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THE TIME INTERFEROMETER: CLEAN
SPECTRA BY SYNTHESIS OF CORRELATION
FUNCTIONS

V. V. VITYAZEV

Astronomy Department, St. Petersburg University, 198904, St. Petersburyg,
Petrodvorets, Bibliothechnaya pl. 2, Russia

{Received October 25, 1994)

The paper presents a comparative study of the fundamentals, problems and techniques common to
the spectral analysis of time series and interferometry. On the basis of the conceptual identity of
the correlogram and visibility data, an attempt is made to adapt the aperture synthesis techniques
well known in radio astronomy to the spectral analysis of time series. Two methods of synthesising
a correlogram are proposed. The first one reproduces the idea of Ryle's interferometer and can
be realized when averaging over statistical ensemble is possible. The second method is based on
iterated correlograms and can be applied to a single curve with gaps. It is shown that our method
yields, at least by iterations, a correlogram at all the points of the time span without gaps, and
consequently clean spectra can be obtained. The method is described in detail and numerical
examples are presented to illustrate the application of the algorithm to gapped astrometrical time
series and to time series with uneven precision of the measurements.

KEY WORDS Time series, power spectra

1 INTRODUCTION

In earlier paper (Vityazev, 1994) a striking similarity of a spectral window and the
beam of an interferometer was found and the concept of the Time Interferometer
was introduced. In this paper we discuss further the properties of the Time In-
terferometer as a tool for spectral analysis of gapped time series. A comparative
study of time series analysis and interferometry shows many common problems. In
particular, a correlogram (time series analysis) and visibility data (interferometry)
are essentually one and the same if viewed from the standpoint of the associated
mathematics. Thus, the idea of aperture synthesis widely used in radio astronomy
can be transferred to the spectral analysis of time series. The basic problem consid-
ered in this paper is: a time series, known at some interval of time containing gaps,
is assumed to be either a set of realizations or a single curve. The problem then is
to obtain the values of the correlation function (the correlogram) at all points of the
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112 V. V. VITYAZEV

initial interval. In Sections 2-4 a review of the fundamentals, concepts, problems
and methods common to the time series analysis and interferometry is made. In
Section 5 Ryle’s aperture synthesis technique is used in the time series analysis un-
der assumption that the time series is given by a set of realizations. The synthesis
of a correlogram for a single realization is proposed in Section 6. This procedure is
essentially based on the correlation transform successively applied to the initial time
series and to the resulting correlograms. As a result, the computation of the final
correlogram at all points of the initial time span becomes possible. The efficiency
of this technique in the presence of noise is studied in Section 7. The applications
of the method to the gapped astrometrical time series and to the time series with
non-uniform accuracy of the measurements are shown in Sections 8 and 9.

2 FUNDAMENTALS OF THE TIME SERIES SPECTRAL ANALYSIS

Suppose that a time series X(t) is a stationary stochastic process with zero mean
defined by a set of realizations,
X(t) = [ep(Ope, 0<t<T<oo. (2.1)

Using E to denote the mathematical expectation value, one has for the autocorre-
lation function of X(t):

K(t,t') = E[X(t) X(t"))]. ' (2.2)
Due to the assumed properties of X(¢), the function K(¢,t') depends on the differ-
ence r =1 —t,

K(t,t')y = k(1) = k(—7). (2.3)

The power spectrum G(w) and the auto-correlation function k(r) are related to
each other via Fourier transforms:

+o00
Gw) = %/k(‘r)exp(—iwr)dr, (2.4)

Fand
—_
<
-
Il

+o0
/ G(w) exp(iwT). (2.5)

To describe gaps in observations we introduce the time window function,

1 if at time ¢ the data exists
y={, L*" exists, 2.6

) 0 if at time ¢ the data is absent. (2.6)
With this notation the observed time series can be represented as

Y(t) = h() X (t). (2.7)
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Calculate the periodogram of the p-th realization:

2

T
dp(w) = % /yp(t) exp(—iwt) dt| , (2.8)
0

and evaluate the averaged periodogram,

D(w) = E[dy(w)]. (2.9)

Under the conditions stated above, the relationship between the spectra D(w) and
G(w) is given by the convolution

400
D(w) = / G )W (w — ') do, (2.10)

where the spectral window function W(w) is the periodogram of the time window

function
T 2

Ww) = 5 0/ h(t) exp(—iwt) di| . 2.11)

Now, we introduce two inverse Fourier transforms

+o0

IcD(T):/D(w)exp(iw‘r)dw, (2.12)
400

H(r)= / W(w) exp(twr) dw. (2.13)

With these notations, one has from Eq. (2.10)
kp(r) = H(r) k(7). (2.14)

Figure 1 summarizes the fundamentals of time series analysis considered here. For
further details reader is referred to Jenkins and Watts (1968), Deeming (1975a,
1975b), Otnes and Enocson (1978), Marple (1978), Terebizh (1992).

