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The condensation mode of thermal instability is studied as a possible mechanism of interstel- 
lar cloud formation. It is shown that perturbations with characteristic dynamical time smaller 
than the cooling time evolve to develop hydrodynamid motions corresponding in genera to 
the acoustic mode which prevents p&UrbStiOniI to condense quietly into clouds. The Condensa- 
tion mode is &own to be driven by t h e d  instability for a special choice of initial conditions 
for hydrodynamic variables. Perturbations of sufficiently large wavelength are shown to evolve 
to a dynamical state llimilsr to the condensation mode indepemdently of the form of the initial 
perturbations. P d b l e  applications to the interstellar gas and the gacl of cooling flows are indi- 
cated. 

KEY WORDS Thermal instability, interstellar clouds 

1 INTRODUCTION 

Thermal instability is assumed to be one of the basic mechanisms which causes the 
interstellar gas (ISG) to be transformed into a multiphase state (Field, 1965; Pikel- 
ner, 1967; Field et al., 1969). The basic idea is that under appropriate conditions 
thermal instability drives a monophase homogeneous medium to be separated into 
two components, viz. clouds and intercloud gas, which are in pressure equilibrium 
with each other. Field (1965) argued that the condensation mode of thermal in- 
stability which corresponds to quietly evolving isobaric perturbations governs such 
a phase transition. Qualitative physical understanding of this mechanism can be 
obtained from a simplified description of the energy balance in a given volume of 
the ISG. Assuming initial perturbations to be isobaric (6P o( 6(pT) = 0), and 
perturbed hydrodynamical motions subsonic (v  << c) one can write for small tem- 
perature perturbations 6T: 
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R d6T dL -- = -(7 - 1) (-) 6T, 
P dt W P  

where L = L(p ,  T )  = pL(T)-GI is the generalized cooling function, G is the heating 
rate by an external energy source (e.g., cosmic rays or X-rays) which is assumed 
to be independent of temperature and density, c is the sound speed, R is the gas 
constant, p is the effective molecular mass; the other symbols have the common 
meaning. Therefore, small perturbations are unstable when 

< 0, or equivalenty T 

This relation has a clear meaning: for isobaric perturbations, 6T/T = -6p/p, in- 
crease in density leads to larger radiative energy losses, and thus, if the temperature 
dependence of the cooling function C ( T )  is sufficiently weak, a depression of cooliiig 
rate due to the decrease in temperature is unable to balance these losses. As a 
result, the gas continues to cool progressively. 

A comprehensive, rigorous study of thermal instability given by Field (1965) 
showed that the growth rate of the condensation mode is equal exactly to n = 
-p(7- l ) (aL/W)p/R which appeares on the r.h.s. of the approximate equation (1) 
in the short-wavelength limit X/c < TR, where TR is the cooling time TR = IL/T(-’. 
This provoked an understanding that short-wavelength perturbations always de- 
velop to create the condensation (isobaric) mode. Simple arguments implying that 
in the short-wavelength limit a perturbation is forced to relax to a state with ho- 
mogeneous pressure distribution within the shortest, acoustic time TA = X/c, are 
usually invoked to motivate such a suggestion (Sasorov, 1988, Meerson, 1989). In 
the framework of this approach Meerson (1989) developed a technique to  reduce hy- 
drodynamical equations of a radiatively cooling gas in an 1D case to a more useful 
form similar to the Fisher-Kolmogorov-Petrovsky-Piskunov equation. Evidently, 
this reduced form is very promising for studying the dynamics of mass exchange 
between different phases of the ISG (Zeldovich and Pikelner, 1969, Doroslikevich 
and Zeldovich, 1981, McKee and Begelman, 1990) and pattern formation during the 
phase separation in a thermally unstable medium with constant pressure (Elphick 
ef al., 1991). However, this form has a restricted validity connected with a tendency 
of an arbitrary initial acoustic perturbation to break, in general, into two diverging 
waves which leave the region where they were originally located. In this paper we 
concentrate on the question as to how the dynamics of perturbations in a thermally 
unstable gaseous medium depends on the form of initial conditions. Thus, the aim 
of the paper is to outline a range of physical parameters and a class of initial condi- 
tions for which a reduced form of hydrodynamical equations corresponding to the 
isobaric approach is valid. 

