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THE TIME INTERFEROMETER: CLEAN 
SPECTRA' BY SYNTHESIS OF CORRELATION 

FUNCTIONS 

V. V. VITYAZEV 
Astronomy Department, St. Petersburg University, 198904, St. Petersburg, 

Petrodvorets, Bibliothechnaya p l .  2, Russia 

(Received October 25, 1994) 

The paper presents a comparative study of the fundamentals, problems and techniques common to 
the spectral analysis of time series and interferometry. On the basis of the conceptual identity of 
the correlogram and visibility data, an attempt is made to adapt the aperture synthesis techniques 
well known in radio astronomy to the spectral analysis of time series. Two methods of synthesising 
a correlogram are proposed. The first one reproduces the idea of Ryle's interferometer and can 
be realized when averaging over statistical ensemble is possible. The second method is based on 
iterated comelograms and can be applied to a single curve with gaps. It is shown that our method 
yields, at least by iterations, a correlogram at all the points of the time span without gaps, and 
consequently clean spectra can be obtained. The method is described in detail and numerical 
examples are presented to illustrate the application of the algorithm to gapped astrometrical time 
series and to time series with uneven precision of the measurements. 

KEY WORDS Time series, power spectra 

1 INTRODUCTION 

In earlier paper (Vityazev, 1994) a striking similarity of a spectral window and the 
beam of an interferometer was found and the concept of the Time Interferometer 
was introduced. In this paper we discuss further the properties of the Time In- 
terferometer as a tool for spectral analysis of gapped time series. A comparative 
study of time series analysis and interferometry shows many common problems. In 
particular, a correlogram (time series analysis) and visibility data (interferometry) 
are essentually one and the same if viewed from the standpoint of the associated 
mathematics. Thus, the idea of aperture synthesis widely used in radio astronomy 
can be transferred to the spectral analysis of time series. The basic problem consid- 
ered in this paper is: a time series, known a t  some interval of time containing gaps, 
is assumed to be either a set of realizations or a single curve. The problem then is 
to obtain the values of the correlation function (the correlogram) a t  all points of the 
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initial interval. In Sections 2-4 a review of the fundamentals, concepts, problems 
and methods common to the time series analysis and interferometry is made. In 
Section 5 Ryle’s aperture synthesis technique is used in the time series analysis un- 
der assumption that the time series is given by a set of realizations. The synthesis 
of a correlogram for a single realization is proposed in Section 6. This procedure is 
essentially based on the correlation transform successively applied to the initial time 
series and to the resulting correlograms. As a result, the computation of the final 
correlogram at all points of the initial time span becomes possible. The efficiency 
of this technique in the presence of noise is studied in Section 7 .  The applications 
of the method to the gapped astrometrical time series and to the time series with 
non-uniform accuracy of the measurements are shown in Sections 8 and 9. 

2 FUNDAMENTALS OF THE TIME SERIES SPECTRAL ANALYSIS 

Suppose that a time series X ( t )  is a stationary stochastic process with zero mean 
defined by a set of realizations, 

(2.1) 
N 

X ( t )  = [ ~ ~ ( t ) ] ~ = ~  0 I t  I T < 00. 

Using E to denote the mathematical expectation value, one has for the autocorre- 
lation function of X ( t ) :  

K(t,l’)  = E [ X ( t )  X ( t ’ ) ] .  (2.2) 
Due to the assumed properties of X ( t ) ,  the function K(t,l’) depends on the differ- 
ence T = t - t ’ ,  

K ( t , t ’ )  = k ( T )  = k ( - r ) .  (2.3) 
The power spectrum G ( w )  and the autecorrelation function k ( r )  are related to  

each other via Fourier transforms: 

-m 

k(r) = T G ( w )  exp(iwr). 
-W 

To describe gaps in observations we introduce the time window function, 

1 
0 

if at  time t the data exists, 
if at  time 2 the data is absent. h ( t )  = { 

With this notation the observed time series can be represented as 

Y ( t )  = h ( t ) X ( t ) .  
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T H E  TIME INTERFEROMETER 

W ( w )  = - 
2nT l i  

113 

h ( t )  exp(-iwt) dt . (2.11) 
0 

Calculate the periodogram of the p t h  realization: 

and evaluate the averaged periodogram, 

D ( w )  = E [dP(W)I .  (2.9) 