Comments

1. Equations (2.10) and (2.11) are the basic tools in evaluating the observational
spectrum D(w) and in understanding the artifacts introduced by missing data.
Suppose the spectrum G(w) has sharp features at w = Fwg,

G(w) = Al6(w — wo) + 6(w + wo)], (2.15)
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TIME SERIES

Theoretical quantities

Power spectrum

Glw)

Frequency

(0]

Periodogram

D(w)

Correlation function

k(1)

Time lag

T

Estimators

Correlogram

kD(T)

Connections

Convolution

D(w) W(w) & G(w)

Multiplication

Observations

Spectral window

H(aw)

kD(T) = C(1) k(1)
No name
c(1)

Figure 1 Fundamentals of spectral analysis of time series.

where A = const and §(w) is the Dirac’s delta function. According to Eq. (2.10),

we obtain

D(w) = AW (w — wo) + W(w + wo)].

Hence, Eq. (2.10) describes the transformation of the initial spectrum G(w) to the

(2.16)
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INTERFEROMETRY

Theoretical quantities

Distribution of Spatial Spectrum
brightness
T (8 T (u
b() b()
Angular , Spatial
coordinate frequency
1) u

Estimators (Images)

The map Visibility data

T (9) T (u)
a a

Connections

Convolution Multiplication

T (8) = A(B) @ T (9) T (u) = A(u) * T (u)
a b a b

Observations

The beam Transfer function

AB) Alu)

Figure 2 Fundamentals of interferometry.

observed one D(w). It is important to stress that the transition from G(w) to D(w)
is completely determined by the spectral window. If the data are irreguarly spaced,
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the spectral window usually has a ceniral peak at w = 0, side peaks centered at some
frequencies w = @i, k = 1,2,..., and side lobes of the central peak and of the side
peaks. The side lobes are caused by a finite time span of the observations. They
exist even for uniformly spaced data. The side peaks appear only if the data are
spaced irregularly. According to Eq. (2.12), all these features are present in the
observed spectrum. Indeed, the central peak is visible at w = wp, and, showing true
features of the initial spectrum, it can be called the true peak. The side peaks are
responsible for the spectral features at w = |w £ wg|. The initial spectrum G(w) has
no lines at these frequencies. Hence, these features are false and may be regarded
as “ghosts”.

3 FUNDAMENTALS OF INTERFEROMETRY

The intensity of radiation from any source on the sky can be described in terms
of position (e, §), wavelength (1) and time (¢). Each measurement is an average
over a band of wavelengths and over some span of time. Here, the one-dimensional,
monochromatic and instantaneous approximation is used to simplify the discussion.
The resulting specific intensity T3(f) that describes the distribution of the source
brightness along the arc of a circle (¢ is the angular coordinate) has a Fourier
transform Tj(u), which is called the spectrum of spatial frequencies. Correspond-
ingly, when an interferometer measures the visibility data Ta(u), the image, or the
map T4(0) can be calculated by the Fourier transform of 7,(u). Two fundamental
relations are valid:

Ta(0)
Ta(u)

A(6)® T3(8) (Convolution), (3.1)
A(u) - Ty(v) (Multiplication), (3.2)

where A() is the beam of an interferometer, and A(u) is the transfer function.
Equation (3.2) determines an interferometer as a filter of spatial frequencies, whereas
Eq. (3.1) explains why, due to the convolution of T3(8) with the beam A(6), the
resulting image is called a dirty map. Figure 2 summarizes the fundamentals of
interferometry considered here. For further details the reader is referred to Esepkina
et al. (1973) and Thompson et al. (1986).