We present the basic equations and qualitative analysis of the problem in Sec- 
tion 2, and show typical numerical examples which clarify our arguments in Sec- 
tion 3. Section 4 contains a summary. 
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2 EQUATIONS AND QUALITATIVE ARGUMENTS 

2.1 Basic Equations 

The basic equations governing dynamics of a radiatively cooling gas were originally 
proposed by Field (1965): 

aP a - + - (pv)  = 0, at ax 

p ( Z  -++- i:) + - - 0 ,  : (3) 

R 
P 

P - - p T = O ,  ( 5 )  

where K is the thermal conductivity. For the sake of simplicity, we assume here 
implicitly the fractional ionizations of different coolants to be constants or given 
functions of temperature. Such an assumption allows us to omit additional equa- 
tions of ionization equilibrium. The cooling rate L(T) was accepted to reproduce 
qualitatively a conventional cooling rate of the ISG in the range T = 30 - lo4 K, 
with two thermally stable parts at  T N lo2 K and T - lo4 K, and quite flat, ther- 
mally unstable part in the intermediate range. For such cooling rate the effective 
equation of state P(p)  has two stable equilibrium points. 

2.2 Arguments Based on Linear Theory 

Solving the initial-value problem for the linearized equations (2)-(5) one can obtain 
the following equation for pressure perturbations (see Kryzhevsky and Shchekinov, 
1995, hereafter KS for details) 

where pj are the roots of the characteristic equation for the linearized system (2)- 
(5 ) ,  p i  corresponds to the condensation mode, while p2,3 to the acoustic ones (Field, 
1965), p c  = (7 - l)po(,C - T o C ~ / p o ) / c ~  is the growth rate of the condensation mode 
in the short-wavelength limit (note that lp2,31 - kco >> p c  in this limit); subscript 
0 refers to the unperturbed state, while superscript 0 denotes perturbations a t  the 
initial moment. 
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Let us consider for simplicity a particular case with 6u0 = 0. In this case the 
solution for the short-wavelength limit is 

p26P0 - pcc&5po P36P0 - P e C 3 P 0  e p s t  + epa' + 1 

P2 - P3 P3 - P2 

where the limiting value p1 = pc  was aceepted. It is clearly seen from this equation 
that perturbations with 6P0 = 0 remain isobaric to within c = pC/kco  << 1 at linear 
stages. At the same time, those perturbations which are far from being isobaric ini- 
tially, 6P0 # 0, evolve to remain nonisobaric. Numerical studies demonstate that 
such a regime is also present a t  nonlinear evolutionary stages. This result is not 
unexpected. The short-wavelength limit, TA << rk, implies that an arbitrary hy- 
drodynamical perturbation tends to  decay into diverging wave motions on the time 
scale sufficiently smaller than the time needed for this perturbation to feel effects 
connected with radiative energy losses. Moreover, in the limiting case T A / T R  = 0 
(which coincides with t E 0) radiative losses do not affect the dynamics of pertur- 
bations. Therefore, we can conclude from these qualitative arguments that in the 
short-wavelength limit perturbations of hydrodynamical variables can evolve to  set 
in a condensation regime only for a special class of initial conditions corresponding 
exactly to isobaric perturbations. 

3 NUMERICAL EXAMPLES 

To illustrate this conclusion we show here two numerical models which follow the 
evolution of perturbations from initial linear state to final asymptotic behaviour 
being linear or nonlinear depending on the form of initial conditions. In numerical 
simulations, we used a code developed by Kovalenko (1996). 

To make presentation more clear we use dimensionless variables with length, 
time and velocity normalized, respectively, by the initial size X of a perturbation, 
the dynamical time TA = X / C O  and the sound speed C O ;  the initial perturbation is 
assumed to be localized; hydrodynamical variables p, P and T are normalized by 
their unperturbed values. In these units cooling time is equal to TR = c-'. The 
characteristic size of the perturbation X was accepted to be larger than the Field 
length XF - d e ,  which is a spatial scale on which radiative losses or 
external heating are in balance with the conductive heat exchange (Field, 1965; 
Begelman and McKee, 1990). In a thermally unstable medium, perturbations with 
X > XF evolve predominantly to grow, while those with X < XF predominantly 
decay. 