Under the conditions stated above, the relationship between the spectra D ( u )  and 
G(w)  is given by the convolution 

D(w) = jmG(wl)w(u - u’) dw’, (2.10) 
-m 

~ D ( T )  = 1 D(w)exp(iwT)dw, 
-m 

+m 

H ( r )  = / W ( w )  exp(iwr) dw 

-m 

(2.12) 

(2.13) 

With these notations, one has from Eq. (2.10) 

k D ( T )  = H ( T )  k ( T ) .  (2.14) 

Figure 1 summarizes the fundamentals of time series analysis considered here. For 
further details reader is referred to Jenkins and Watts (1968), Deeming (1975a, 
1975b), Otnes and Enocson (1978), Marple (1978), Terebizh (1992). 

Comments 

1. Equations (2.10) and (2.11) are the basic tools in evaluating the observational 
spectrum D(w) and in understanding the artifacts introduced by missing data. 
Suppose the spectrum G(w)  has sharp features at  w = f w o ,  

G ( w )  = A[b(w - W O )  + b(w + wo) ] ,  (2.15) 
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TIME SERIES 

Theoretical quantities 

I Power spectrum I 
G ( U )  

Frequency 

0 

Correlation function 

k(r) I 
r 

Time lag 

s I 

Estimators 

Periodogram Correlogram 

Connect ions 

D(u) = W ( o )  61 G(u)  

Observations 

Spectral window 

Figure 1 Fundamentals of spectral analysis of time series 

where A = const and 6(w)  is the Dirac’s delta function. According to  Eq. (2.10), 
we obtain 

D(w) = A[W(W - W O )  + W(W + W O ) ] .  (2.16) 

Hence, Eq. (2.10) describes the transformation of the initial spectrum G ( w )  to  the 
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THE TIME INTERFEROMETER 115 

INTERFEROMETRY 

Theoretical quantities 

Distribution of Spatial Spectrum 
brightness 

Angu 1 ar 
coordinate frequency 

Estimators (Images) 

Connections 

Convolution 

T ( 8 )  = A(8) @ Tb(8) 
a 

Multiplication 
n A 

Observations 

Figure 2 Fundamentals of interferometry. 

Transfer function 
n 

A(u) 

observed one D(w). It is important to stress that the transition from G ( w )  to D(w)  
is completely determined by the spectral window. If the data are irreguarly spaced, 
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116 V. V. VITYAZEV 

the spectral window usually has a central peak a t  w = 0, side peaks centered at  some 
frequencies w = w k ,  k = 1 ,2 , .  . ., and side lobes of the central peak and of the side 
peaks. The side lobes are caused by a finite time span of the observations. They 
exist even for uniformly spaced data. The side peaks appear only if the data are 
spaced irregularly. According to Eq. (2.12), all these features are present in the 
observed spectrum. Indeed, the central peak is visible a t  w = W O ,  and, showing true 
features of the initial spectrum, it can be called the true peak. The side peaks are 
responsible for the spectral features at w = Iw f w k ) .  The initial spectrum G ( w )  has 
no lines at these frequencies. Hence, these features are false and may be regarded 
as “ghosts”. 

3 FUNDAMENTALS OF INTERFEROMETRY 

The intensi ty  of radiat ion from any source on the sky can be described in terms 
of position (a ,6) ,  wavelength ( A )  and time ( t ) .  Each measurement is an average 
over a band of wavelengths and over some span of time. Here, the one-dimensional, 
monochromatic and instantaneous approximation is used to simplify the discussion. 
The resulting specific intensity Tb(0) that describes the distribution of the source 
brightness along the arc of a circle (0 is the angular coordinate) has a Fourier 
transform pb(u), which is called the spectrum of spatial  frequencies .  Correspond- 
ingly, when an interferometer measures the visibil i ty data p,,(u), the image, or the 
map T,(0) can be calculated by the Fourier transform of pa(.). Two fundamental 
relations are valid: 

T,(O) = A ( 8 )  @ Tb(0) (Convolution), (3.1) 
pa(.) = A(u) . p b ( U )  (Multiplication), (3.2) 

where A(0)  is the beam of an interferometer, and A(,) is the transfer  funct ion.  
Equation (3.2) determines an interferometer as a f i l t e r  of spatial  frequencies ,  whereas 
Eq. (3.1) explains why, due to the convolution of Tb(0) with the beam A(O), the 
resulting image is called a dirty map. Figure 2 summarizes the fundamentals of 
interferometry considered here. For further details the reader is referred to Esepkina 
et al. (1973) and Thompson e t  al. (1986). 