4 COMPARISON OF THE CONCEPTS, PROBLEMS AND METHODS

From Figures 1 and 2 one can see that in the analysis of time series and in the
interferometry the Fourier transforms, the convolution and the correlation are the
basic mathematical tools. Moreover, these figures show “who is who” in both sci-
ences. Really, at the first level we introduce rigorous (theoretical) quantities. In
the spectral-analysis case they are the power spectrum and the correlation function;
in the interferometry their counterparts are the distribution of brightness and the
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spatial spectrum. At the second level we have estimators of the strict quantities.
In the spectral-analysis, they are the periodogram and the correlogram, whereas in
the interferometry these are the map and the visibility data, respectively. Finally,
equations which connect the quantities of the two levels are identical (convolution
and multiplication) and include the characteristics of observations: the beam and
the transfer function and their analogs, i.e. the spectral window and the function
C(r), for which in the spectral analysis no name exists.

In reality, due to finite dimension of mirrors and finite time spans of observations
we cannot get the distributions of brightness on the sky and the power spectra of the
time series, and what we can do is to find their as good as possible approximations.
In optics or in radio astronomy, when the filled apertures are used, the maps are
produced directly in the focal plane of a telescope. Analogously, when the time
series is given at all points of some interval or at time points regularly spaced
within the interval, the evaluation of the periodogram can be made quite easily.
When an interferometer is used, the aperture is not solid, and what we can measure
is the visibility data, i.e. the estimator of the spectrum of spatial frequencies. The
longer the baseline, the less area in the (u — v)-plane can be filled and the more
dirty the resulting map becomes after transformation of the visibility data from the
(u—v)-onto (a— 6)-plane (in the one-dimensional case the u- and 6-domains should
be considered, but for the sake of convenience we use the standard terminology).
To overcome this, various techniques of the aperture synthesis are used, and this
leads to complete solution of the problem since it allows to fill the (u — v)-plane
completely. If the aperture synthesis provides the partial filling of the (u — v)-
plane, the cleaning procedures can be used with the aim to eliminate from the map
the artifacts of the “holes” in the (u — v)-plane. The same problems we meet in
the spectral-analysis case, when the time points are distributed irregularly or have
long gaps. In this case the correlograms cannot be determined for all values of
time lag 7, and this would give false features in the resulting periodograms. This
is the point where the main idea of the present paper is hidden. It is: whether
it is possible to apply the aperture synthesis method to spectral analysis of time
series?

5 SYNTHESIS OF THE CORRELOGRAM

It is known that to fulfill the aperture synthesis one should have an interferometer
with changeable baseline. Of all the schemes of the aperture synthesis, the one
proposed by Ryle (1960) is the most suitable for us (Figure 3). This tool consists
of two antennas A and B fixed at the separation L. The third antenna C is moving
in the interval [L/2, L]. At each position of the moving antenna one obtains two
interferometers (AC) and (CB) with the baselines [ and L/2 + [, and they yield
the values of the visibility data T}, at the points u = /A and u = U/2 + /2, where
U = L/). Obviously, while antenna C sweeps all the interval [L/2, L], the visibility
data T, (u) become available at all points of the interval [0, U].
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Observations ——

A C B

B 5 B
1 —

Figure 3 Ryle's scheme of aperture synthesis.

Now we apply this idea to the time series analysis. It is not difficult to show
that

T
Dw) = %/C(T)k(r)cos(wr)dr, (5.1)
where (5.2)
T-71
clr) = % / h(t) h(t + 7) dt. (5.3)
0

When the time series X(t) is known at each point within the interval [0, T, the
function h(t) equals unity elsewhere, and from Egs. (5.1) and (5.2) we get

T
D(w) = %/(1 — 7/T)k(7) cos (wT) dr. (5.4)

Comparison of Egs. (5.3) and (2.10) tells us that in the absence of gaps the spectral
window W(w) can be written in the form
_ [sin (wT/2) 2

This spectral window has no side peaks, and consequently the power spectrum
corresponding to (5.4) is clean. Now we see that the principal problem in evaluating
the periodogram (5.1) is to evaluate the correlation function k(7) at all points of
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Observations ——

t + T/2 t + T
! i / i

a coogooooonDao

-— 1 —

Figure 4 The synthesis of a correlogram.

