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Galactic synchrotron and free-free foreground angular spectra are analytically estimated taking 
account of interstellar turbulence and radiating process physics. Unknown parameters of the 
spectra are obtained by fitting to observational data. 

KEY WORDS Galactic radio emission, CMB anisotropy 

1 INTRODUCTION 

The problem of Galactic screening foregrounds is of exclusive importance for CMB 
anisotropy experiments aiming to obtain basic cosmological parameters by an ac- 
curate measurement of Sakharov oscillations (Janke et al., 1977; Jungman et al., 
1996a, b). The information about Galactic continuous emission is used to determine 
the radio frequency-angular scale region where CMB fluctuations dominate. 

Present estimations of the most unclear aspect of this problem, angular spec- 
tra, are based on direct calculation from observational data and an empirical two- 
parameter (amplitude-angular spectrum index) spectrum model (Bersanelli e t  al., 
1996). However, applying this approach we encounter a lack of observational data 
and their low quality (for example, see Davies et al., 1995), which can make direct 
angular spectrum estimations doubtful. 

So it seems convenient to have a parametrization that accounts for radiating pro- 
cess physics. In this case we can incorporate essentially heterogeneous information, 
which can compensate primary data imperfections. In addition, as fitting param- 
eters may have a physical meaning in this approach, we can find new information 
about interstellar media. 

Working in this direction we did not find in existing publications a convenient 
analytical method allowing us to bind physical parameters of interstellar media with 
statistical properties of observed radio images, so a considerable part of this paper 
is devoted to the development of such a method. 
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282 A. V. CHEPURNOV 

2 SPECTRAL PROPERTIES OF THE GALACTIC RADIO EMISSION 

2.1 Basic Terms 

In this work we have to deal with different values and transforms involving station- 
ary processes. The most convenient and in some cases the only way to  obtain a 
desired result is to use a random process spectral representation (Ibragimov and 
Rozanov, 1970; Rozanov, 1963): 

where 
This integral can be interpreted as a sum of flat waves, whose complex am- 

plitudes are determined by a stochastic spectral measure of a wave vector space 
elementary volume, while these measure elements obey the following symbolic rule: 

is a stochastic spectral measure of a stationary process s. 

@(&)@*(&‘) = 6k,kip2(k) dk, (2.1.2) 

where 
0, k # k’ 
1, k = k‘, bk,k’ (2.1.3) 

and F2(k) is a power spectrum of a process s: 

s(O)s(r) = 1 eikrFz(k) &. (2.1.4) 

It is possible to employ an alternative symbolic form of the spectral representa- 
tion, which is completely equivalent to  the previous one: 

s(r) = 1 e i k ’ F ( k ) ( ( k ) 6 ,  (2.1.5) 

t(k)[* (k’) = 6k,kt. (2.1.6) 

We use the latter here despite the odious a, as practice shows it to be more 
convenient. 

We also assume the following to  be correct for real random processes: 

(2.1.7) 

(2.1.8) 

2.2 

We consider a model when an observer is located in the centre of some sphere filled 
with a luminous medium, and the radiation source function s(r) is assumed to be 
a stationary random process with known power spectrum. The sphere is cut from 

Angular Spectrum through the Spatial Spectrum 
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GALACTIC RADIO EMISSION 283 

infinite space by some known function w(r )  of distance r from the sphere's centre, 
referred to as the weighting function. (This model is adequate if the respective 
variation of distance to the radiating medium edge is considerably less than unity 
at the considered angular scales.) 

We are interested here in the angular spectrum of an observed image, given by 
the following function of angular coordinates: 

The source function will be replaced below by its spectral representation: 

s(r) = eik'F(k)<(k)&. I 
Let the original random process be isotropic. If so, accounting for 

kr = r . ( k ,  sin 8 cos cp + k ,  sin6 sin cp + k ,  cos 8) 

we have the following expression for the angular autocorrelation function: 

c(e) = s(o, 0) . s*p, 0) 
00 00 

0 0 

/F(k,)Gei((-k;r '  s i n 8 - k ~ r f c o s 6 + k : r )  . &I<* ( k T  

Having evaluated the averaging we derive: 
00 M 

C(0) = j w ( r ) & .  J w ( r ' ) d r ' .  /F2(k)dk .ei(-k:r'sin8-6:r'CosB+k:r). 

