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New unperturbed motions are suggested for the study of the rotational motion of deformable 
celestial bodies. This motion describes the rotation of an isolated celestial body deformed by its 
own rotation. By some natural simplifications and by  using special forms of canonical variables 
(similar to Andoyer’s variables) the problem is reduced to the classicd Euler-Poinsot problem for 
a rigid body, but with different moments of inertia. 

The suggested unpertubed motion describes Chandler’s pole motion and we shall call it 
Chandler or Euler-Chandler motion. The development of the unperturbed theory is described 
in this paper. The solution of the Chandler problem (Andoyer’s variables, components of an- 
gular velocity of the body’s axes, and their direction cosines) is presented in elliptical and 8- 
functions, and in the form of Fourier series in the angle-action variables. Similar Fourier series 
were obtained for products and squares of the diraction cosines. The coefficients of these series 
are expressed through full elliptical integrals of the Erst, second and third kinds with modulus 
which is the defining function of the action variables. It is the principal peculiarity of these 
series. 

As an illustration we give a application of this unperturbed theory to the study of the Earth’s 
rotation (the principal properties of the Earth’s rotation and perturbations). 

So, the unperturbed motion describes the following phenomena of the Earth’s rotation: 
(1) Chandler’s motion of the pole of the Earth’s axis of rotation; 

(2) the ellipticity of the trajectory of the Earth’s pole; 

(3) the non-uniformity of the pole motion along the elliptical trajectory; 

(4) the variation with Chandler’s period of the modulus of the‘Earth’s angular velocity. 
Theory of the perturbed rotational motion of the Earth is constructed on the basis of the 

special forms of equations of the rotation of a deformable body (in angle-action variables and their 
modifications for the Chandler-Euler problem). For the construction of the perturbing function in 
these variables we use the Hamiltonian expression in Andoyer variables of Getino Ferrandiz paper 
(1991), in which the theory of the Earth’s rotation was developed. In that paper we obtained 
the full trigonometric development of the second harmonic of the force function of the Earth- 
Moon system (and also for Earth-Sun system) in angle-action variables. The analytical formulae 
for perturbations of the first order in the Earth’s rotation on the basis of these equations and 
developments were obtained. 
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180 Yu. V. BARKIN 

Secular perturbations in the Earth’s rotation due to second harmonics of the force function were 
studied (the definition of the constant of precession; constant additives to the angular velocities 
of the Chandler and axial motions of the Earth). 

All the results of this paper are presented in analytical form and are applicable for studies of 
the perturbed rotational motions of other celestial bodies (Venus, asteroids, satellites etc.). 

KEY WORDS Chandler’s motion, Earth’s rotation, perturbation theory, angle-action variation 

1 INTRODUCTION 

Let us study the rotational motion of a weakly deformable elastic celestial body due 
to the attraction of other bodies, Due to the perturbing influence of the other bodies 
and due to its own rotation the body undergoes tidal and centrifugal deformation 
as a body with concentric distribution of density. Deformations of the body are 
described by a classical solution (Takeuchi, 1950). 

Let Oxyz be a Cartesian reference system with axes directed along the princi- 
pal axes of inertia for the undeformed state. We will neglect small effects due to 
displacement of the point 0 relative of the mass centre. Let lj be the vector of the 
angular velocity of the reference system Oxyz with components p ,  q and r (in the 
axes) w.r.t. the principal reference system O X Y Z  with axes fixed in space. Let 
Ao, BQ and Co be then principal moments of inertia of the body (for its indeformed 
state) about the axes Ox, Oy and Oz. 

We will describe the rotation of the body by Andoyer’s variables (Getino and 
Ferrandiz, 1990): 

Ll G, H ,  1,  9, h, (1) 

which are connected with the angular moment vector of the rotational motion of 
the body. 

on the axes Oz and 02 of the 
- corresponding reference systems. Let p and 8 be angles, formed by the vector 
G with these axes. Then L = Gcos8, H = Gcosp. Geometrical values of the 
other variables (1) are described in many papers (e.g. Getino and Ferrandiz, 1990, 
1991a). 

Andoyer’s canonical variables (1) can be related to the immovable plane O X Y  
of the main reference system, and to the moving plane ( E )  with a given motion. In 
the last case the Hamiltonian of the problem has some additional terms (Kinoshita, 
1977): 

Here L and H are projections of the vector 

dt 
RE = H(l - c o s i ) e  + d m  [sinicos(h - a)- da - sin(h - 

dt dt 

Here i and Q are inclination and longitude of the ascending node of the moving 
plane w.r.t. the reference system O X Y Z .  These angles are known functions of 
time. For example, in Earth’s rotation theory (Kinoshita, 1977) the angles cu = 111, 
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EARTH’S ROTATION 181 

i = TI define the position of the ecliptic of the data with respect to the ecliptic 
plane in a given epoch. They are presented by following formulae: 

sin a1 sinII1 = pt + p’t2 +p”t3  = 51’341t + 01’1935t’ - OI‘00019t3 
sin TI cos IIl = qt + q’t2 + q”t3 = -4611838t + OI‘563t2 + OI’00035t3. (3) 

The full expression of the Hamiltonian of the problem of the rotation of a de- 
formable body in the variables (1) was obtained by Getino and Ferrandiz (1991a) 
and involves the terms 

where To, T,. and Tt are the kinetic energies caused by the rotation of the body 
and its centrifugal and tidal deformation; RE is caused by the motion of the main 
reference system; Et and E, are the energies of the tidal and rotational deformation 
accumulated in the elastic body; U is the force function of the Newtonian interaction 
of the body with the perturbing bodies; Ut and U, are additional force functions 
caused by tidal and centrifugal deformation. 

For these term in (4) the necessary trigonometric expressions and developments 
in Andoyer’s variables were obtained by Getino and Ferrandiz (1991a,b) and Ki- 
noshita (1977). 

Application of the equations of rotational motion in Andoyer’s variables, for 
example in the theory Earth’s rotation , is connected with certain mathematical 
difficulties in the case of small values of the angle B and causes some artificial 
constructions for the description of the pole motion of the vector G (or the angular 
velocity vector G). 

On other hand it is well known that the main component of the Earth’s pole mo- 
tion is Chandler’s motion and the deviation from this motion is defined by modern 
observations with higher accuracy (about 1 mm of the Earth’s surface by a Chan- 
dler’s amplitude of a few metres). From observations it follows that Chandler’s 
motion is excited and is damped within 25-40 years IERS (1993). 

At the same time for definit and sufficiently long time intervals, we can assume 
that the character of the Chandler’s motion changes weakly (for example in the 
period 1983 y to 1995 y; IERS (1993)). 

The above statements are the basis for the construction and application a new 
unperturbed rotational motion of the deformable body. This motion is Chandler’s 
rotational motion of a weakly deformed celestial body. 

The perturbation theory on the basis of this unperturbed motion is realized by 
compact and elegant analytical formulas, although with addition of terms of elliptic 
functions and elliptic integrals. 

