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It is generally believed that the classical Schuster periodopam must not be used in the problem 
of finding periodicities in the irregularly spaced data. This follows from the fact that if the data 
is pure noise, the statistical distribution of the Schuster periodogram is no longer exponential. 
From this point of view, the so-called LS-spectra based on the least squares fitting of a sine 
function to the data are recommended. Nevertheless, in many situations the Schuster periodograms 
and the LS-spectra are close to being identical. The paper presents a comparative study of 
the Schuster periodopam and the LS-spectra with respect to their statistical properties. The 
analytical expression for the probability distribution of the Schuster periodogram when the time 
series is assumed to be unevenly spaced pure noise is found. It is shown that the probability 
distribution deviates from the exponential law only at the frequencies ct~, that satisfy the condition 
1 - W ( 2 w , )  < 1, where W ( w )  is the spectral window. The examples of the time points distributions 
yielding such pathology are given. 

KEY WORDS Time series, power spectra 

1 INTRODUCTION 

Evaluation of the power spectra of unevenly spaced time series is a very important 
problem especially in astronomy, where irregular observations are often unavoidable. 
In the task of finding periodicities hidden in the observed data, the calculation of the 
power spectrum is a useful step which permits us to see the concentrations of power 
(the spectral peaks) at certain frequencies. All observations are accompanied with 
noise. To detect a signal in the noisy data, one must know the images of the signal 
and of the noise in the frequency domain. For regular time series, these images 
are calculated with the help of the Schuster periodogram (Schuster, 1898). The 
reason to  introduce the Schuster periodogram is that it gives the correlation between 
the data and a sine function. The properties of this periodogram are well known 
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(Jenkins and Watts, 1968; Otnes and Enocson, 1978; Marple, 1987; Terebizh, 1992, 
etc.). In particular, the reflex of a sine wave is described by the spectral window, 
whereas the reflex of the pure noise is a random variable distributed according 
to the exponential law. The application of the Schuster periodogram to irregular 
time series was made by Deeming (1975a, 1975b), Roberts e2 al. (1987). At the 
same time, Lomb (1976), Scargle (1982), Terebizh (1992) pointed out that the 
exponential law can not be justified for the periodogram of pure noise when the 
time series is irregular. To remedy this, Lomb (1976), Ferraz-Mello (1981), Scargle 
(1982, 1989) proposed alternative procedures to evaluate the power spectra of the 
time series with missing points. Their approaches are based on the least squares 
fitting of a sine function to the data (Barning, 1962). The resulting estimators of 
the power spectrum - the so-called LS-spectra- retain the exponential law, and this 
is the main reason why the LS-spectra are widely used nowadays. At the same 
time, the LS-spectra lose several important properties: they cannot be described in 
terms of the spectral window, they are not rigorously connected with the correlation 
function, and so on. Moreover, the practice of spectral evaluation shows that in 
many situations the Schuster periodogram and the LS-spectra are almost identical 
despite the different theoretical foundations. 

In the previous paper (Vityazev, 1996), the intercomparison between the Schus- 
ter periodogram and the LS-spectra was made with the goal to find the situations 
when the said estimators must coincide or be different. It was found that the 
likeness between them is governed by the properties of the corresponding spectral 
window W(w). The main result is: if the frequency wo of the signal sutisfies the 
condition W(2uo) = 0, then the Schuster periodogram and the LS-spectra are iden- 
tical, otherwise they are different. Naturally, this simple condition, valid for a pure 
signal without noise, forces us to  continue the intercomparison between the Schus- 
ter periodogram and the LS-spectra, this time regarding the time series to be a 
pure noise - and this is the main purpose of the present paper. In Section 2 the 
generalised II-periodogram is introduced and its statistical properties are studied. 
This allows to clarify the probability distributions and the correlations between 
various values of the Schuster periodogram and of the LS-spectra. (Sections 3 and 
4). The significance tests for all the periodograms are considered in Section 5. The 
application of the theory to simulated time series is given in Section 6. 