4 COMPARISON OF THE CONCEPTS, PROBLEMS AND METHODS 

From Figures 1 and 2 one can see that in the analysis of time series and in the 
interferometry the Fourier transforms, the convolution and the correlation are the 
basic mathematical tools. Moreover, these figures show “who is who” in both sci- 
ences. Really, at  the first level we introduce rigorous (theoretical) quantities. In 
the spectral-analysis case they are the power spectrum and the correlation function; 
in the interferometry their counterparts are the distribution of brightness and the 
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THE TIME INTERFEROMETER 117 

spatial spectrum. At the second level we have estimators of the strict quantities. 
In the spectral-analysis, they are the periodogram and the correlogram, whereas in 
the interferometry these are the map and the visibility data, respectively. Finally, 
equations which connect the quantities of the two levels are identical (convolution 
and multiplication) and include the characteristics of observations: the beam and 
the transfer function and their analogs, i.e. the spectral window and the function 
C ( T ) ,  for which in the spectral analysis no name exists. 

In reality, due to finite dimension of mirrors and finite time spans of observations 
we cannot get the distributions of brightness on the sky and the power spectra of the 
time series, and what we can do is to find their as good as possible approximations. 
In optics or in radio astronomy, when the filled apertures are used, the maps are 
produced directly in the focal plane of a telescope. Analogously, when the time 
series is given at  all points of some interval or at  time points regularly spaced 
within the interval, the evaluation of the periodogram can be made quite easily. 
When an interferometer is used, the aperture is not solid, and what we can measure 
is the visibility data, i.e. the estimator of the spectrum of spatial frequencies. The 
longer the baseline, the less area in the (u - v)-plane can be filled and the more 
dirty the resulting map becomes after transformation of the visibility data from the 
(u- v)-onto (a - 6)-plane (in the one-dimensional case the u- and &domains should 
be considered, but for the sake of convenience we use the standard terminology). 
To overcome this, various techniques of the aperture synthesis are used, and this 
leads to complete solution of the problem since it allows to fill the (u - v)-plane 
completely. If the aperture synthesis provides the partial filling of the (u - v)- 
plane, the cleaning procedures can be used with the aim to eliminate from the map 
the artifacts of the “holes” in the (ti - v)-plane. The same problems we meet in 
the spectral-analysis case, when the time points are distributed irregularly or have 
long gaps. In this case the correlograms cannot be determined for all values of 
time lag 7, and this would give false features in the resulting periodograms. This 
is the point where the main idea of the present paper is hidden. It is: whether 
it is possible to apply the aperture synthesis method to  spectral analysis of time 
series? 

5 SYNTHESIS OF THE CORRELOGRAM 

It is known that to fulfill the aperture synthesis one should have an interferometer 
with changeable baseline. Of all the schemes of the aperture synthesis, the one 
proposed by Ryle (1960) is the most suitable for us (Figure 3). This tool consists 
of two antennas A and B fixed at  the separation L.  The third antenna C is moving 
in the interval [ L / 2 ,  L].  At each position of the moving antenna one obtains two 
interferometers (AC) and (CB)  with the baselines 1 and L / 2  + I ,  and they yield 
the values of the visibility data Ta at the points u = l / X  and u = U / 2  + 112, where 
U = L/X. Obviously, while antenna C sweeps all the interval [ L / 2 ,  L ] ,  the visibility 
data pa(.) become available at  all points of the interval [0, V ] .  
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A 

Observations + 
C B 

Figure 3 Ryle's scheme of aperture synthesis. 