the interval [0, T]. When we have no gaps this can be done easily with the help
of Egs. (2.2) and (2.3). Really, every two points spaced at the distance 7 may be
called the Time Interferometer with variable baseline 7, and each such pair yields the
estimation of the correlation function (the correlogram) by averaging the products
X(t)X(t + 1) over the set of realizations. This follows from our assumption that
X(t) is a stationary stochastic process, and it is very important for our study. To
proceed further, assume that we have a gap in observations. Let the length of the
gap be { and the longest distance between the borders of the gap and the boundary
points of the interval [0,7] be a. If I < a then the correlation function k(7) can
be evaluated at all points 7 € [0, T], otherwise only on the subintervals [0,a] and
[{,T]. Figure 4 illustrates the former situation. Here we assume that initially the
time series is given at two points t; and ¢y + T/2. This pair of points (the Time
Interferometer) allows us to get the correlation function only at the point r = T'/2.
Let us make new observations at the points t; + T/2 <t < t; + T. It is clear that
each new point t = t; + T/2 + 7 yields two additional values of the correlogram,
namely, at the points 7 and T/2 + 7. Obviously, when the observations will cover
the interval [t; + T/2,t; + T}, we shall obtain the values of the correlogram at all
points of the interval [0,T], and the periodogram D(w) calculated from Eq. (5.3)
will be clean.

It is instructive to compare Figures 3 and 4. The fixed antennas A and B are
the counterparts of the boundary points ¢; and t; + T, while each new position
of the moving antenna C is nothing else but the new point of observations. Since
Ryle’s interferometer makes the synthesis of the visibility data, it is a good reason
to call the estimation of the function k(7), shown in Figure 4, the synthesis of the
correlogram.

Return now to the situation when ! > a. In this case the correlogram turns out
to be evaluated at all points except the new gap of the length [ — a. Now, for the
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periodogram D(w) one has

T
D(w) = % / (1= 7/T)h(r) cos (wr) dr, (5.6)

o]

where the correlation window h(7) is defined as
= 1, f0<7<aorl<r<T,
h(r) = {0, ifa<r<l1 (6.7)

It is clear that the spectral window corresponding to the correlation window (5.6)
has side peaks and Eq. (5.5) gives us a dirty spectrum in which the artifacts of the
new gap can be seen. Nevertheless, one can expect that this new spectrum will
be less contaminated than the periodogram calculated directly from Egs. (2.8) and
(2.9). Thus we see that to clean the spectrum completely one needs to perform
more observations until the condition ! < a@ becomes true.

6 SYNTHESIS OF THE CORRELOGRAM FOR A SINGLE REALIZATION

The method considered in the previous section is based on the possibility to evaluate
the function k(7) by averaging the product X(t) X (¢ + 7) over a set of realizations.
In astronomy, we usually have time series that are defined by a single curve. In this
section we consider the kind of the synthesis which can be done in such cases.

With this aim, we assume that the time series is given as a product of two
functions

y(&) = (1) f(t), 0<t<T, (6.1)

where T is the length of the realization. Now we introduce the periodogram D(w)
and the correlogram x(7) of the time series (6.1) by the following equations:

T 2
D(w) = %,f / y(t)e tdt| | (6.2)
T
X0 = 7 [vw+na (6.3)

0

It can be easily shown that both functions are related by

T
D(w) = —17;/)((1') cos (wr) dT. (6.4)
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As before, the spectral window h(t) is defined by Eq. (2.6). If the time series f(t)
is a continuous function then the spectral window h(t) can be considered as having
values 0 or 1 at some subintervals of the time span [0, T] in such a way that

T
Ty = / h(t)dt < T, (6.5)

0

where T}, is the total length of the observation period and T — T}, is the length of

gaps.
Assume that f(t) is a polyharmonic process

f(t) = i Ap cos (wit + v ), (6.6)

k=1

where Ap, wr and i are the amplitude, the frequency and the phase of the k-th
harmonic. It is not difficult to show that for sufficiently large T' the correlogram
(6.1) of the function (6.6) is given by

x(r) = H(r) Z(A,%/Z) cos (wgT), (6.7)

k=1

where i
H(r) =_;_ / h(E) h(t + ) dt. (6.8)

0
Substitution of (6.8) into (6.4) yields

D(w) = %;A%[W(w—wk)+ W(w +we)], (6.9)

where the spectral window W(w) is
! T
Ww) = - / H(t)cos (wr)dr. (6.10)
0

Again, the spectral window W(w) depends on the time window A(t). If there are
no gaps in observations, we have
r