Figures 1 and 2 demonstrate evolution of localized perturbations of two different 
types, namely isobaric (at the initial moment) perturbations in the first case (Fig- 
ure l ) ,  and acoustic ones in the second case (Figure 2). The unperturbed state of a 
system was assumed to be marginally stable with respect to the condensation mode, 
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which means that at this state L, - T o L ~ / p o  = 0. In other words, the unperturbed 
system was a t  the upper stable point on the effective equation of state P = P ( p )  
where dP/dp = 0, and therefore, positive 6po moves gas into the unstable region 
with dP/dp  < 0. However, at the initial time the growth rate of linear perturbations 
is equal to zero, and thus even for sufficiently large initial amplitude the instability 
develops on a time scale larger than TR: in the particular case shown in Figure 1 it 
requires 2~ 5TR. 

Perturbations of the isobaric type (Figure 1) are readily seen to be unable to 
generate considerable pressure gradients and highly developed hydrodynamical mo- 
tions: asymptotically, the characteristic velocity reaches the value u = o ( ~ )  (KS). 
As a result, the perturbation remains localized near the region occupied initially. 

Perturbations of the acoustic type (Figure 2), contrary to the isobaric ones 
6vo # 0, generate pressure gradient on the short (acoustic) time scale TA, which in 
turn initiates a decay of the initial perturbation into two diverging waves. Radiative 
losses lead in this case to a decrease in the amplitude of the perturbations since, in 
the short-wavelength limit, perturbations of acoustic (i.e., nonisobaric) type fade in 
linear theory (Field, 1965). At  the same time, perturbations remain far from being 
evolved to the condensation (isobaric) mode. This is in accordance with qualitative 
considerations given above. 

Perturbations of the acoustic type with comparable dynamical and radiative 
times TA 5 TR evolve to develop the condensation (isobaric) mode contrary to the 
short-wavelength case. This is clearly seen in Figure 3 which shows a model with 
c = 3. This is in accordance with an expectation that in this case radiative losses 
are efficient to reduce an excess in pressure in the region occupied by the perturbed 
gas: the decrease of temperature and pressure due to radiative losses is estimated 
as 

As a consequence, an excess of pressure generated at  the initial time by acoustic 
perturbation decreases, and thus the pressure equilibrium with surroundings sets 
in on the time scale 2 - TR. In the particular case shown in Figure 3 after 1 = 3, 
pressure variations in the region occupied by the perturbed gas decrease from the 
initial amplitude 16P0/Pol - 0.02 to [6P/PoI - 0.005. 

Moreover, since this time scale TR is comparable with the dynamical one T A ,  the 
pressure excess does not propagate to neighbouring regions, resulting in the initial 
perturbation to remain localized. 

4 CONCLUSIONS 

Our results can be summarized as follows: 
In the short-wavelength limit small perturbations in a radiatively cooling medi- 

um evolve in the isobaric regime only in those cases when they are isobaric from 
the very beginning. 
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If initial perturbations are of the acoustic type (e.g., 6uo # 0, as shown in 
Figure 2) they decay and do not evolve to the isobaric regime. Note that numerical 
models with other types of acoustic perturbations (6Po, 6po, 6T # 0) demonstrate 
a similar behavior (KS). 

An important consequence for the theory of interstellar medium is that formation 
of interstellar clouds of small sizes is unlikely to be initiated by the condensation 
mode of thermal instability, since the this would require initial conditions of a special 
(isobaric) class. For the warm interstellar HI phase with temperature T - lo4 K, 
number density n - 0.1 erg cm3 s-l (see 
Kaplan and Pikelner, 1979) the short-wavelength limit corresponds to A << 1020 cm. 
For a spherical contraction to a final state with temperature T - lo2 K and number 
density n - 10 ~ m - ~ ,  the short-wavelength limit would correspond to a cloud size 
of R << 5 x 10l8 cm. Therefore, formation of diffuse clouds of small sizes R < 1 pc 
(see e.g. Knude, 1991) seems to be driven by mechanisms different from the thermal 
instability. 

and cooling rate L(T) - 
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