Now we apply this idea to the time series analysis. It is not difficult to show 
that 

-! ] ' h ( t )  h(t + 7) dt .  
T C(7) = 

0 

When the time series X ( t )  is known at  each point within the interval [0, 27, the 
function h(t)  equals unity elsewhere, and from Eqs. (5.1) and (5.2) we get 

T 

D ( w )  = J (1 - r/T)k(.)  cos (W.) d r  
x 

0 

(5.4) 

Comparison of Eqs. (5.3) and (2.10) tells us that in the absence of gaps the spectral 
window W(w) can be written in the form 

2 sin ( w T / 2 )  
w ( w ) =  [ wT/2 ] (5.5) 

This spectral window has no side peaks, and consequently the power spectrum 
corresponding to (5.4) is clean. Now we see that the principal problem in evaluating 
the periodogram (5.1) is to evaluate the correlation function k(.) at all points of 
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Observations __f 

1 1 
t + T/2 t + T  t 

1 

0 n o o o o o o n o n o  

i 

Figure 4 The synthesis of a correlogram. 

the interval [0, 7'1. When we have no gaps this can be done easily with the help 
of Eqs. (2.2) and (2.3).  Really, every two points spaced at  the distance T may be 
called the Time Interferometer with variable baseline T, and each such pair yields the 
estimation of the correlation function (the correlogram) by averaging the products 
X ( t ) X ( t  + T) over the set of realizations. This follows from our assumption that 
X ( t )  is a stationary stochastic process, and it is very important for our study. To 
proceed further, assume that we have a gap in observations. Let the length of the 
gap be 1 and the longest distance between the borders of the gap and the boundary 
points of the interval [O,T] be a. If 1 5 a then the correlation function k(7) can 
be evaluated at  all points T E [O,T], otherwise only on the subintervals [O,a] and 
[l,T]. Figure 4 illustrates the former situation. Here we assume that initially the 
time series is given a t  two points tl and tl + T/2. This pair of points (the Time 
Interferometer) allows us to get the correlation function only at  the point T = T/2. 
Let us make new observations a t  the points tl + T/2 < 1 < tl + T .  It is clear that 
each new point t = 11 + T/2  + T yields two additional values of the correlogram, 
namely, a t  the points T and T/2 + T .  Obviously, when the observations will cover 
the interval [tl + T/2,tl + TI, we shall obtain the values of the correlogram at all 
points of the interval [O,T], and the periodogram D ( w )  calculated from Eq. (5.3) 
will be clean. 

It is instructive to compare Figures 3 and 4. The fixed antennas A and B are 
the counterparts of the boundary points tl and tl + T, while each new position 
of the moving antenna C is nothing else but the new point of observations. Since 
Ryle's interferometer makes the synthesis of the visibility data, it is a good reason 
to call the estimation of the function k ( ~ ) ,  shown in Figure 4, the synthesis of the 
correlogram. 

Return now to the situation when 1 > a. In this case the correlogram turns out 
to be evaluated at  all points except the new gap of the length 1 - a. Now, for the 
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periodogram D(w)  one has 

(1  - r/T)h(r) cos ( W T )  d7 ,  
0 

where the correlation window h(r)  is defined as 

- 1, i f O < r < a o r l < . r < T ,  
0, i f a < r < l .  h ( r )  = (5.7) 

It is clear that the spectral window corresponding to the correlation window (5.6) 
has side peaks and Eq. (5.5) gives us a dirty spectrum in which the artifacts of the 
new gap can be seen. Nevertheless, one can expect that this new spectrum will 
be less contaminated than the periodogram calculated directly from Eqs. (2.8) and 
(2.9). Thus we see that to clean the spectrum completely one needs to perform 
more observations until the condition 1 5 a becomes true. 

6 SYNTHESIS OF THE CORRELOGRAM FOR A SINGLE REALIZATION 

The method considered in the previous section is based on the possibility to evaluate 
the function k(.) by averaging the product X ( t )  X ( i  + r )  over a set of realizations. 
In astronomy, we usually have time series that are defined by a single curve. In this 
section we consider the kind of the synthesis which can be done in such cases. 

With this aim, we assume that the time series is given as a product of two 
functions 

Y(t)  = W )  f(q, Q I t I T I  (6.1) 

where T is the length of the realization. Now we introduce the periodogram D(w) 
and the correlogram ~ ( r )  of the time series (6.1) by the following equations: 

T-7 

It can be easily shown that both functions are related by 

T 

D ( W )  = j x ( 7 )  COS (W.) d7. 
A 

0 
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THE TIME INTERFEROMETER 121 

As before, the spectral window h(t) is defined by Eq. (2.6). If the time series f ( t )  
is a continuous function then the spectral window h( t )  can be considered as having 
values 0 or 1 at some subintervals of the time span [0, T] in such a way that 

0 

where Th is the total length of the observation period and T - Th is the length of 
gaps. 