0 0 

After integration over the wave vector directions, we have the following expression: 
OCI M 00 

sin I C . \ / T ~  - 2rr' cos e + r'2 

kdr2 - ~ T T ' C O S ~  + r'2 
C(6) = 4n / w(r )  dr . / w(r ' )  dr' / k2 dk . F 2 ( k )  . ' 

0 0 0 

Taking account of 
71 

we finally obtain the desired angular spectrum: 

(2.2.2) 

(2.2.3) 
00 

C: = 1 6 ~ '  1 k2 dk  . F 2 ( k )  . 
0 
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284 A. V. CHEPURNOV 

We can see that the 
spectrum takes the form 
the weighting function. 

However, this kernel 

expression for the angular spectrum through the spatial 
of an integral transform with kernel being dependent of 

is not convenient for direct computation because of an 
oscillating function (the spherical Bessel function j n ( k r ) )  in the integral. So it 
may be useful to  find some direct analytical expression for it, with given adequate 
weighting function. 

2.3 Kernel Approximation 

Let w(r) be Gaussian: 
2. 

w ( r )  = e - ~ z ,  (2.3.1) 

where R is the distance from the luminous region edge. Then the transform may 
be written in the form: 

where 

Using the integral representation of the hypergeometric function, 

we can find 

(2.3.2) 

(2.3.3) 

On the other hand, using the alternative integral form of 1 Fl ,  

1 

we have: 
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GALACTIC RADIO EMISSION 285 

Let us find an approximation for this expression for large I values. Let us denote 

Let a = 7 be constant: 

The integrand of the latter expression is positive and has a single maximum at 
zo M 112 while 1 >> 1, and with this condition the bulk of the area is located near 
the maximum. Since the maximum's form is affected only by the first two terms, the 
third one can be factored out of the integral with its value at 20. Taking into account 
the fast decrease of the remaining integrand, we can spread the upper integration 
limit to infinity. So we have: 

Using the gamma-function asymptotic, 

q Z ) = g . e - i - I ' ,  z>>1, 

we finally obtain the following approximation of the kernel: 

(2.3.4) 

This approximation works with the appropriate precision for 1 > 15 uniformly over 
all 3-d wave vector values, so it can be used in the whole range where the original 
model is correct. 

The following sections contain some special cases, important for practical appli- 
cations. 

2.4 Power Law 3-d Spectrum 

If a source function has an unlimited power-law spectrum, the respective sphere 
projection also has a power-law spectrum, and the spectral indexes coincide: 

(2.4.1) 
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4T3r (9) F; . R-1 

2 9  1” . 
c,2 = (2.4.2) 

Let us introduce some cut-off scale (“outer scale”) L into the initial 3-d spectrum: 

(2.4.3) 

In this case, the respective angular spectrum changes its spectral index from 1 for 
low 1 values to  the spectral index of the source function for large 1s in the vicinity 
of lo  = 2rR/L:  

(2.4.4) 

A remarkable property of the spectrum (2.4.4) lies in the fact that opposite 
to  the spectrum (2.4.2) an amplitude of a harmonic with fixed 1 is saturated when 
R -+ m, which is caused by the influence of the outer scale L. Indeed, let us fix some 
angular scale p. Then at a distance more than L j p  there will be no fluctuations 
exceeding the angle p, and the increase of distance R to  the border of the radiating 
region over this limit will not cause an increase of the amplitude of an angular 
harmonic with typical scale p. 

A decrease of the spectral index when going from small angular scales (large I 
values) to large ones (small 1 values) is explained by the same effect. Provided the 
distance LIP  does not exceed R,  the change (growth) of the angular harmonic with 
the increase of scale p occurs exclusively because of the increase of the amplitudes 
of spatial harmonics of the original random process at every distance inside the 
sphere of radius R (according to (2.4.3)). However, beginning with, the angular 
scale ,& = L/R, with further increase of /3 the “effective sphere” of radius LIP  
(i.e. the sphere, where the amplitude of the angular harmonic is formed) shrinks, 
which causes a slowing down of the increase of the respective angular harmonic 
amplitude. 

The reason for the unit spectral index at low Is is directly seen from the expres- 
sion (2.4.2): if with decreasing 1 (increasing 0) we decrease the distance R propor- 
tionally to  1 ,  imitating the shrinking of the “effective sphere”, then the spectrum 
will behave as 1-l. 