H(T):I—T

(6.11)
and the spectral window, defined by Eq. (5.4), yields a clean power spectrum.
Otherwise, when some observations are missing, the spectral windows having side-
peaks at frequencies &Wp, p = 1,2, ..., will produce dirty spectra, i.e. the spectra
contaminated by false features at the frequencies |wg £ @p|.
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Comparison between Egs. (6.1) and (6.7) shows that the correlogram of f(t)
multiplied by the time window h(t) has its own system of gaps, defined by the

function L () >0
(1) _ , 1 T) > U,
R = {0, if H(r) =0, (6.12)

It is easy to understand that the new time window h(!)(t) defines the new gap, the
length of which is less than that of the initial time window, i.e.

T < Ty (6.13)

For this reason it is always possible to fill the gaps completely at least by iterations.
Thus we see that the correlation transform defined by Eq. (6.3) reconstructs the
polyharmonic function (6.6) inside the interval [0,7] at the subinterval which is
longer than the set on which the function was available initially. Of course, this
reconstruction is not complete: the information on phases is lost and due to the
amplitude squaring the weak harmonics may be lost as well. Nevertheless, the
cicatrizing of the gaps leads us to the clean spectra.
For this purpose we introduce the following iterative procedure:

T-71

x¥(r) :% / XD + 1) dr, (6.14)
0

v=12 ...,
where

T~1

xO(r) = % / h(t)h(t + 7) f(2) f(t + ) dt. (6.15)
0

For the polyharmonic function (6.6), provided that T is sufficiently large, the iter-
ated correlogram has the following structure:

xW(r) = H¥)(1) Y agy cos (we), (6.16)
k=1

where
qvt1

ax, = 2 [%5] (6.17)

and H®)(r) can be computed by the following procedure

T-71
HO = 3 [ HODE D ) ar (6.18)

0

v=12,...,
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where
HO(r) = / h(t)h(t+7)d (6.19)
Now, each step of the procedure yields a periodogram
T
DW(w) = /x(")( ) cos (wr) dT, (6.20)
i

which, due to Eq. (6.9), can be written in the form

n

1
DM)(w) = 5 3 e WP (w — wi) + W + wi))], (6.21)
k=1
where
T
W) = L [ 5w
W w) = - HY)(7)cos (wr) dr, (6.22)
0
v=10,1,2,...

Equation (6.22) tells us that in the process of iterations the profiles of the spectral
lines change their form. To study these changes we assume that the correlation
window h(t) can be described by the polyharmonic function

oo
h(t) = ao + _ 7; cos (@t + ¢5), (6.23)
i=1
where aq and v; characterize the presence of the gap (when the interval [0,77] is
filled completely a9 = 1, 7; = 0, j = 1,2,...). Now, for T > 1 straightforward
calculations yield

(0) T-1| 5, <% —
HO(r) = ag+ 5 cos @;7) | (6.24)
i=1
and at the v-th step we get
H®)(r) = R(")(q—)oﬂ"+ [1 + ZﬁJ” cos (W 7‘)} (6.25)
ji=1
where
2u+1
i
v = 2|—= ] .
b = 2| 2] (6.26)
T-1

X
A
~~
s‘
~
X
©
I
L
P
\‘
+
s*
A
au
\‘

RW(r) = % / (6.27)
0
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v=12,...,

RO (r)=1- T (6.28)

We see that the influence of the gap on H(*)(r) diminishes (when 7; < 2aq
as v increases. For this reason, in the process of iterations, the side peaks in the
spectral windows W(*)(7) become weaker, and subsequently the false peaks in the
periodograms D()(w) disappear. Thus one can say that the amplitude squaring
suppresses the effects of gaps in the resulting spectra. The iterations must be halted
when the side peaks in the spectral windows are negligible compared to the intensity
of the central peak. The formalization of this will be given in the next section.