Assume that f ( t )  is a polyharmonic process 

n 

where Ak, W k  and p k  are the amplitude, the frequency and the phase of the k-th 
harmonic. It is not difficult to show that for sufficiently large T the correlogram 
(6.1) of the function (6.6) is given by 

n 

x(7) = H ( 7 )  x(A:/2)cos(wb') ,  (6.7) 
k = l  

where 
T--r - .  

H ( 7 )  = 1 J h(t)  h(t + 7) dt .  
T 

0 

Substitution of (6.8) into (6.4) yields 

where the spectral window W(w)  is 

(6.10) 

Again, the spectral window W(w)  depends on the time window h( t ) .  If there are 
no gaps in observations, we have 

T 
H ( 7 )  = 1 - - (6.11) T 

and the spectral window, defined by Eq. (5.4), yields a clean power spectrum. 
Otherwise, when some observations are missing, the spectral windows having side- 
peaks at frequencies ijp, p = 1 , 2 , .  . ., will produce dirty spectra, i.e. the spectra 
contaminated by false features at  the frequencies IWk f Wpl. 
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Comparison between Eqs. (6.1) and (6.7) shows that the correlogram of f ( t )  
multiplied by the time window h ( l )  has its own system of gaps, defined by the 
function 

1, if H ( T )  > 0 ,  
0 ,  if H ( T )  = 0. h ( ’ ) ( t )  = (6.12) 

It is easy to understand that the new time window h( ’ ) ( t )  defines the new gap, the 
length of which is less than that of the initial time window, i.e. 

Ti1) < Th. (6.13) 

For this reason it is always possible to fill the gaps completely a t  least by iterations. 
Thus we see that the correlation transform defined by Eq. (6.3) reconstructs the 
polyharmonic function (6.6) inside the interval [O,T] at the subinterval which is 
longer than the set on which the function was  available initially. Of course, this 
reconstruction is not complete: the information on phases is lost and due to the 
amplitude squaring the weak harmonics may be lost as well. Nevertheless, the 
cicatrizing of the gaps leads us to the clean spectra. 

For this purpose we introduce the following iterative procedure: 

(6.14) 

v =  1,2 ,  . . . ,  

where 

X ( O ) ( T )  = - h ( t )  h(t + T) f ( t )  f ( t  + T) dt .  (6.15) 

For the polyharmonic function (6.6), provided that T is sufficiently large, the iter- 
ated correlogram has the following structure: 

T 7 .  0 

where 

and H ( ” ) ( r )  can be computed by the following procedure 

H ( q T )  = L T ~ T H ( ” - l ) ~ T / ~ ~ ( u - l ) ~ T /  + .) dT’ 
0 

(6.16) 

(6.17) 

(6.18) 

v =  1,2,  . . . ,  
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where 
T--7 

H(O)( r )  = - h(t)  h(t + 7)  dt .  T ‘ J  
0 

Now, each step of the procedure yields a periodogram 
T 

which, due to  Eq. (6.9), can be written in the form 

where 
T 

W(”)(W)  = 7r ] H(”)(T) cos ( W T )  d r ,  
0 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

v = 0 ,1 ,2 , .  . . 
Equation (6.22) tells us that in the process of iterations the profiles of the spectral 
lines change their form. To study these changes we assume that the correlation 
window h ( t )  can be described by the polyharmonic function 

03 

h(2) = a0 + C yj cos (wjt + ~ j ) ,  (6.23) 

where (YO and -yj characterize the presence of the gap (when the interval [O,T] is 
filled completely (YO = 1, ̂ (i = 0, j = 1 , 2 , .  . .). Now, for T >> 1 straightforward 
calculations yield 

j = 1  

1 H(O)(T) = - T - - 7  [(Y:+iyTco“(”‘) , 7; cv 

j=1 
T 

and a t  the v-th step we get 

where 

(6.24) 

(6.25) 

(6.26) 

(6.27) 
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v = 1 , 2 , .  . . , 

(6.28) 

We see that the influence of the gap on H ( ” ) ( r )  diminishes (when 7, < 2ao 
as v increases. For this reason, in the process of iterations, the side peaks in the 
spectral windows W(”)(r)  become weaker, and subsequently the false peaks in the 
periodograms B ( ” ) ( w )  disappear. Thus one can say that the amplitude squaring 
suppresses the effects of gaps in the resulting spectra. The iterations must be halted 
when the side peaks in the spectral windows are negligible compared to the intensity 
of the central peak. The formalization of this will be given in the next section. 