2.5 The Case of a Squared Kolmogorov Process 

Let the source function be a squared stationary random process with known prop- 
erties: 

s(r) = (s+ AS(r))” 

AS(r)  = / eik’3(k)c(k)&. (2.5.1) 
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GALACTIC RADIO EMISSION 287 

The respective autocorrelation function is equal to 

C(r) = s(r)s(O) 

According to (2.1.6), (2.1.7) and (2.1.8), let us write combinations of random vari- 
ables < and respective wave vector combinations, giving a non-zero contribution: 

(1) <(kl)<(ki) : kl = -ki; 

(2) <(k2 )<(k3 )<(ki): 

(a) k2 = -kk and k3 = -ki, 
(b) k2 = -ki and k3 = -k;, 

(c) k2 = -k3 and ka = -ki; 

(4) J(kh)<(ki) : kk = -ki. 

The terms corresponding to the variants (2c), (3) and (4) are constant. As we are 
interested in a variable component only, these combinations (along with the other 
constant terms) will be omitted. Hence we derive (intersections of the variants 
correspond to sets of zero measure): 

C(r) = (2s)2 ./ F2(k)eikr dk + 2 (/ F2(k)eik' dk (2.5.2) 

The respective power spectrum is equal to 

F2(k) = (2S)2F2(k) + 2F;(k), (2.5.3) 

F;(k) = /F2(k')F2(k - k') dk'. (2.5.4) 

So the source function power spectrum can be expressed through a sum of two terms, 
which may be referred to as linear and quadratic. The linear term is proportional 
to the power spectrum of the original random process, the quadratic one to the 
autoconvolution function of this spectrum. 
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288 A. V. CHEPURNOV 

Let us find an approximation for the quadratic term in the partial case when 
the original random process has a power-law spectrum with known outer scale and 
Kolmogorov spectral index: 

(2.5.5) 

Analysing the structure of expression (2.5.4) taking account of (2.5.5) we can assume 
that Fi(k) must have the following asymptotics: 

F t ( k )  M Ft30, k << ko, 

F,2(k) M 2Fok11/39 4 A  k >> k ~ >  

where 
M 

M 

Now we can choose an approximation which fits the asymptotic conditions. A 
numerical evaluation shows that the following approximating function is adequate: 

Having found the values of 30 and 31, we obtain: 

F i ( k )  M F;O 

(a% + I> ' 

where 

(2.5.6) 

, a = 0.1842. 1.514F; q0 M ~ 

&3/3 

So for the angular spectrum of the quadratic term we have: 

(ko = y ,  L is outer scale). 
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We can find an approximation for the integral in the latter expression: 

So the angular spectrum of the quadratic term takes the following form: 

This spectrum behaves analogously to the linear variant with the difference that its 
spectral index changes near the point lo M 3 .  (27rR/L), instead of 10 = 27rR/L in 
the previous case, and its value is slightly bigger than unity in the region of lower 2s. 
Saturation when R -+ 00 also takes place. These effects, as in the linear case, are 
explained by the divergence of the primary spectrum (2.5.6) from the pure power 
law. 

Now we can write the full angular spectrum corresponding to the given source 
function: 

3 GALACTIC SYNCHROTRON EMISSION 

3.1 Source hnction 

The source function of galactic synchrotron emission is proportional to BP+')/2 
(Eilek, 1989a, b; Weksler and Kellermann, 1976), where BI is the magnetic field 
projection on the image plane, and y is the electron energy spectrum index. The 
latter is bound with the radio frequency intensity spectral index a by expression 
y = 2a+l .  For the Galaxy a M 1, and in this case the source function is proportional 
to the square of the perpendicular projection of the magnetic field. 

On the other hand, from the theory of interstellar turbulence (Baum et al., 
1958; Kaplan, 1958) it is known, that the Kolmogorov spectral index corresponds, 
in particular, to the quantity 

, . 3  
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where 

p is the medium density. If we suggest p M const, then 

Bl,(r) M -131(rr)B,(rr 1 + r). 
4TP 

In the case of isotropic turbulence Bll(r) does not depend on the index I and the 
direction of r (Baum et al., 1958). In this case we have: 

where Fi(k) is the spatial power spectrum of the magnetic field component: 

Hence, if our suggestions are correct, the magnetic field component has a Kol- 
mogorov spectrum; and, then, if we assume that the orthogonal components of the 
image plane projection of the magnetic field are statistically independent, we can 
state that the synchrotron emission source function is proportional to the square of 
the Kolmogorov process (with zero mean). 

