapse simulations. It is well recognized 
that magnetic fields play a crucial role in cloud dynamics and a diffuse cloud becomes 
gravitationally unstable by losing its magnetic support through ambipolar diffusion. 
But there is no clear evidence that sufficiently strong magnetic fields are present 
in every star-formation event. Thus, we decided to show some other mechanisms, 
purely hydrodynamical, that can push a diffuse, gravitationally stable cloud into a 
gravitationally unstable phase. To trace these purely hydrodynamical effects, we 
switch off magnetic fields. 

In the present paper, for the sake of simplicity, we have adopted a constant 
volume outer boundary condition. An alternative choice, a constant outer pressure 
boundary condition, may influence the cloud dynamics if the time for a sound wave 
to propagate across the cloud is less than the cloud free-fall time (equation (11)). 
In this case the information from the outer boundary (sound waves) travels inward 
faster than the cloud can collapse (Bodenheimer and Sweigart, 1968). However, 
it is difficult to estimate the characteristic times in our case of non-isothermal 
collapse, because the temperature distribution is usually highly non-uniform. Pre- 
liminary computations show that the constant outer pressure boundary condition 
may influence the quantitative results and slightly change the shape of the solid 
line Figure 4. Nevertheless, the main qualitative results, i.e., such phenomena as 
pressure-force-driven collapse, shock-driven collapse, and thermal-instability-driven 
collapse, remain intact. 

All three mechanisms that trigger the collapse of gravitationally stable clouds 
are initiated by the non-uniform temperature distribution. The degree of non- 
uniformity of the temperature distribution in turn depends on a variety of factors 
(cf. equations (5) and (6)) such as photoelectric heating efficiency of grains, grain 
charge, grain attenuation efficiency, cosmic ray heating rate, intensity of electro- 
magnetic radiation, and depletion of such coolants as carbon, iron, and others. 
Thus, the interstellar grains play an important role in maintaining the non-uniform 
temperature distribution and hence in triggering the gravitational collapse of grav- 
itationally stable interstellar clouds. This role of grains in cloud dynamics and star 
formation has not been recognized before. 

The time evolution of the density and temperature distribution in the case of 
shock-driven and thermal-instability-driven collapse (Figures 10 and 12) is signifi- 
cantly different from that of pressure-force-driven collapse (Figure 5). Tarafdar et al. 
(1985) and Prasad et al. (1991) studied only the time evolution and spacial struc- 
ture of molecular abundances for the case of pressure-force-driven collapse. The 
molecular abundances in the case of shock-driven and thermal-instability-driven 
collapse are expected to differ from those obtained by Tarafdar et al. (1985) and 
Prasad et al. (1991). It will be interesting to examine whether this difference can 
explain some of the peculiarities (sf. Ohishi, Irvine, and Kaifu, 1992) observed in 
interstellar clouds. 

Therefore, the present study has revealed not only two new interesting mech- 
anisms of protostar core formation due to thermal shock waves and thermal in- 
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stability, but also it has suggested a possible explanation of peculiar molecular 
abundances in the interstellar clouds. 
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