More important unperturbed motion can be used to construct rotation theories 
of other celestial bodies (Venus, Mars, asteroids etc.). So, for the Earth the angle 0 
between the angular moment vector G and the polar inertia axis is small (0 - 
But for Venus it is equal to about - 13’. There are data that some asteroids have 
big angles 8 .  
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182 Yu. V. BARKIN 

The analytical theory of perturbed rotational motion constructed is first adopted 
to the study of the motion of these bodies. However, the application of this theory 
to  the study of Earth’s rotation also has important positive value. For example, the 
description and interpretation of the main Chandler effects in unperturbed motion; 
a full analytical description of the perturbation effects in the Earth’s pole motion 
and in its precession and nutation. 

The purpose of this paper is to construct a theory of the unperturbed rotational 
motion deformed by own rotation, which describes Chandler’s motion of the pole 
of its rotation axis and to give its application for the description of the Chandler 
effects in the Earth’s rotation. 

Then we introduce angle-action variables and construct a new analytical theory 
of the perturbed rotational motion of the deformed body on the basis of the above 
unperturbed motion, and give its application to Earth’s rotation theory. 

The assumed unperturbed motion corresponds to classical Euler’s rotational 
motion of the rigid body but with changed moments of inertia. This is the main 
feature of our approach to the problem. It lets us simplify our study and analytical 
constructions and gives description of the kinematical and dynamical effects in 
unperturbed and perturbed motions. Also this approach lets us use a wide set of 
investigations of the unperturbed Euler’s motion. In particular here we use some 
well-known results of Sadov (1970) and Kinoshita (1972) and the author’s very wide 
results of the study of Euler’s problem from the unpublished Saragossa course of 
lecture (Barkin, 1992) “Introduction in the rotation theory of the celestial bodies”, 
delivered for group of celestial mechanists at Saragossa University in 1992-1993. 

2 HAMILTONIAN OF THE UNPERTURBED MOTION 

The Hamiltonian of the unperturbed rotational motion is easily constructed on the 
basis of the expressions of the kinetic energies To, T, from the Hamiltonian of the 
perturbed motion (4) (Getino and Ferrandiz, 1991a): 

To = :G2 (+ + k) + zL2 1 ( 2  - - 1 - ’) 
C A B  

(5) 

G2 - L2 
(6) sin 24. sin 21 

3 
4 AB 

+ -D, sin2 8, 

where D, is some parameter of the elastic rotational deformation of the body (for 
the Earth Dr = -2.845379 x 1041(g2); Getino and Ferrandiz, 1991a). 

Here expression (5) is the kinetic energy of the rotation of the body with inertia 
moments A ,  B and C, and ( 6 )  is the kinetic energy connected with the centrifugal 
deformation. 
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EARTH'S ROTATION 183 

Here 0, and 1, are angles analogous to Andoyer's variables 0 and I defined not 
for the vector G, but for the angular velocity vector w. 

For bodies similar to the Earth the angles 0 and 0, are small. For the Earth these 
angles are - 

Using this assumption we relate the second term T, (it has order 04) to the 
perturbation function 'HI. From the first part of (6) we relate the function 'HI to 
the following small terms: 

and we can approximately assume 0, II 0 and cos(Z - Z,) II 1. 

- 

The main 

x [sin 20,. sin 20 cos k, cos I - 4 sin2 0 cos' 13. (7) 

terms of the function T, (6): 

with the function TO form the Hamiltonian of the unperturbed rotational motion: 

We can present this Hamiltonian in the following way: 

G2 - L2 ( s i i  1 Z o = -  - 
2 B 2c 

where 

(9) 

Here the moments A, B and C are given by the sum of their values Ao, Bo and 
CO in the absence of deformation and the corresponding corrections for centrifugal 
deformation: 

A =  Ao+D,(1-3sin20,sin21,) 
B = Bo+D,(1-3sin20,sin21,) 
C = CO + D,(-2 + 3sin2 0,). (11) 

Finally in the unperturbed motion we save only the constant corrections AA = 
A B  = D,, A C  = -2D,, and we refer additional small terms - sin2& to the 
perturbation function 'HI. 
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184 Yu. V. BARKIN 

So, in the unperturbed motion the deformed body is characterized by the con- 
stant moments of inertia: 

From the expression for ‘If0 it follows that in the unperturbed motion the body 
rotates as a body with changed moments of inertia A,  B, 6 ,  which are defined by 

1 1  - - _ -  C C ’  

For small values of D, and II 2 (for the Earth D, N lod3) from equations (13) 
we obtain the relations: 

For Earth’s model with elastic mantle studied by Getino and Ferrandiz (1991a) 
the following numerical values of the deformation parameter D, and of the correc- 
tions to the moments of inertia (12) were obtained: 

A C  = -2AA = -2AB = -20, = 5.690758 x 1041 g cm2. (15) 

They are in agrement with the same numerical values of Mank and MacDonald: 

5 2  
2k2R@wo = 5.609173 x 1041 g cm2. (16) 9G 

A C  = -2AA 1 -2AB = 

Here k2 = 0.3 is Love’s number, Re is Earth’s radius, wo is the angular velocity of 
the Earth, and G is the gravitational constant. 

As a result the Hamiltonian of the unperturbed motion is reduced to the form 

2 B 2 c  
xo = 

where 2, B, C have constant values (14). 
The Hamiltonian (17) corresponds to  the Euler-Poinsot problem but with chan- 

ged moments of inertia A,  B, 6. We will call the problem with Hamiltonian (17) 
Chandler-Euler’s problem or Chandler’s problem. 
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EARTH’S ROTATION 185 

The solutions of Euler’s problem were studied by many authors (for example 
Sadov, 1970; Kinoshita, 1972) in particular by the Hamilton-Jacobi method. 

Here we will use a wide set of results concerning the integration and study of 
Euler’s problem presented in the Saragossa manuscript (Barkin, 1992) with some 
natural additions and creations. 

From them we find: 

(1) the solution of Euler’s problem by the Hamiltonian-Jacobi method and the 
introduction of the angle-action variables Ii,  pi; 

(2) the solution in elliptical and &functions (Andoyer’s variables, the components 
of the angular velocity p ,  q ,  P, direction cosines of the body axes bi , ,  their 
products, squares, etc.); 

(3) the dynamical and kinematical properties of the unperturbed motion; 

(4) Fourier series for the canonical Andoyer variables; 

(5) Fourier series for the components of the angular velocity, for direction cosines 
of the body’s axes b i j ,  and also for their mutual products and squares, etc. 

These results were used for a full and detailed description of Chpdler’s motion 
and for the construction of an analytical theory of the perturbed rotational motion 
of a deformable body (in the case of arbitrary values of the parameters of the 
problem). 