2 THE II-PERIODOGRAM 

Assume that the time series X I ,  k = 1 , 2 , .  . . N given at  arbitrary set of time points 
tk constitutes a random sample from a normally distributed population with zero 
mean and variance a:. For this case we have 

In order to study various periodograms simulteneously and not to repeat similar 
calculations, we introduce the generalized II-periodogram using the following nota- 
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tion: 

where 

STATISTICAL PROPERTIES OF SCHUSTER PERIODOGRAM 

The reason for using the II-periodogram is that if we set 

U(W) = 1, b(w) = 1, 

then Eq. (2.2) yields the Schuster periodogram: 

while with 
a-2 = 2114111', b-' = 2114211' 

from Eq. (2.2) we get the Lomb periodogram (Lomb, 1976): 

It was shown (Vityazev, 1996) that the Lomb periodogram is identical to the Barn- 
ing periodogram (Barning, 1962), and the former coincides with the periodogram 
based on the orthogonalization of the initial functions cos Wtk and sin Wtk by means 
of the Gram-Schmidt procedure (Ferraz-Mello, 1981). Thus we see that with the 
help of Eqs. (2.7) and (2.9) the generalized II-periodogram gives us either the 
Schuster periodogram or the LS-spectra. It is important to emphasize that for all 
the periodograms under consideration one has: 

(41 ,h )  = 0. (2.11) 

Now we are going to answer two questions: what is the probability distribution 
of the 11-periodogram and how its values are correlated. In order to do this, we 
shall use some properties of random variables known in the theory of probability 
(Ventsel, 1964). Given are two random variables z and y with expectations mx and 
my and variancies u;, ui, respectively. Defining their correlation coefficient as 

(2.12) 
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we assume that the bivariate normal probability function for x and y is 

where f(z) and f(y) are the normal probability functions: 

(2.13) 

(2.14) 

(2.15) 

It is known that two random variables x and y are independent if 

The two variables are said to be uncorrelated if 

r = O .  (2.17) 

In general, the absence of correlation follows from independence, but the opposite 
conclusion is false. In particular, when x and y are normally distributed, indepen- 
dence and absence of correlation are all the same. 

Now, if x and y are independent and normally distributed, then the variable 
z = x 2  + y2 is distributed according to (Papoulis, 1965; see also Scargle, 1982): 

(2.18) 

where lo is the modified Bessel function of the first kind. 
Return now to the II-periodogram, rewriting it in the form 

II(w) = X2(w)  + Y2(w) ,  (2.19) 

where 
X ( w )  = a ( w ) ( r ,  91 1, Y ( W )  = b ( W ) ( Z ,  9 2 ) .  (2.20) 

It is not difficult to justify that X ( w )  and Y ( w )  are normally distributed random 
variables for which, from (2.1), one can find: 

( X )  = 0, ( Y )  = 0, (2.21) 

(2.22) 

(2.23) 
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For the correlation coefficient we have 

(2.24) 

since from Eq. (2.11) it follows that 

(XY) = a(w)b(w)+ ffi 4 2 )  = 0. (2.25) 

Thus we see that the random variables I I (w)  are distributed according to Eq. (2.18). 
For further study, we consider the correlation moment of two variables IIl = 

II(w1) and II2 = II(w2): 

K(Wl,W2) = (nln) = (IIlrI,) - i i l i i 2 ,  (2.26) 

where the averaged II-periodogram is 

n = (II(U)) = ( X 2 )  + ( Y 2 )  

= -b ffi 2 (41141112 + ~2(411421121.  (2.27) N 
Adopting notations X, = X ( w i )  and yi = Y ( w i ) ,  a’ = 1,2,  from Eq. (2.26) we get 

K ( w 1 , ~ 2 )  = (X;Xi) + (Yfy,”) + (Xiy,”) + (y,”XZ) - n i n 2 .  (2.28) 

For two random variables with the bivariate normal probability function (2.13) one 
has: 

+w +w 

(2.29) 
-m -w 

With this result, the final expression for the correlation moment becomes: 

2 4  2 
K ( w 1 , w z )  = -“. N2 ( 4 a 2 ( W 2 ) ( 4 1 r  41)L + b2(w1>b2(w2)(42,  4 2 %  

+ Q ~ ( W  )b2(w2)(41, 4 ~ ) ; ~  + a2(w2)a2(w1)(42,  41)t2, (2.30) 

where 
1 

( h r 4 J ) m n  = NE4i(%ai tk  -T(urn)) ,  4j(Un,tk - T ( W n ) ) ) ,  i , j , m , n , =  1,2.  
k 

(2.31) 
Now, the correlation coefficient between the values of the II-periodogram evaluated 
at  two frequencies w1 and w2 is 