3.2 Angular Spectrum 

So, applying (2.5.7), we have the following expression for the synchrotron emission 
angular spectrum: 

Here a R/Rp M 1/ sin lbl, Rp is the distance to the radiating region border in 
the direction of the Galactic pole, q = Rp/L, and X is the wavelength in cm. The 
parameter a is introduced in order to account for the position of the observation 
site with respect to the Galactic plane. 

If we have two observational data sets corresponding to non-coinciding angular 
frequency bands, we can estimate two unknown parameters of this spectrum, A and 
q. In this case, accounting to (A.8), we can write the following expression for the 
signal mean square for data sets with number i = 1,2: 

Di = A .  / @?(&)F2(Xi ,  cq, Q, K )  d ~ ,  (3.2.2) 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
15

:3
1 

12
 D

ec
em

be
r 2

00
7 

GALACTIC U D I O  EMISSION 291 

where 
~ 5 . 8  (y8 / 3  1 + 3.21 . 

F2(X, Q, Q, .) = 
(2.rr)2 . .11/3 . (1 + 5.0. (F)2)4'3 ' 

and @i(n) is an agular filter. 
Let us rewrite (3.2.2) in the following form: 

A = Di. fi(q), (3.2.3) 

-1 
where 

fdq )  = (/- @ ? ( n ) F 2 ( k ,  Q i , Q ,  .) dn) ' 

So every data set yields the respective dependence A(q) ,  and their intersection point 
gives an estimation of values of A and q. 

We used here two one-dimensional data sets corresponding to wavelengths 7.6 cm 
(Parijskij and Korolkov, 1986, see Figure 1) and 21 cm (Davies et al., 1995, see 
Figure 2). 

. L7.6cm a -  

2 -  Cr:13h-14h 

1 . I . I .  1 .  I .  1 .  I * I  

0 2 4 6 8 10 12 t 4  

deg 

Figure 1 
1-5' is determined by data processing (Parijskij and Korolkov, 1986). 

The Cold-80 experimental data (RATAN-600 radio telescope). The angular scale range 

40 

20 - 

mK 

-40 - b: +53O - +76.5 
I I I I 1 I 

deg 
0 20 40 60 80 loo 

Figure 2 
HPBW = 5'). Discrete sources were previously removed (Davies et al., 1995). 

The 1420 GHz survey data convoluted with a triple beam (beam separation f8', 
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2.5x10=, I I I I I 

I' 

21cm 
7.m I 

- - - - -  
2.ox10= - , - 

# 

A 1.6riO" - - 

1.a10" - - 

5.0x10-' - - 0 -  - 

- I I I I I 

10 12 14 16 18 20 

For the RATAN-600 data we accounted for the aperture efficiency E, = 0.78 and 
for all non-synchrotron components (discrete sources, free-free emission, dust emis- 
sion) obtained by computer simulation (Chepurnov, 1995; Parijskij and Chepurnov, 
1995) overall r.m.s. is estimated as 0.47 mK. Finally we obtained: 

XI = 7.6 cm, D1 = 1.72 x K2, a1 = 1.12, 

where a0 = &!.iz o,017 , a1 = e. For the second data set the respective parameters 

3.3 

It is clearly seen from Figure 4 that small deviations of Di can cause a significant 
change of A and q. So it is highly advisable to find a confidence interval of estimated 
q and an accuracy of the corresponding spectrum (3.2.1). 

A Confidence Interval for RIL 
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Figure 4 Probability density of the parameter q = R/L. 

Using (B.3), we can estimate standard deviations of Di: 

LTD, = 5.3 x K 2 ,  L T D ~  = 1.1 x K 2 .  

To simplify calculations we assume that Di values have normal distribution. In 
this case the mutual probability distribution for Di has the following form (Di are 
statistically independent because the data sets correspond to different sky regions): 

The respective elementary probability is 

dP = p ~ ( D i , D 2 )  dD1 dD2. 