7 SYNTHESIS OF THE CORRELOGRAM IN THE PRESENCE OF NOISE

Let us see how our method works when a Gaussian noise with zero mean value is
added to the signal f(t). In this case the periodogram will be contaminated not
only by the “ghosts” due to gaps but by the random peaks due to the noise as well.
In spectral analysis of noisy data the probability distribution of the random variable
D©®)(w) for the case when the time series is pure noise is of paramount importance.
It 1s known that for even time series the probability distribution is exponential,
but in the general case of irregularly sampled data this is not so (Scargle, 1982).
Nevertheless, in many practical cases the deviation is rather small (Scargle, 1982;
Terebizh, 1992), and the exponential law is not a bad approximation. Moreover,
it is not difficult to show that the distortion of the exponential law occurs only at
the frequencies @i /2, k = 1,2, ..., where the W are those frequencies at which the
spectral window has side peaks (but not side lobes). In particular, for all the points
distributions considered in this paper, the strongest distortion corresponding to the
first side peak does not exceed the factor two. Neglecting this single frequency
feature, we adopted for the rest of them the exponential law. This enabled us to
use the standard techniques for detecting signals in noise. In our problem due to
two sources of contamination for the M-point discrete time series it is useful to
introduce the following quantities:

(D)) 2
D, = —-—LIn[ll-(1-¢)™-2 )
: Il = (1- 9™, (7.1)
Dy = DRQUWEL/WO(0), (7.2)

where (D(?)) is the mean value of the periodogram D(®}(w), D), is the largest value
in the periodogram D(®)(w), W%, is the intensity of the strongest side peak in the
spectral window W(%(w), r is the “signal to noise” ratio, and g is the significance
level for detecting a signal in noise (0 < ¢ € 1).

Obviously, D, is the detection threshold of a signal in noise, while Dy, is the
threshold to separate the true spectral lines from the false peaks (due to gaps in
observations). The value D, is based on Walker’s distribution of the strongest
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account in the periodogram (Walker, 1914; Terebizh, 1992). The introduction of
the ratio  in Eq. (7.1) allows us to solve several problems. If a pure signal is
considered, then r = co and D, = 0. On the contrary, when we have pure noise, we
put r = 0. In general, 0 < r < oo and we consider the following situations.

(1) Dy < D,. This inequality occurs when noise is sufficiently strong, but the
gaps in observation are small. In this case all false peaks are hidden in the peaks
of noise, since the gaps spoil the spectrum less than noise. Here we have no reason
to clean the spectrum, and the detection of a signal is claimed according to the
well known rule: the spectral line at frequency w is thought to be a signal with the
probability (1 — ¢) if

DOYw) < D,. (7.3)

Still, if we shall apply the method of iterated correlograms with the convergence

condition
Wi /W ®(0) <« W, /W (0), (7.4)

then with the same probability we shall obtained the true lines while all “ghosts”
and noisy peaks will be suppressed. Thus we see that our method not only cleans
the spectra from the features due to missing data, but suppresses the noise as well.

(2) Dy > D,. This is the opposite case: the data is slightly noisy, but the gap
is long. This time the cleaning of the spectrum is needed, and the iterations must
be made until the false peaks are below the detection threshold:

nglua)x/W(O) S DQ/DSr?gx' (75)

After the end of this procedure we come to the situation described earlier.

Summing up the results of Sections 6 and 7, one can say that the correlation
transform (6.3) of a polyharmonic function given on the interval of time with a gap
has a property to reconstruct the function at the gaps. This restoration can be
regarded as a specific kind of the synthesis described in Section 5. Indeed, while
the averaging over the set of realizations yields directly k(7), the averaging over
the set of time points yields k(7) weighted with the correlation window H(r). This
function remembers the fact that the time series was gapped and produces in the
periodogram (6.4) just the same false peaks that would be were the periodogram was
computed directly from Eq. (6.2). The second, third, etc., correlation transforms
make the gap smaller and smaller, but at the same time they force the spectral
window H(*)(7) to be more and more like the triangular window (6.11). There are
two parameters D, and Dy that control the algorithm. If we want to eliminate
completely the effects of gaps, we must stop the iterations according to condition
(7.4). Unfortunately, in this case there is a danger that weak lines in the spectrum
will be lost. In other words, in the final spectrum we shall find only the lines of
those harmonics whose amplitudes obey the condition

(0) 1/2
max
Ak > Ama_x [W] B (76)

where Amax is the largest amplitude in (6.6).
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A more realistic approach which takes into account the presence of noise tells
us that a complete suppression of the false peaks is not necessary for a reasonable
interpretation of the spectrum. It is quite sufficient to reduce the false features so
that they are below some level defined by the detection threshold D,. In this case
the end if iterations is determined by the condition (7.5).