(2.32) 

The general properties derived here for the II-periodogram permit us to deduce 

K ( W ,  w2) 

JK(W 9 W ) K ( U 2 ,  w2) .  
+ l ,  w2) = 

the corresponding properties of specific periodograms. 
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3 THE LS-SPECTRA 

From Eqs. (2.9), (2.2) and (2.23) we find: 

2 
2 -  2 - 6 0  - 2 u z - u  - - - 6  

2 N -  

Analogously, for the averaged periodogram one has: 

- 6; n = - .  
N 

Now we see that, for the normalized II-periodogram 

the distribution function is 

p ( z )  = exp(-z), 0 < z < 00, w > 0. (3.4) 

As it was pointed out above, this result is valid for the periodograms of Barning, 
Lomb, and Ferraz-Mello. 

The second result concerning the LS-spectra is: the correlation between the 
heights of a noise spectrum at frequencies w1 and w2 is equal to the mean height 
of the periodogram of a sine function of frequency w1 at frequency w2. This result 
follows from Eq. (2.30). For the functions 41 and 952, defined by Eqs. (2.3)-(2.5) this 
was found by Lomb (1976). Now we see that, with the corresponding meaning of 41 

and 4 2 ,  this result is the same for the Barning and the Ferraz-Mello periodograms. 
In other words, the values of the LS-spectra are correlated, whence they are not 
independent. 

4 THE SCHUSTER PERIODOGRAM 

This time, from Eqs. (2.7), (2.22) and (2.23) one has: 

where the spectral window is defined as 

- N  

(4.3) 
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It means that, for an arbitrary set of time points, the normalized Schuster peri- 
odogram of pure noise 

S(w) SN(W) = - 
4 / N  

(4.4) 

is distributed as 

p ( z )  = exp(-z)D(z,w), 0 < z < 03, w > 0, (4.5) 

(4.6) 
(4.7) 

where 
~ ( z , w )  = a-l/’exp[-z(l- a ) /a ]~o[-z( l -  a)-’/2/a], 

a = 1 - W ( 2 w ) .  
Strictly speaking, this distribution function is valid for the Schuster periodogram 

calculated with the time points ik. Nevertheless, it can be applied to the con- 
ventional Schuster periodogram defined by the time points t k ,  since the squared 
abcolute values discard the time shift (see Eq. 2 . 8 ) .  

The correlation coefficient between the values of S(w1) and S(w2) is given by 
the exmession 

which follows from Eqs. (2 .32)  and (2 .30)  if Eqs. ( 2 . 7 )  are taken into account. It is 
worthwhile to remark that Eq. (2 .30)  is valid no matter what time points fk or t k  

are used, and the points t k  are to be used to obtain Eq. (4.8), whereas the points f k  

yield the corresponding correlation for the LS-spectra. We see that, like in the cases 
of the LS-spectra, the values of the Schuster periodogram evaluated for uneven pure 
noise are correlated and consequently are not independent. 

5 SIGNIFICANCE TESTS 

The central question considered in this section is: what is the probability q that a 
certain peak in the periodogram is generated by noise? If the value q is small, then 
we conclude that this peak hardly comes from noise, and, consequently, the existence 
of a harmonic component in the data can be claimed with high probability 1 - q. 
In this connection, two standard situations we meet in practice can be considered. 
For the sake of reference they will be called the hypotheses H1 and H2. 

a) The hypothesis H I .  We have no a priori information at  what frequency the 
peak due to a signal can be expected. In this case we may think that it is the 
highest peak. At the same time, the peaks in the noise periodogram, being the 
random values, can be sufficiently large due to a chance noise fluctuation. So the 
problem of finding the distribution function for the highest peak in the periodogram 
of noisy data must be considered. 

b) The hypothesis Hz.  We know a priori at what frequency the peak due to a 
signal is to be sought. In this situation, another task must be solved: what is the 
probability that at the preselected frequency the peak of the noise periodogram can 
be large. 
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5.1 

It is very instructive to recall solutions of the above-mentioned problems for the case 
of even time series (Terebizh, 1992). In this case the time points are considered to 
be 

The  Regular Set  of Tame Points  

t k  = At(k - l), k = 1 , 2 . .  . N ,  (5.1) 
where At is the constant interval of sampling. Consider now the set of natural 
frequencies (we suppose that N is an even number): 

2* . . N 
NAt 2 W j  = -1, 3 = 0 , 1 , .  . . , -. 