As an illustration all the obtained analytical results are used for the descrip- 
tion of the corresponding effects in the Earth’s rotation. However, we must point 
out that the constructed theory is sufficiently universal and can be applied to the 
construction of the rotational theory of the other celestial bodies (Venus, asteroids, 
satellites, etc.) and for arbitrary values of the angle 6. 

We can formulate the results on the construction of the Hamiltonian of the 
unperturbed motion in the form theorem. 

Theorem. The rotation of an isolated celestial body deformed by its own 
rotation in the first approximation is described by to Euler-Poinsot solution for 
some rigid body. The values of the principal and central moments of inertia for 
this body are equal to the principal central moments of inertia of the body in the 
absence of deformation, but increased by the constant correction 

At same time in this approximations the moments of inertia of the body, de- 
formed by.its own rotation, are constant and equal to 
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186 Yu. V. BARKIN 

3 GENERAL FORMULAE OF THE UNPERTURBED ROTATIONAL 
MOTION 

Now that the problem of the unperturbed rotational motion of a deformable body 
has been reduced to the Euler-Poinsot problem, we can use known results of the 
investigations of this classical problem. Here we shall give the general formulae of 
the solution of this problem (without detailed introduction but in their final form). 

Firstly the formulae of the transformation from Andoyer’s variables to “angle- 
action” variables are very interesting and important, as are the expressions of the 
components of the angular velocity of the body p ,  q ,  T and of the direction cosines 
of its axes b;j through the angle-action and time variables (we will denote the angle- 
action variables as Ii, ‘pi (i = 1,2,3)). 

These variables were introduced (for Euler-Poinsot problem) by different au- 
thors. From among these authors the papers of Sadov (1970) and Kinoshita (1972) 
stand out. Here side by side with the Sadov and Kinoshita results we shall use the 
results, concerning this problem, from the course of lectures by Barkin (1992). In 
this course a wide set of results on the investigation of the unperturbed Eulerian 
motion was obtained. These include: Fourier series in the angle-action variables for 
canonical Andoyer variables, for products and squares of the direction cosines bij 
and components of the angular velocity p, q ,  T (and also for their higher orders); geo- 
metrical and dynamical interpretation of the properties of the unperturbed motion, 
etc. These results are the basis of the given study. 

First we give here the formulae which express the canonical Andoyer variables 
in the angle-action variables Ii, ‘pi: 

K 

@TT dnu 
L = I2 

G = 4, H = 13 

id- 1 + K 2 m 2  u 
I = arcsin 

(1 + K ~ ) ( K ~  + X2) [ 2‘pl 7r -n(z, K 2 ,  A) - n(Um U ,  K 2 ,  A)] 
K 7r 

h = $93.. (18) 

Here snu,  cnu, dnu are the elliptical Jacobi functions, n(5, ‘i2,X) and II(urn 
u ,  K ~ ,  A )  are complete and incomplete elliptical integrals of the third kind, and u is 

The vatiables “angle” are 

(0) 

(0) 

‘p1 = n1t + $01 
‘ p 2  = n2t + $02 

where ’p(10), pf’ are initial values of these variables. 
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EARTH’S ROTATION 187 

The frequencies of the Chandler-Euler motion are 

I2(A - C )  I K  
721 = 

2AC J(1+ K Z ) ( K ~  + X ~ ) K ( X )  

where K ( X )  is an elliptical full integral of the first kind, X is the modulus of the 
elliptical functions, which is defined by the initial conditions of the problem: 

pol TO (QO = 0) are initial values of the unperturbed components of the angular 
velocity p ,  r (and q ) ,  respectively. Here A, B and C are constant and “reduced” 
moments of inertia for the deformable body (see 14) A = 2, B = B C = 6 (for 
simplicity we shall nense further omit the sign “-” for all parameters of the problem: 
A, B ,  C ,  K ,  A. 

In the unperturbed motion Ii ( i  = 1 , 2 , 3 ) ,  cpy’, cpf) and cp3 are constant. 
The constant values of the variables GI H ,  h in the unperturbed motion are the 

mean of the conservation of the angular moments of the deformable body. The 
angle p between the axis OL fixed in the space and vector G has the constant value 
0 = On: 
I . ”  

13 Jm 
cospo = - 

1 2 ,  sinp = 4 (23) 

The modulus X of the elliptical functions and integrals (18), (21) is defined as a 
function of the variables I l ,  1 2  as the result of inversion of the following equation: 

In addition to (18)-(25) we give here the other formulae of the unperturbed 
motion : 
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188 Yu. V. BARKIN 

cn u 
d m s n  u ' 

tan 1 = - 

Expressions for the direction cosines of the body's axes Oxyz (relative to  the 
intermediate reference system OGIG2G3, connected with the vector G) in the el- 
liptical functions and integrals are: 

K 

d2-T-F b l l  = -' { d-sn ucosg + dl + dsn2  u 
K 

J2-T-P b2l = -' { d s s n  using - 
JI + Gsn2 u 

X 
b31 = d y e n  u, 

K 2 + X  

s n u d n u s i n g  , I Kdi7-2- 
d?TF cn u cosg - -1 

d1+ d s n 2  u 
b12 = 

s n u d n u c o s g  , I K d i T 2  
d F m  cn u s ing+  

-1 
J1+ Gsn2  u 

b22 = 

where 

-"(z, K 2 ,  A) - D(U?72 U ,  K 2 ,  
(1  + K ~ ) ( K ~  + X2) [ 2p1 x 

K x 

For the components and modulus of the angular velocity of the body we have 
following formulaet 

cn u, 
GX 

p =  A d 2 - T - F  
+Here we use the formal components of the angular velocity of a rigid body with moments of 

inertia A ,  B, C ,  but their values, for example in Earth's rotation theory, are very close to the real 
components of the angular velocity of the deformable body. 
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EARTH'S ROTATION 189 

The theory of the unperturbed motion includes in particular such important 
questions as the construction of Fourier series for different functions of the An- 
doyer variables (for example, for components of the angular velocity, for direction 
cosines bij ,  for their products and squares etc.). For the construction of similar 
series by Sadov (1970) and Barkin (1992) method based on the application of the 
apparatus of &functions of complex argument and on the theory of residues, was 
developed. 

The fourier series in angle-action variables for direction cosines b i j  are defined 
by the formulae (Sadov, 1970; Barkin, 1992): 

b22 = -7F J E 2  { sin[(2m + l ) c p l +  PZ] - sin[(2m + 1)pl - 'p2] 

21C $ + A 2  m=O ch[(2m + 1)d - u] ch[(2m + l ) d +  a] 
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Here the coefficients of the Fourier series are presented in terms of hyperbolic 
functions with arguments tcld + 6 2 6  ( K I ,  ~2 E N ) ,  where d and u are auxiliary 
arguments: 

TK’ d =  - 
2 K 
w 

u = -F(arctan 14, J1-21, 
2K x 

(32) 

(33) 

where K’ = IC(X’), A’ = d m ;  and F is incomplete elliptical integral of the first 
kind. 