For the area of an image of the square dDldD2 on the plane { ( q , A ) } ,  projected by 
transform (3.2.3), we can write the following: 

Accounting for (3.2.3), we can find the mutual probability density of A and q: 

Integrating this numerically over A,  we obtain the probability density distribution 
of q (see Figure 4). 
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So we can now estimate a confidence interval. Finally we have: 

R / L  = 14.0+:1+' (3.3.2) 

for the confidence probability 0.68. 

enlarging the observational areas. 

3~48% for 1 = 1000. 

This error is not caused by measurement accuracy and can be reduced only by 

The corresponding spectrum error is *16% for I = 100, f39% for 1 = 320 and 

3.4 The Result 

The angular spectrum, calculated according to (3.2.1) and (3.2.4), is shown in 
Figure 5 along with the empirical spectrum from the COBRAS/SAMBA project 
(Bersanelli et  aZ., 1996), obtained from 408 MHz and 1420 MHz survey data. 

Figure 5 Angular spectrum of Galactic synchrotron emission. 

We can suggest that the spectral index 3 found by Bersanelli et aZ., (1996) is 
caused by the influence of the outer scale L and corresponds to a transition from a 
spectral index of about unity at low Is to a Kolmogorov index of 1113 when 1 + 03. 

4 GALACTIC FREE-FREE EMISSION 

4.1 Source Function 

In the case of free-free emission the source function is proportional to the squared 
electron density (Kaplan and Pikelner, 1979). The respective brightness tempera- 
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ture is expressed through the line-of-sight integral from the electron density in the 
following way: 

TE = 4.8 x . X2.16 . n: dr, (4.1.1) s 
1.o.s 

where X is measured in cm, n, in ~ m - ~ ,  r in pc, TR in K. 

that electron density fluctuations have a Kolmogorov power spectrum: 
On the other hand, it is known from pulsar emission scintillation measurements 

where k 2 2nlL and L is an outer scale. 
The amplitude of the spectrum is estimated by Cordes et al. (1991) 

F; = 3.16 x 10-4m-20/3, 

if k is measured in m-l. 

from Section 2.5. 
So for the Galactic free-free emission angular spectrum we can use the result 

4,2 Angular Spectrum 

Applying (2.5.8) to (4.1.1) we have the following expression for the free-free emission 
angular spectrum: 

K2 . F: . R8/3 

4/3 
Ci(X, 1) = 4.0 x 10-l' . X4.32 . 

P1l3. (1 + 0.5. (e)2) 

where 6 = 0.05 cme3 is the mean electron density, F: = 3.16 x 10-4m-20/3 is the 
electron density spatial power spectrum amplitude, and R and L are measured in 
pc, X in cm, and the result in K2. For R one can assume R = 1000/sin lbl pc, where 
b is the Galactic latitude (Cordes et al., 1991). 

The only remaining unknown parameter is L,  the outer scale of turbulence. To 
estimate it we can use the signal r.m.s. value over some observation site. Using 
(A.7) we have the following expression for this value over a circular region with 

If CT' is known, one can fit the parameter L of the spectrum (4.2.1) to  satisfy 
(4.2.2). The observational site shape does not affect it much (for non-pathological 
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+40° 

DEC. 

3h 00' 2' 30m 

R.A. 

2h Od" 

Figure 6 
recounting from the Ha intensity (Reynolds, 1992). 

Brightness temperature of Galactic free-kree emission in pK at X = 1 cm obtained by 

shapes); for other shapes one can choose a in order to make the itreas equal. To 
determine the outer scale L we used Ha data, recounted to the free-free emission 
(see Figure 6, Reynolds, 1992). For c = 11.2 pK, b = -21°, a = 6P2 fitting with 
(4.2.2) gives 

L = 214 pc. (4.2.3) 

The free-free emission angular spectrum given by (4.2.1) taking account of 
(4.2.3) is displayed in Figure 7 along with the spectrum obtained by Bersanelli 
et al. (1996). We can see that this spectrum is 5-10 times lower than the CO- 
BRAS/SAMBA estimation. The slope corresponding to a spectral index of 3 from 
Bersanelli et al. (1996) is observed only in the region 30 < 1 < 200; for larger 1 it 
corresponds to the Kolmogorov spectral index. 