It is known that a t  these frequencies the Schuster periodogram and all the LS- 
spectra are all the same. At the same time, it is simple to  verify that 

N 
2 w ( w j ) = o ,  j = l ,  . . . ,--  1, (5.3) 

whence, due to Eq. (4.8), the values of the periodogram are not correlated. More- 
over, the values of the normalized periodograms (3.3) and (4.4) are distributed 
according to the exponential law. Now, in the limits of the hypothesis H1 one has: 

a) the probability that each peak of the normalized periodograms (3.3) and (4.4) 
does not exceed the value 2 > 0 is 

e-* d z  = 1 - e - Z ;  (5.4) j 0 

b) the probability that all peaks SN(W,), j = 1 , .  . . , $  - 1 do not exceed the 
value 3: > 0 is 

(1 - e - y / 2 - 1  (5.5) 

(5.6) 

c) the probability that at  least one of the S ~ ( w j )  will be above the level E > 0 
is 

Q ( E )  = 1 - (1 - e-z)N/2-1. 

The function Q(x)  is known as the Walker distribution of the highest peaks in the 
Schuster periodogram of pure noise (Walker, 1914). If we adopt a value q < 1, then 
the solution of equation 

yields 

Thus, the highest peak in the periodogram that satisfies the condition 

Q(Xq) = (5.7) 

X , = - l n [ l - ( l - q )  2/"-2)].  (5.8) 

Smax  2 xq (5.9) 

can be regarded as a signal with the probability 1 - q. The value q is known as FAP 
( the  False Alarm Probabili ty),  whereas the value X, is called the detection threshold. 
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In the case of the hypothesis H z ,  the probability that each peak in the peri- 
odogram exceeds the level z > 0 is 

Q ( x )  = J e - z  dx  = e-”. (5.10) 
0 

Now, the detection threshold is detemined according to 

x, = - W ) ,  (5.11) 

and the detection of a signal at  a known frequency wo is claimed with the probability 
l - q i f  

S N ( w 0 )  2 xq. (5.12) 

5.2 

In this case, due to Eq. (3.4), the values of the normalized LS-spectra are distributed 
exponentially, but they are correlated, as it was pointed out in Section 3. For 
this reason, the transition from Eq. (5.4) to Eq. (5.5) cannot be justified, and, 
consequently, it is impossible to obtain analytically the probability distribution of 
the highest peak in the said periodograms. In some cases it may be worthwhile to 
establish the probability distribution numerically by calculating the periodograms 
of different sequences of quasi-random noise. This proposal was made by Lomb 
(1976), and it was followed by Horne and Baliunas (1986), who introduced the 
empirical formula 

Q ( x )  = 1 - (1 - e - x ) N t ,  (5.13) 
where Ni (i-independent) designates the number of independent frequencies encor- 
porated in “derivation” of Eq. (5.13). The numerical experiments with different 
patterns of time points led them to a conclusion that Ni M N .  In this connection 
Koen (1988) showed that the strict statistical independence appears to be not re- 
alizable for unequally spaced data. Now we see that in the case of the Schuster 
periodogram we are facing the same problem: due to correlation between the peaks 
of SN(W) (see Eq. 4.8), no analytical expression analogous to the Walker distri- 
bution (5.6) can be found, and the only way to evaluate the detection thresholds 
is numerical experiments with the set of time points which is at  our disposal. In 
Table 1 we show the results of such experiments with the Schuster periodogram for 
several kinds of time points distributions. Each column of this table was  obtained 
by averaging 10 histograms, each one being derived from 1000 periodograms for 
quasi-normal1 y distributed random variables. 