The Fourier series for the components of the angular velocity p ,  q ,  r have a 
similar structure: 

On basis of formulae (31)-(34) a wide set of other formulae for the unperturbed 
motion are obtained; for example, the Fourier series for the derivatives of the direc- 
tion cosines and projections of the angular velocity with respect to  time (bij ,  I;, q ,  i ;  
Barkin, 1992); formulae for the directions cosines rij (and their derivatives rij) of 
the body’s axes relative to the main refernce system O X Y Z  etc. (Barkin, 1992). 

In this paper we shall use the Fourier series for the products and squares of 
the direction cosines bij  for the construction of the corresponding trigonometric 
development of the force function of the Newtonian attraction between the Earth 
and the Moon (also the Earth and Sun). 

The Fourier series for the products and squares of the direction cosines are given 
in the Appendix. Here we point only the structure of these series: 

where the developments are set out only in terms of sines or only in terms of cosines. 
The coefficients b$!!$:) are expressed through the parameters A, IC in terms of the 
complete elliptical integral of the first, second and third kinds I<, E and II, and of 
the hyperbolic functions of the arguments d and u (32), (33). 

Here we give only secular components of the series (35): 
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EARTH'S ROTATION 191 

Expressions (36) and the full series (35) are satisfied by known geometrical 
relations between the products and squares of the direction cosines (Barkin, 1992) .  

Similar Fourier series for canonical Andoyer variables are (Barkin, 1992):  

L =  

G =  

1 =  

9 =  

03 

(1 
X K  cos 2m991 

c h 2 m d  
G 

K W  m=o 

1 2 ,  H = I3 

sin 2 m p l  
m=l m c h ( 2 m d )  

sin 2 m p l  
m=l  m s h ( 2 m d )  

h = 993 

(600 = 1, hmO for m 2 1). 

+ 

TK(X') 
2 K ( X )  

2 K ( A )  x 

d =  - 

T K 
g=- F(arctan -,A') 

A' = JCF.  

(37) 
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192 Yu. V. BARKIN 

4 MAIN PROPERTIES OF CHANDLER MOTION. UNPERTURBED 
CHANDLER MOTION OF THE EARTH 

In this paragraph we shall consider the application of the Chandler unperturbed 
theory for the explanation of some properties of the Earth’s rotation. For this 
purpose we first define the principal dynamical parameters K ,  X, etc. 

Let us define the constant values of the moments of inertia A ,  B ,  C (12), 
corresponding to the reference system Ozyz (to the principal axes of the Earth for 
its underformed state). In practice, they are some average value of the moments of 
inertia A,  B and C ,  which can be calculated by the formulae: 

- - -  

where C20, C 2 2  are the coefficients of the geopotential in the principal axes of the 
Earth. On the basis of the model of the geopotential (SE 3) we found: 

C2o = -1082.6370 x 

C22 = 1.7711 x (40) 

(41) 

In (39) 
mR2 

C 
J=- = 3.024086 = (0.3306784)-l 

(where m and R are the Earth’s mass and radius). 
Here we took into account the fact that the principal Earth’s axis Ox has swiv- 

elled to the west by an angle 14.5” relative to the corresponding Greenwich’s axis. 
As a result for value g cm2 from (40), (41), (39) we obtain: = 8.110000 x 

- 
A = 8.083361 x 
B = 8.083535 x 

g cm2 
g cm2 

- 

We can see that c > B > and the axis Ox corresponds to the smaller of these 
moments. 

In this paper we shall use two values of the parameter D, (see Table 1) for 
the definition of the parameters K ,  X for Chandler’s motion. The first of them was 
obtained by Getino and Ferrandiz (1991): 

D, = -2.845379 x 1041 g cm2 (43) 

= 0.234178 x mR2 

(44) - = 0.708176 x 
C 

An other “empirical”va1ue for D, was obtained from the optimal correspondence 
of the theoretical Chandler period of the pole motion and its observational value: 

f 

D, = -2.623000 x 1041 g cm2 (45) 
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and (15), (41): 

&?- = 0.215876 
mR2 

(46) - = 0.652829. 
C 

We choose the initial conditions of the pole motion of the Earth’s axis on the 
basis of the observational data (Getino and Ferrandiz, 1991a): 

= 011252273 = 1.233054 x qo = 0 (47) 
PO 

at the moment of time 0.0 h 15 September 1990. 

(Barkin et al., 1995): 
For the modulus of the angular velocity of the Earth we have the following value 

(48) 
1 1 
S CY 

wo = 7.292115 x lod5- = 0.230117 x lo6-. 

For the initial values (47) and (48) and for the parameters (43), (45) the value 
of the principal parameters of the unperturbed motion K ’ ,  A’ were obtained as for 
Eulerian motion (for a rigid body, with the assumption D, = 0) and for Chandlerian 
motion (for values D, (43) and (45)). 

The Eulerian values were calculated by the formulae: 
-- 
C ( A  - z) 

K ; =  -- 
A ( B  - C) 

Their numerical value are: 

K; = 0.659639 x lo-’ 
A; = 0.980256 x lo-“. 

For Chandler motion the parameters K ’ ,  A2 are defined by the following formulae 
(see the Introduction) : 

-- 
(51) 

- C ( A  - B) - C(A - B) 
A(i - C) 

K z h  = (2 - 3 0 4 7 7  - c - 30,) 

The calculated values of the parameters (51), (52) and K & ,  X,h and many other 
geometrical and dynamical characteristics are presented in Table 1 in colomns CH I 
and CH I1 (for two variants of the above values of the parameter 0,). 
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Table 1. 
the Earth (E - Euler's motion; CH I and CH I1 - Chandlers motions) 

Main parameters and characteristics of the unperturbed rotational motion of 

Parameters E C H I  CH I I  

b 

W O  

Tch,min 
Tc h . rn ax 

0 
0 
8.083361 x 10'' g cm2 
8.083535 x 10'' g cm2 
8.110000 x 10'' g cm2 
0.021455 X 
3.284710 X 

3.263255 X 
0.659639 x 
0.980256 x 
0.812182 X lo-' 
0.990079 X lo-' 
0.080680 
Ol' 252273 

01'253104 

-3.285009 X 
0.996715 
304.413145d 
3.295534 X 

3.273938 X 

0.021596 X 

303.440957d 
305.442571d 
2.0016141 

1.223054 x 

1.227081 x 

1-0.743025 X 
1-0.747926 X 
0.490128 x lo-'' 

-2.845379 x 10" g cm2 
8.536137 x lo4' g cm2 
8.091897 x g c m 2  
8.092071 x 10'' g cm2 
8.110000 x lo4' g cm2 
0.021273 X 
0.002232 
0.002211 
0.964274 x lo-' 
1.442481 X lo-'' 
0.981975 x lo-' 
1.201033 X lo-' 
0.097514 
0:'252273 
1.223054 X 