In reality, the suppression of weak signals is not strong if the contaminations of
the spectra by noise and by gaps are comparable. In such cases only 2-3 iterations
are needed. In the opposite case more iterations is required and the distortion of the
spectral lines in the final spectrum may become noticeable. Still, even distorted,
the remaining lines are the true ones, since after the complete synthesis of the
correlogram we have no reason to expect the appearance of the “ghosts”.

8 NUMERICAL RESULTS

To see how our method works when data are taken from observations, we took a
time series of the polar variations of latitude (henceforth, the PVL)

Ap(t) = z(t) cos (A) — y(t) sin (A), (8.1)

where the coordinates of the pole z(t) and y(t) were taken from the Annual Reports
of the BIH for 1967 to 1986 at the interval At = 0.1 yr. The values Ap(t) were
computed for the longitude A of the Pulkovo observatory. This time series consists
of the annual and Chandler harmonics with periods 1.00 and 1.18 yr, respectively.
The properties of the PVL are well known and it is the reason to use it as a standard
while testing new methods of spectral analysis. The original PVL is slightly noisy,
that is why to test our method in the presence of noise we added to the PVL the
Gaussian noise with zero mean value in such a way that in all examples the ratio
“signal to noise” equals unity. Also, in all numerical runs we fixed the significance
level at ¢ = 0.05. Besides this, to enhance the contrast between weak and strong
lines in the spectra we plotted not the periodograms but square roots of them. The
resulting correlograms and periodograms are given in the normalized form (with
respect to the largest value). Below we show the application of our method to
several typical patterns of gaps.

8.1 An Even Distribution of Poinls

Figure 5 illustrates the application of our method to the time series PVL (120
regularly spaced points without gaps). The levels D, and Dj, are indicated for the
periodograms. In this example, DD, denotes the level of the first side lobe (not the
side peak). As expected, we have D, > Dy, and, strictly speaking, no cleaning is
needed. Still, we made two iterations and suppressed both the noisy peaks and the
structure of the side lobes. In this case the periodogram was contaminated by noise
and side lobes (but not by the side peaks).
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8.2 A Long Gap

In this case of 120 regularly spaced points we omitted 54 points starting from the
34-th one. The results of spectral analysis are shown in Fig. 6. The periodogram
of initial time series with the long gap turned out to be contaminated by false
lines and noisy peaks. The detection thresholds are now in the relation D, <
Dy,. For this reason we made 3 iterations and obtained the 3-d order correlogram
without gaps and the 3-d order periodogram in which all the false peaks have become
unsignificant.

8.8 Irregularly Missed Poinls

Figure 7 illustrates the application of our algorithm to the spectral analysis of the
PVL given at 120 points of which 57 points were randomly omitted. We see that
the initial periodogram contains many features. In this case we have Dy > Dy, so
the spectrum can be interpreted without confusion. Still, we made one iteration
and suppressed the level of noisy peaks and that of false lines.

Periodic Gaps

Off all the patterns of gaps the periodic gaps are the most typical of astronomical
data. We tested our method for this case too, making 0.5 yr gaps following each
other with 1 yr period. Figure 8 shows that our method worked successfully: two
iterations were enough to separate true lines from noise and to suppress all ghosts
below the detection threshold.

9 ANALYSIS OF TIME SERIES WITH UNEVEN VARIANCE OF NOISE

The practice of long-time acquisition of data shows that the resulting time series are
seldom uniform with respect to the intrinsic accuracy of the measurements. This is
caused by various obstacles: aging of instruments, change of observers, periodical
changes of weather, etc. The variations in accuracy are clearly seen in the compiled
time series, the fragments of which have been obtained by observers at different
observatories.

It is a curiosity, but in the vast scope of special literature dedicated to spectral
analysis, treating of time series with variable noise component has not yet been
considered. The first step smoothing procedures are of little importance in this
case, since they redistribute the noise and spoil those fragments where the accuracy
was initially good. Still, there is one simple way to make the time series uniform with
respect to noise. It implies that all the measurements should be properly weighted.
This approach is widely used in the least squares technique. One can hope that the
weights will suppress the noise component, but at the same time it is clear that the
weights may substantially change the spectral content of the systematic component.
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If some points of the time series are multiplied by zero weights, then it means that
these points are simply omitted. Whence it is clear that the treating of time series
with assigned weights is close to the problem of treating gapped time series.