5 SUMMARY 

So the main results of the present work are as follows: 

(1) A transform converting the 3-d spatial spectrum of the source function to 
the angular spectrum of the observed image found in its general form (2.2.3). 
Also a convenient approximate expression for this transform is found for a 
Gaussian weighting function (2.3.2, 2.3.4). 
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Figure 7 The Galactic free-free emission angular spectrum. 

(2) Angular spectra of the synchrotron and free-free Galactic radio emission are 
obtained with general assumptions about their source functions (3.2.1, 4.2.1). 

(3) Free parameters of these spectra are found by fitting to observational data. 
Information about the turbulence outer scale is found for a random magnetic 
field (3.3.2) and electron density (4.2.3). 

However, we must note the following disadvantages of the obtained results: 

(1) As the behaviour of the interstellar medium parameters, spatial spectra at 
scales bigger than the turbulence outer scale is still not estimated, a cut-off 
such as the one used in (2.4.3) does not seem to be well-founded. So the outer 
scales found here may be regarded only as order-of-magnitude estimations. 

(2) Fitting of the synchrotron angular spectrum involves only a small part of the 
existing observational data, and may be regarded as a demonstration of the 
method rather than as final result. 

(3) The final estimations show that H, fluctuations are mostly caused by the 
geo-corona structure, and if this is true, then the free-free emission angular 
spectrum found here may be considered only as an upper limit, along with 
the corresponding outer scale. 

So we can now state that free-free emission has an angular spectrum lying 
at least one order of magnitude lower than the present estimation of the CO- 
BRAS/SAMBA project, which shifts to lower radio frequencies the optimal band of 
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CMB anisotropy experiments, and makes it possible to  measure the CMB angular 
spectrum even at short centimetre wavelengths. 
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Appendix A .  Estimation of the Dispersion over a Selected Region 

Let s(r) to be a real random process with spectral representation 

s(r) = eik'F(k)c(k)Jdk. I 
Let R to be a limited region in space {r}. Then 

= /F(k)C(k)&. J F ( k ' ) t ( k ' ) a .  (nn(k+k')  - IIn(k)nn(k')) (A.1) 

( A 4  

where 
IIn(k) f - 1 Je'krdr. 

R 
R 

We assume below that the region R is symmetrical with respect to coordinate inversion (in 

Taking account of this assumption we can write some other properties of IIn(k): 
this case IIn(k) is a real function) and contains 0. 

&(k)dk = - J R '  

where n is the dimension of {r}. 

of 0 of volume 9, and is equal to zero at all other points. 
For rough estimations it is convenient to assume that &(k) is equal to unity in some vicinity 

Having averaged ( A . l )  taking account of (2.1.6), (2.1.7), (2.1.8), (A.3)  and (A.4) we have: 
- 
Dn = /Fz(k)  (1 - IIi(k)) dk. 

Dn w / F2(k) dk. 

('4.7) 

If we can neglect harmonics with a characteristic scale larger than the dimension of R, the second 
multiplicand in the latter expression can be omitted: 

- 
('4.8) 

Appendix B. Standard Deviation of the Estimated Dispersion 

Taking account of ( A . l ) ,  we can write the following: 
2 - -  - 

U& ( D o - D n )  = D i - D i  

= / F ( k ) ~ . / F ( k ' ) ~ ~ . S F ( k i ) J a i k T . / F ( k ; ) J d k ;  

x ( h ( k  + k') - nn(k)nn(k')) (nn(k l+  ki )  - &(kl)Jh(k;)) . 

x C(k)C(k')t(kl)t(k;) - g.  
Then, with (2.1.6), (2.1.7) and (2.1.8), we can write wave vector combinations giving a non-zero - 

contribution to 0;: 
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(1) k = -k‘ and kl = -k{, 
(2) k = -kl and k’ = -k{, 
(3) k = -k; and k‘ = -kl. 

Variant (1) yields 3 (see (A.7)) and cancels; combinations (2) and (3) give an equal result. 
So we have: 

ub = 2/F2(k)dk. /F2(k‘)dk‘.  (IIn(k+ k’) - lTn(k)lTn(k’))2, (8.1) 

and, again, if harmonics with a characteristic scale larger than the dimension of R are negligible, 
the latter expression can be simplified. As F(k) is even, we have: 

If we suppose that the region where 112 k - k’) with fixed k’ significantly non-zero is small 
enough to  neglect spectrum variations within it, then with (A.6) we have the following approximate 
exnression: 

d 