01.1253486 

-2.226285 X 
0.997774 
449.178794d 
2.237267 X 

2.215899 x lov3 
0.021368 x 
446.973919d 
451.284106d 
4.310187d 

14.747961 x lo-'' 
1-0.755173 x 
0.721241 x lo-'' 

1.228937 x 

-2.623 X lo4' g cm2 
7.8700 x lo4' g crn2 
8.091231 x 10'' g cm2 
8.091405 x 10'' g cm2 
8.110000 x 10'' g cm2 
0.0000213 
0.002314 
0.002293 

1.386506 X lo-'' 

1.177500 X lo-' 
0.095835 
Oy252273 

OV253445 
1.228735 X l ov6  
-2.308643 X 
0.997691 
433.154906d 
2.309046 x 
2.287742 X 

0.021304 X low3 
433.079392 d 
437.112226d 
4.032845d 

0.931200 x lo-' 

0.964987 x 10-1 

1.223054 x 

1-0.744473 X 

1-0.751406 X 

0.693253 x lo-'' 

Main Properties of Chandler Motion (with Application to the Earth) 

As a result of the analysis of the formulae for unperturbed rotation motion given 
in the Introduction the following properties were established (Barkin, 1992): 

(1) The geodograph of the projection of the angular velocity G on the plane 
parallel of the equatorial plane Osy is an ellipse with semiaxes 

and with eccentricity 
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X 

Principal Greenwich 
Earth's axis meridian 

Figure 1 Chandler motion of the Earth's pole. 

The minor axis of this ellipse corresponds to  the smaller moment of inertia A, 
and the major axis to  the bigger moment of inertia of the equatorial moments 
(B) .  The semiaxes a ,  b (Figure 1) are defined by the initial conditions of the 
problem: 

(2) The motion of the end of the projection G along this ellipse takes place in a 
straight direction (121 < 0 for C > B > A, 0 < X2 < 1) with variable velocity 
i. The maximal value of the modulus of this velocity is 

and takes place at the moments of the passing of the minor axis of the ellipse 
(at the points 9, P2 in Figure l), and the minimal value of the Ill 
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196 Yu. V. BARKIN 

takes place at  the moments of the passing of the major axis of the ellipse at  
the point P3, P4 in Figure 1). The difference of these velocities is 

The corresponding extremal values of the periods for the velocities (55), (56) 
are: 

27r - 27r B d m  T,,, = - - - 
l i lmin WO (C - B )  K(1 - X Z )  

The difference of these periods is defined by the formulae: 

(3) The averaged values of the components of the angular velocity W are defined 
by the formulae: 

(4) The modulus of the angular velocity is a periodic function of time with semi- 
Chandler period: 

GK 

The extremal values w,,, and wmin are achived at  the moments when the 
vector W is situated in the reference planes 0 x 2  and Oyz of the coordinate 
system Oxyz, respectively: 
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The external values of the projection of the vector G on 
inertia of the Earth Oz are defined by the formulae: 

197 

the polar axis of 

These values are achieved when the vector G is situated in the coordinate 
planes 0 x 2  and Oyt ,  respectively. 

Here 

(67) 
AL Lmax-Lmin - K X 2  

G G - d r n ( l +  Ji=TJ* 
-- - 

The corresponding extermal values of the angle 0 between the vector G and 
the axis of the body Oz are defined by the formulae: 

Omax = arccos 

(&) Bmin = arccos 

The parameter X is considered as the conditional excentricity of the phase 
curves of the Chandler problem on the phase plane of the Andoyer variables 
L, 1 (Barkin, 1992): 

(69) 

The extremal values of the velocity L are 

and 

The direction cosines of the body bij  (31) (in the intermediate coordinate 
system, connected with the angular moment E) are conditionally periodic 
functions of the variables (PI , cpz with frequencies: 
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198 Yu. V. BARKIN 

The frequency n1 gives the Chandler motion of the Earth’s pole with period 

and the frequency 122 is the mean angular velocity of the change of the variable 
g. The corresponding period is: 

The above formulated properties of the unperturbed rotational motion take place 

In the case of the Earth the pa.rameter X has a very small value (- 
for arbitrary values of the parameters K’ > 0 and 0 < X2 < 1. 

which is why for the above dynamical and kinematical characteristics we obtain the 
corresponding approximate formulae (saving only the main terms with respect X in 
their development). We have: 

AL 1 
- = - A 2  
G 2  

27r B 
Tch,min = - 

wo ( C -  B ) ’  
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In Table 1 we present the values of the parameters (76) for three variants of the 
unperturbed rotational motion of the Earth: 

(1) for Euler’s motion (column E ) ;  

(columns CH I and CH 11). 
(2), (3) for Chandler’s motion for two possible values of the elastic parameter D, 

5 THE EQUATIONS OF THE PERTURBED ROTATIONAL MOTION OF A 
DEFORMABLE BODY 

In accordance with Hamilton-Jacobi method the equations in the angle-action vari- 
ables I i ,  ‘pi will be canonical with Hamiltonian 3-1 = 3-10 + Xi: 

where the unperturbed Hamiltonian (17) 3-10 in angle-action variables is defined as 
(Sadov, 1970; Barkin, 1992): 

Here X is a function of the variables I 2 ,  I3 (24)’ (25). The perturbation function 
7-ll = 3-1 - must be represented as a function of the angle-action variables by 
using a wide list of formulae of the unperturbed Chandler motion (Barkin, 1992). 

In this paper we shall give the full solution of the problem of the calculation of 
the first-order perturbation in the rotational motion of the deformable body caused 
by the second harmonic of the force function of the perturbing body. We shall 
also give some applications of our method for the analysis of secular and periodic 
perturbations in the Earth’s rotation due to the attraction of the Moon and the 
Sun. 

For this purpose we shall obtain a trigonometric development of the force func- 
tion of the Earth-Moon system (and the Earth-Sun system) in angle-action vari- 
ables (see Section 2). 

Equations (77) let us use different and effective mathematical methods for the 
investigation (for example based on canonical transformations), but here we shall 
use the non-canonical form of equations in the variables: 

G = 1 2 ,  X = X ( 1 1 / 1 2 ) ,  

The corresponding equations 

d G  - 83-11 
d t  all 
- - -- 

p = p ( I 3 / 1 2 ) ,  (0 = ‘pi, 4 = 9 2 1  h = ‘f3. (79) 

were obtained by Barkin (1992): 
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where we use special functions from the theory of the unperturbed motion: 

G! and w are frequencies of the unperturbed Chandler motion: 

Of course, for analytical investigations we must have as an explicit function 
of the variables (79) and time, for example, in the form of the Fourier series: 

Saving on the right-hand sides of equations (4), (80)-(85) only the terms RE 
and U ,  which describe the influence of the movement of the ecliptical plane E and 
the Newtonian influence of the Moon's and Sun's attraction on the Earth's rotation, 
we obtained the following form of the equations of the rotational motion: 

d n l  1 au 1 dU 
dt  G a$ G ah = sinT1 sin(h - 111)- + cos(h - II1)% + - cot p -  - - csc p -  

1 dU 
(P = R(G, A) + -- 

GJ(X)  ax 

dt 
d n  1 
dt 

4 = w(G, A) + csc p sinII1 cos(h - Hi)- - sin(h - n,)- 
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A(X) dU 1 dU - - cot p- 
GJ(X) OX G dp 

dt 
dIIl 
dt 

dHl 
dt 

h = ( 1  - cos7rl)- - cot p sin7r1 cos(h - I I 1 ) -  - sin(h - II1)- 

1 dU + - csc p- 
G dP 

where 
u = V(X, P, ‘p, 4,  h , t )  

and the angles T I ,  II1 are defined by formulae ( 3 ) .  