Now we assume that the polyharmonic function (6.6) is observed in such a way
that at various time points the root mean square error has two values o; and o5,
(01 < 02). For this reason the time window function is determined as follows:

o1/oy if at point ¢ the r.m.s.e. equals o5. (9.1)

w(t) = { 1 if at point t the r. m.s.e. equals o
All remaining definitions and mathematical relations remain unchanged except that
the value r in the definition of Dy must be replaced by

r=pi{1- M1 —(e1/02)")}, (9.2)

where ) is a fraction of weighted information (with respect to the total number of
points, for example), p; is the “signal to noise” ratio at those points where w(¢) = 1.

Now, we again give numerical results to show the application of our approach
to the variably noised time series.

9.1 A Long Fragment of Measurements with Low Precision

This time the PVL was divided into 3 segments containing 33, 54 and 33 points.
It was assumed that the first and the third fragments were measured with high
precision ( “signal to noise” ratio was 2), while the second segment with low precision
(“signal to noise” ratio was 0.2). In Figure 9 we see that the periodogram of the
raw time series is too noisy to be properly understood. After weighting the 54-
point segment with w(t) = 0.316, the level of noise in the periodogram substantially
decreased, and at a 95 percent confidence level we could claim the detection of four
lines. The inequality Dy > D, tells us that false peaks are present among these
four peaks. One iteration suppressed the noise peaks and forced the ghosts to fall
below the detection threshold D,/DY, .. As a result, the two lines — the annual and
Chandler’s ones are clearly seen far above the level of 0.05 significance in the 3-d
order periodogram.

9.2 Periodic Changes of Accuracy.

Figure 10 illustrates spectral analysis of the PVL when the “signal to noise” ratio
varies from 0.1 to 10 at a 1 yr period. Again, the periodogram of the initial time
series turned out to be strongly contaminated by noise. The suitable weighting by
w(t) = 0.1 at once gave a periodogram with strong false peaks, which have been
eliminated by iterations.
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9.3 A Strong Noise at Randomly Distributed Points

In this example it was simulated that the “signal to noise” ratio equals 10 at 57
randomly chosen points while at the rest of 120 points, considered in example 9.1,
it is 0.1. Figure 11 shows the work of the method under consideration in this
case. We have the same situation: the weighting decreases noise but produces
false lines. The cleaning procedure based on the iterated correlograms reduces
the “ghosts” below the detection threshold, leaving only two real lines in the final
periodogram.

10 CONCLUSIONS

The idea of the Time Interferometer is useful for it helps us to adapt some methods
of interferometry to problems of the spectral analysis of time series (and, hopefully,
vice versa). This concept forced us to make a thorough comparison of fundamentals,
method and problems common to both sciences. Partially such study was made by
Roberts et al. (1987) when they transferred the two-dimensional CLEAN algorithm
(Hogbom, 1974) widely used in the radio-astronomy to the spectral analysis of
gapped time series.

The basic topic of this paper is an attempt to use the idea of the (u — v)-plane
synthesis to the computation of correlograms. This idea follows from the conceptual
identity between the visibility data and the correlogram. Two methods of the
correlogram synthesis have been proposed. The first one s basically interferometric
and can be realized if the time series is given as a set of realizations. When the
only realization is available, the averaging over realizations is replaced by time
averaging. In this case one can synthesize only product of correlograms and a
certain correlation window. Here the idea od synthesis becomes not so evident,
and its further development has led us to the method of iterated correlograms.
This method was described in detail and its applications to gapped and weighted
astrometric time series was made.

In fact, the method of iterated correlograms solves the so-called restoration
problem. The simplest inverse method to solve this problem is based on the de-
convolution of Eq. (2.10), but this way is successful only in the absence of noise.
In the presence of inevitable noise associated with any measurements, the simple
deconvolution method proves to be unsuccessful (Brault and White, 1971). On
the contrary, our method is not inverse since 1t is based essentially on direct cor-
relation transforms which can only suppress noise, not to enhance 1it. From this
follows that our method is stable in the presence of noise. As mentioned above,
our method suppresses weak harmonics as well and the more the longer the gap is.
For this reason the application of the method should be restricted to time series
in which the total length of gaps is no more than 50-70 percent of the total time
span.
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