In the case of the hypothesis Ha, the detection threshold for the LS-spectra is 
determined by Eq. (5.11) for all distributions of time points (regular and irregular). 
In general, this is not so for the Schuster periodogram since, in the case of irregular 
spaced time points, the analog of Eq. (5.10) is 

The Irregular Set of Time Points 

03 

Q ( x )  = / e - ” D ( z , w )  d z ,  (5.14) 
X 
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Table 1. 
threshold Xq: a) an even sequence of 128 points; b) periodical 5-point gaps in the sequ- 
ence of 115 regularly spaced points; c) two 33-point blocks separated by a 54-point gap; 
d) a random sample of 57 points from 120 regularly spaced points 

The values of the False Alarm Probability q as a function of the detection 

a b C d 

4.5-5.0 
5.0-5.5 
5.5-6.0 
6.0-6.5 
6.5-7.0 
7.0-7.5 
7.5-8.0 
8.0-8.5 
8.5-9.0 
9.0-9.5 
9.5- 10.0 

10.0-10.5 
10.5-11 .o 

0.200 
0.180 
0.130 
0.0% 
0.059 
0.035 
0.023 
0.015 
0.008 
0.005 
0.002 
0.001 
0.001 

0.200 
0.160 
0.120 
0.073 
0.045 
0.026 
0.016 
0.010 
0.006 
0.006 
0.002 
0.003 
0.001 

0.210 
0.170 
0.120 
0.072 
0.043 
0.024 
0.017 
0.010 
0.006 
0.006 
0.002 
0.001 
0.001 

0.210 
0.170 
0.130 
0.080 
0.052 
0.029 
0.014 
0.009 
0.006 
0.003 
0.002 
0.001 
0.001 

whereas the detection threshold X, is determined from the equation 

q = J e - ” D ( r , w ) d z .  

*, 
It is important to note that at  frequencies that satisfy the condition 

W ( 2 w )  = 0, 

(5.15) 

(5.16) 

the function D ( z , w )  1, and Eqs. (5.14) and (5.15) again give Eqs. (5.10) and 
(5.11). Earlier we have shown (Vityazev, 1996) that Eq. (5.16) determines the set of 
frequencies a t  which the Schuster periodogram and the LS-spectra of a sine function 
are identical for even and uneven time series. Now we see that the same condition 
yields the identity of the distribution laws of all these periodograms. In other 
words, we have found the frequencies at  which the Schuster periodogram retains 
the “classical” exponential distribution law for irregularly spaced time points. From 
Eq. (5.16) it follows that the deviation from the exponential law occurs a t  the 
frequencies w # 0 that satisfy the relation 

2w = w ,  (5.17) 

where 6 is a frequency a t  which the spectral window has a strong peak due to 
irregularity of the data. 

6 NUMERICAL EXAMPLES 

In Figures 1-3 we show the functions W(w),  Q ( w ) ,  and D(r ,w)  for three models 
of the time points distribution. The first example demonstrates periodical gaps of 
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observations. Here we suppose that at the set of regular points with the constant 
sampling interval At one has n successive observations and p successive missing 
points, the combinations of n+p points being repeated m times. Figure 1 shows that 
noticeable deviations from the exponential law are observed only at  two frequencies, 
namely w/2 and n/At - w1/2, where w = 2a/m(n + p)At is the frequency of gaps. 
The second example is a time series that consists of two n-point blocks of observed 
data separated by a ppoint  gap, all the points are supposed to be regularly spaced 
over the time interval At = const. Similarly to the first case, Figure 2 shows large 
deviations from the exponential law again at  two frequencies G I 2  and a/At - G/2, 
where 61 = 27r/(n + p)At. In both cases the deviations at  all other frequencies 
do not exceed 20 per cent. In the third example (random shifts from the regular 
sequence of points, Figure 3) the deviations are of the same order. 

7 CONCLUSIONS 

Here we summarize the results obtained in this paper: 
a) the spectral window W ( w )  is the key in the spectral analysis of irregular time 
series; 
b) at the frequencies that satisfy the relation W ( 2 w )  = 0, the values of the Schuster 
periodogram, when the time series is uneven pure noise, are distributed exponen- 
tially. Otherwise, they are distributed according to the function given by Eqs. (4.5)- 

c) within limits of the Ha-hypothesis, i.e. when we study the spectrum a t  a pres- 
elected frequency wo, no distinction exists between the statistical properties of the 
Schuster periodogram and of the LS-spectra if the condition W ( 2 w o )  = 0 is satis- 
fied; 
d) within the limits of HI-hypothesis, i.e. when we study the highest peak in the 
spectrum, the situation becomes worse for the Schuster periodogram as well its for 
the LS-spectra due to correlation that exists between the spectral values. For this 
reason, the exponential law does not save the LS-spectra and the analog of the 
Walker distribution law must be evaluated numerically for every irregular set of 
time points, no matter what periodogram is used for the spectral evaluation. 

(4.7); 
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