6 DEVELOPMENT OF THE SECOND HARMONIC OF THE FORCE 

VARIABLES 
FUNCTION FOR THE EARTH-MOON SYSTEM IN THE ANGLE-ACTION 

In this paper we shall concentrate our attention on the study of the perturbations in 
the Earth’s rotation due to  the second harmonic of the force function for Newtonian 
attraction of the Moon (and the Sun): 

fmL 
2r3 

U =  - ( A + B + C - 3 1 ) .  

Here f is the gravitational constant, mL is the Moon’s mass, r is the distance 
between the centres of mass Oe (the Earth) and OL (the Moon). I is the moment 
of inertia of the Earth about the line OeOt passing through the mass centres: 

I = A&: + Bai + Cai  - Fala2  - E a l a 3  - Da2a3 (89) 

where A, B ,  C and F, E ,  D are axial and centrifugal components of the inertia tensor 
of the Earth with respect to reference system Oexyz; a 1 a ~  and a3 are cosines of 
the angles which the line O ~ O L  forms with the body’s axes Oex,  Oey and Oez.  

Let r ,  ‘p, X be the spherical coordinates of the mass centre of the Moon relative 
to the geocentric ecliptic coordinate system O e X Y Z  of the data. We shall relate 
the Andoyer variables to our reference system. 

On the basis of the simple geometrical relations for direction cosines we obtain: 

ai = [ b l i  cos(X - h)  + bzi cospsin(X - h )  - b3i sinpsin(X - h)  cosp 

(90) + (baa sin p + b3i cos p) sin ‘p 

where bij  are the direction cosines of the axes Oexyz relative to  the intermediate 
coordinate system, which is connected with the vector of the angular moment E .  

For our unperturbed motion these direction cosines are defined by formulae 
(27 ) ,  (28) (in terms of elliptic functions) or by formulae (31) - (33)  (in the form of 
the Fourier series in angle-action variables). 
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In this paper we shall consider only the main perturbations in the rotation 
caused by the constant parts of the tensor inertia components, assuming that 

A = Z ,  B = B , C = C ,  F = E = D = O .  (91) 

For squares of the direction cosines cq, we have the following expressions: 

1 
2 
1 
2 

I.; = -(bfi + b2i cos2 p + b& sin2 p - 2b2ib3i cos p)  cos2 p 

+ -(bsi  - b;i cos’ p - b& sin2 p + 2b2ib3i cos p)  cos’ ‘p cos 2(X - h)  

+ (blibzicosp- b1ib3isinp)cos2~sin2(A - h )  
+ (b;i sin’ p + b2ib3i sin 2p  + b& cos2 p )  sin2 ‘p 

+ 2(blib~isinp- b1ib3icos~)sin~cos’pcos(A - h)  
+ [(b;i - bi i )  sin 2p + 2b2ib3i cos 2p] sin ‘p cos ‘p sin(A - h) .  (92) 

The spherical coordinates of the perturbing body (the Moon) in the ecliptic 
coordinate system O ~ X E Y E Z E  are represented as known trigonometric series. From 
the standpoint of the averaging method, A, = A-h, which appears in the disturbing 
function, can be considered to be the longitude referred to the mean equinox of the 
data and the ecliptic of the data. 

For presentation of the coordinates A,,y and T of the disturbing bodies (the 
Moon and the Sun) on the basis of Brown’s (1919) theory and Newcomb’s (1895) 
theory, in this paper we shall follow Kinoshita (1992). In particular we shall use Ki- 
noshita’s developments in Poinsot series for the following functions of the spherical 
coordinates of the perturbing body: 

1 a 3  - (-) (1 - 3 sin2 ’p> = c ALO) cos 0, 
2 r  

(p) sin p cos p sin A, = c ~ $ 1 )  cos 0, 

(p) sin ‘p cos ‘p cos A, = C $) sin 0, 

v 

U 

v 
3 (;) COS’ $9 cos 2A, = c A?) cos 0, 

3 ( p) cos’ ‘p sin 2 ~ ,  = c 2’ sin 0, 
Y 

where 

(93) 

0, = i l I ~  + ill0 + i3F + i4D+ i5fl 
i = i l ,  iz, i 3 ,  i 4 ,  i5 

k~ = the mean anomaly of the Moon 
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1, = the mean anomaly of the Sun 

R = the mean longitude of the node of the Moon 
E L  = the mean longitude of the Moon 

F = LL - R,  D = LL - La 

La = the mean longitude of the Sun 

i5 2 0. (94) 
The longitude h” of the plane normal to the angular momentum is included in 

R in the form Ro - h* (Kinoshita, 1992). From additional terms due to  long-period 
and planetary perturbations only four terms, which were densed by Woolard, should 
be added to the right-hand sides of equations (93), (94). The coefficients 

A?) = A$! + AElt (95) 

in which t is measured in Julian centuries from 1900. Numerical values of A$ and 
A$! 95 that produce nutational terms with amplitudes 5 O l ‘ O O O l  were given by 
Kinoshita (1972) (Table 1). 

Kinoshita pointed out an important property of the trigonometric series (93): 

With the help of formulae (92), (93) we obtain the following development: 
3 (9) a: = C ( b t  Rg2 + b& Rg3 + bzib3; Rg3) cos 0, 

lI4lW 
+ (blibziR7, + biib3iRY3) sin 0, 

where Rrj are functions only of the inclination p: 

1 
2 
1 
2 
1 
2 

R;z = -A;’) sin2 p - -( 1 + COS’ p)A(,2) + A?) sin 2p 

Rg3 = -A:) COS’ p - -( 1 + sin2 p)Ay) - Ail) sin 2p 

R;3 = -A:) sin 2p + -At2) sin 2p + 2A?) cos 2p 

R’;~ = A?) cos p - 2 sin p ~ ( , ~ )  
Ry3 = -A?) sin p - 2 cos PAP). 

For the force function U we have following expression: 

where n2 = f r n ~ / a ~ ,  a is the mean semi-major axis of the Moon’s orbit, and 
- 
A - C  6 = - > 0  
A - B  

(97) 

(99) 
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From the theory of unperturbed rotational motion we have the Fourier series in 
angle-action variables I;,pi for the products and squares of the direction cosines 
(see Appendix, and Barkin, 1992). On the basis of these formulae we have the 
following series: 

00 

b L  + 6% = C {A2m,-2 cos 2(mpi - pz) + A Z ~ , ~  cos 2 (mpl+  p2) 
m = l  

+ A2m,0 cos 2mp1) + Ao,z cos 2mp2 + Ao,o; 
00 

GZ + 56;s = C {-2A2m,0 cos 2mp1) + Bo,o; 
m = l  
00 

b22b32 + 6323633 = C { c Z ~ , - I  cos(2mpl - pz) + C2m,l ~ 0 ~ ( 2 m p l +  pz)) 
m=1 

+ COJ cosp2; 
00 

b12b22 + 6bi3bz3 = C {Azm,-z sin 2(mpi - p 2 )  - Azm,2 sin 2(mpl + pz)} 
m=l 

- AOJ sin 2p2; 
00 

b12b32 + 6bi3b33 = C {czm,-i sin(2mpl- pz) - czm,l sin(2rnpl+ Cpz)} 
m=l 

- C O , ~  sin p2. (101) 

For the coefficients of the series (101) we obtain an expressions in the following 
compact form in terms of elliptical integrals: 

m ( D  - 1) - 2€P 
A2m12E = sh 2(md - &a) 

P 
sh (2a) A0,2 = 2Q- 

2QP COJ = - ch a 
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where E = f l ,  

7r2(1+ 2) 
= 4K2(IC2 + A2 

- 
SIC’ A - C C  D=-- 

1 + K 2  - ;T-BB 
For secular terms Ao,o and Bo,o in (101) we have the formulae: 

(1 + I C ~ ) ( K  - E )  + SIC’E 
I < ( K 2  + A’) Bo,o = 

Bo,o = -2A0,o + 1 + 6. (104) 
Substituting formulae (101), (102) in (96) we obtain the final trigonometric 

development of the force function U in angle-action variables: 

u = c c U v ; k l , k a ( A l  p)  C O S ( @ V  4- Hipi + h p z )  (105) 
IIyll20 k i  ks 

where the indexes kl  = 0, f 2 m ;  k2 = 0 ,  f 2 ;  m = 1 , 2 , .  . .; the coefficients Uv;kz,kz 
are defened by the formulae: 

3 

3 
U u ; 2 E m , 2 p  = znz(x - B ) A Z m , 2 c p R u ; 2 p  

U u ; Z s m , p  = p2(z - B ) C 2 m , s p R u ; p  

U u ; 2 a m , O  = -n ( A  - B ) C Z ~ , ~ R ~ ; O  3 2 -  
2 
3 

3 

U.;O,~ = T n 2 ( x  - B)Co,lR,;, 

Uu;o ,zp  = 2 n 2 ( x  - B)A0,2&;2N 

where 
1 
2 ”  

Rv iZp  = -A?) sin2 p + 2 sin ~ ( C O S  p - p)A$’) - -A(’)( 1 - p cos p)2 
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RUip = -A$”) sin 2 p  + 2( -1 - p cos p + 2 cos’ p)AL1) + sin p(cos p - p)AL’) 

RU;o = -A$”)( 1 - 3 cos’ p )  + 3 sin 2pAL’) + - sin2 PAL’). (107) 
3 
2 

We shall use the development of the second harmonic of the force function (105)- 
(107) in angle-action variables for the construction of the perturbed theory of the 
Earth’s rotation and, in particular, for the analysis of the main secular perturbations 
and effects in the precession and Chandler’s motion of the Earth. 

7 SECULAR PERTURBATIONS 

Differential equations for secular perturbations are obtained by averaging the right 
sides of the equations (86), (87) on all fast variables of the problem: 

G = 0 ,  x = 0  
dHl  d n l  p = sin n1 sin(h - 111)- + cos(h - n,)- 
dt dt 

dt 
d n l  
dt 

$ = w ( G ,  A) + csc p s i n n l  cos(h - HI)--- - sin(h - Il l)-  

A(X) 1 -cot p- 
GJ(X) 8X G a p  

dt 
d n l  
dt 

d n l  h = (1 - cosn1)- - c o t p  sinnl cos(h - II1)- - sin(h - II1)- 
dt 

where ( U )  is the average value of the force function (105)-(107): 

( U )  = -n 1 2 -  ( A  - B)(l+ 6 - 3Bo,o)Ro,o 
4 
(1 + ~’) (1< - E )  + ~ K ’ E  

I < ( K 2  + x2 Bo,o = 

3 
2 

Ro,o = -A?)( 1 - 3 cos2 p )  + 3 sin 2pAt) + - sin2 PAC) 

Numerical values of the coefficients are 

A(’) = 4963033 x 
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and the angles ~ 1 ,  I I 1  are defined as functions of time by formulae (3). 
The solutions of these equations can be found in the form of series with respect 

degrees of time. 
However, in this paper we shall analyse only secular perturbations of first order 

in the body rotation due to the Newtonian attraction of the Moon (and the Sun). 
These perturbations by constant values of the variables G, A, p are defined by the 
formulae: 

’ 1 d ( U )  (h)  = csc p -  
a p  

1 (+) = -- 
GJ(X) aX 

On the basis of these relations we obtain the following equations: 

($> = -A(A)(d) - cosp(h) 

($ + +) = (1 - A(X))(@) - cosp(h). (113) 

Substituting expression (17) (109)-(111) in the right sides (112), after some 
algebra, we obtain the following expressions for the secular velocities (+) and ( h ) :  

x [ ( - A r )  + :A?)) cos p + cos 2p csc pAo “‘I 
where 

A11 = X’2[X2(6%2 + 14- K ’ )  + t c 2 ( 6 K 2  - 1 - .”I 

A22 = (1  + K’ - S K ~ ) ( K ~  + A’). 
A12 = 2X‘2~2(6r;2 - 1 - K ’ )  

(115) 

Formulae (114)’ (115) and (113) define the secular effects on the rotation of the 
body in the case of arbitary values of the parameter 0 < X2 < 1. However, in the 
case of the Earth the parameter X 1: is small. Therefore, here we also obtain 
simplified formulae for perturbations (113)’ (114) saving only the main terms. 

So the approximate averaging value of the force function is 

( U ) = - n 2 ( X - B ) ( 1 - 2 6 )  1 Ro,o (116) 
4 
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and for the functions J(X), h(X): 

J(X) = K 2  (1 + X2 (+ - &)) 
m h(X) = 1 - X2 2K2 ‘ 

Neglecting small terms for the secular velocities (114) we obtain the following 
reduced formulae: 

(+> = 

(h)  = 

X 

3 - n 2 ( Z - B ) ( l - 2 s )  2G 1 - 2s 

[ ( -A?)  + ;A?)) cos p + cos 2p csc pA, “‘I 
For corresponding values of the velocities (4 + +), (4) we have expressions: 

(cp) - cosp(h). ( 2K2 
(6) = - 1 + x 2  

From these formulae it follows that the values of the velocity ( d )  for Eulerian 
motion (for K = KE) and for Chandlerian motion (for K = ~ = h )  are different, but for 
the velocities ( h ) ,  ($), (G++) similar differences are small (of the order 5 - 
from main values). 

8 FIRST-ORDER PERTURBATIONS 

By setting 
perturbed rotation of the Earth: 

0 from equations (80) we obtain the solution describing the un- 

G = G o ,  p = p o ,  X = X o  

P =  GO, X o ) t  + PO, $ =  GO, x o ) t  + $0, h = ho (121) 

(122) 
where 

Go, Po, xo, Po, $0, ho 
are initial conditions of the problem. 

In this paper we will obtain only analytical formulae for perturbations of the 
first order in the Earth’s rotation. Therefore, the numerical values of the initial 
conditions (122) are omitted here. 
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The first-order periodic perturbations in the Earth’s rotation caused by the 
Moon’s attraction are defined by the integrals: 

where the indexes k l  = 0, f 2 m ;  k2 = 0,&2; m = 1’2 , .  . .; and the coefficients 
U u ; k l , k z  are defined by formulae (102)’ (103). 

The variables on the right-hand sides of equations (123) and the expressions 
under the integral are taken $0 be unperturbed values. Also we save only periodic 
terms in these expressions under integral. 

The results of the calculation of integrals (123)’ (124) are finally obtained by the 
following expressions for first-order perturbations in the Earth’s rotation caused by 
Moon’s (Sun’s) attraction: 

where 
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After some algebra we obtain the following set of formulae for derivatives of the 

The derivatives of the frequencies Q,w with respect to  X and G are: 
frequencies Q,w and of the coefficients U v ; k l , k z .  

C - A K, [-Xr2n2K + + X2)E] 
AC d m  I P X X ‘ 2 ( ~ 2 +  A2)3/2 

C - A [X21CE + K,’X’~IIK - (ti? + X2)IIE] 
AC I C 2 X X r 2 ( K 2  + A’) 

aw - - -  
G’ a G -  c‘ 

Here K ,  E and II are elliptic full integrals of the first, second and third kinds. 
The derivatives of the coefficients U u ; k l , k 2  are: 

where 

RL;2p = -A(,O)sin2p+ 2(cos2p-pcosp)A(,1) - AF)( l  - pcosp)psinp 

RLiP = -2A(,O) cos 2p + 2(p sin p - sin 2p)A(,1) + (cos 2p - p cos p)AF) 
3 = (-3Ap) + -A;’)) 2 sin 2p + 6A;’) cos 2p. (129) 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
15

:3
6 

12
 D

ec
em

be
r 2

00
7 

EARTH’S ROTATION 211 

The derivatives *. 

where 

- tanh u u ~ }  x C0,l; 

I 1 aP 
dX Q ax P aX = { 1% + -- - 2 coth (2a)ax x A,,,’; 

Here 

All = X’2[X2(1 + K’ + 6 ~ ’ )  + K ’ ( ~ K ’  - 1 - K’)]  

A12 = ~ X ” K ’ ( ~ K ’  - 1 - K’)  

A22 = (1 + K’ - SK’)(K’ + A’). 

For our unperturbed motion (see the Introduction) 

u = --F(arctan ?r -,A‘) IF, 
2 K X 
?r K‘ d = -  
2 IC 
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and for their derivatives relative to  X in (131) (ox, d x )  we found the following rep- 
resentation: 

where A0 is the lambda function, 

and 

1 
A0 = --[F(n, X)(E(X) - I ( (A))  + K(X)E(n ,  A)] 

K 
n = arctan - x 

(in the last formula we used Legandre’s relation). 
For the derivatives of P and Q in (131) we have the following formulae: 

9- ?r2(1+ K 2  [ X ’ 2 K 2 K  - E ( K 2  + P ) ]  
ax 2 1 1 ‘ 3 ( ~ 2  + x 2 ) 2  XX’2  

aM1 aiw3 aP 
aX ax ax 

ax 5 7 K ~ ~ 2 ~ ~  

ax 

- 

- D--- - -  

dM1 - X4-E - - 

aiw3 - K ( K X ~  - EX‘2) - - 
Txx/2,/(i + K 2 ) ( K 2  + x 2 ) .  

9 CONCLUDING REMARKS 

(1) A new method of the construction of the theory of rotational motion for a 
weakly deformable body was proposed. The basis of this method is a new 
unperturbed rotational motion (Chandler motion) and angle-action variables. 
We reduced the unperturbed problem to the Euler-Poinsot problem for a rigid 
body with special moments of inertia. 

(2) The development of the force function of the problem about the perturbed 
Earth rotation was obtained in angle-action variables. 

(3) In the Earth’s rotation the following phenomena were described: 

(a) Chandler’s direct motion of the pole of the Earth; 
(b) ellipticity of the trajectory of the Earth’s pole; 
(c) non-uniformity of the pole motion along are elliptical trajectory. 

(4) Explicit formulae for first-order perturbations due to the force function of the 
Earth-Moon system were obtained (secular and periodic effects). 
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All the results of this paper are presented in analytical form and are applicable 
for the study of Solar system bodies (Venus, the asteroids (in particular, for double 
asteroids), satellites with irregular forms, comet’s cores, etc.). 

The initial version of this analytical theory (for rigid body) was accepted at  the 
ASS/AIAA Astrodynamics Conference in 1993 (Barkin, 1993). An improvement of 
the theory, to include the elastic properties of the body, were taken into account, 
and this was influenced by the well-known Getino, Ferrandiz papers (1990, 1991a). 
This was reflected in the joint paper (Barkin et  al., 1995) and also in the report 
(Barkin, 1996). 
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Appendiz .  Fourier Series For Products And Squares Of The Direction Cosines b i j  

1.  

2 m  +- 
c h  ( 2 m d )  

3. 

+- 2 m  c o s 2 m v I l  + 2 ~ 3  (1.2;l.Z) 
s h  ( 2 m d )  s h  ( 2 0 )  

4. 

2M4 +- sh ( 2 u )  sin 2v2 
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cos2m(pl + - 
sh (2a) I 2M4 

2m 
sh 2md 

-- 

11. 

12. 

2m +- ch (2md) sin 2mv1] + ch(2u) sin 2q2}, 

15. 

2m +- sh (2md) 
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17. 

18. 

19. 

20. 

21. 

cos2mcpl + - cosZcp2) + bcg'2'3), 1 s h  2M1 (2u)  

2m 
sh (2md) 

-___ 

+--inn , 
2M3 s h  a I 

24. 
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25. 

26. 

27 

28. 

29. 

30. 

31. 

32. 

33. 
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34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 
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43. 

219 

45. 

where - 
7rn\/l+2- 

[n(l+ 2) - K ]  

The secular components of the products and squares of the direction cosines are defined by 
(36). 