7 SYNTHESIS OF THE CORRELOGRAM IN THE PRESENCE OF NOISE 

Let us see how our method works when a Gaussian noise with zero mean value is 
added to the signal f ( t ) .  In this case the periodogram will be contaminated not 
only by the “ghosts” due to gaps but by the random peaks due to the noise as well. 
In spectral analysis of noisy data the probability distribution of the random variable 
D(O)(w) for the case when the time series is pure noise is of paramount importance. 
It is known that for even time series the probability distribution is exponential, 
but in the general case of irregularly sampled data this is not so (Scargle, 1982). 
Nevertheless, in many practical cases the deviation is rather small (Scargle, 1982; 
Terebizh, 1992), and the exponential law is not a bad approximation. Moreover, 
it is not difficult to  show that the distortion of the exponential law occurs only at  
the frequencies G36/2, k = 1 , 2 , .  . ., where the Gk are those frequencies at  which the 
spectral window has side peaks (but not side lobes). In particular, for all the points 
distributions considered in this paper, the strongest distortion corresponding to the 
first side peak does not exceed the factor two. Neglecting this single frequency 
feature, we adopted for the rest of them the exponential law. This enabled us to 
use the standard techniques for detecting signals in noise. In our problem due to 
two sources of contamination for the M-point discrete time series it is useful to 
introduce the following quantities: 

where (D(O)) is the mean value of the periodogram D(O)(w), D,,, (0) is the largest value 

in the periodogram D(O)(w),  W;?, is the intensity of the strongest side peak in the 
spectral window W ( O ) ( w ) ,  r is the “signal to noise” ratio, and q is the significance 
level for detecting a signal in noise (0 5 q << 1). 

Obviously, D, is the detection threshold of a signal in noise, while Dh is the 
threshold to separate the true spectral lines from the false peaks (due to  gaps in 
observations). The value D, is based on Walker’s distribution of the strongest 
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account in the periodogram (Walker, 1914; Terebizh, 1992). The introduction of 
the ratio r in Eq. (7.1) allows us to solve several problems. If a pure signal is 
considered, then r = 00 and D, = 0. On the contrary, when we have pure noise, we 
put T = 0. In general, 0 5 T 5 00 and we consider the following situations. 

(1) Dh 5 D,: This inequality occurs when noise is sufficiently strong, but the 
gaps in observation are small. In this case all false peaks are hidden in the peaks 
of noise, since the gaps spoil the spectrum less than noise. Here we have no reason 
to clean the spectrum, and the detection of a signal is claimed according to the 
well known rule: the spectral line at frequency w is thought to be a signal with the 
probability (1 - q )  if 

D(’)(w) 5 D,. (7.3) 

(7.4) 

Still, if we shall apply the method of iterated correlograms with the convergence 
condition 

WC.a, / W(”) ( 0 )  << wgx / W(O) (0) , 
then with the same probability we shall obtained the true lines while all “ghosts” 
and noisy peaks will be suppressed. Thus we see that our method not only cleans 
the spectra from the features due to missing data, but suppresses the noise as well. 

(2) Dh > D,. This is the opposite case: the data is slightly noisy, but the gap 
is long. This time the cleaning of the spectrum is needed, and the iterations must 
be made until the false peaks are below the detection threshold: 

After the end of this procedure we come to the situation described earlier. 
Summing up the results of Sections 6 and 7, one can say that the correlation 

transform (6.3) of a polyharmonic function given on the interval of time with a gap 
has a property to reconstruct the function at  the gaps. This restoration can be 
regarded as a specific kind of the synthesis described in Section 5. Indeed, while 
the averaging over the set of realizations yields directly k(~), the averaging over 
the set of time points yields k ( ~ )  weighted with the correlation window H ( T ) .  This 
function remembers the fact that the time series was gapped and produces in the 
periodogram (6.4) just the same false peaks that would be were the periodogram was 
computed directly from Eq. (6.2). The second, third, etc., correlation transforms 
make the gap smaller and smaller, but at  the same time they force the spectral 
window H ( ” ) ( T )  to be more and more like the triangular window (6.11). There are 
two parameters D, and Dh that control the algorithm. If we want to eliminate 
completely the effects of gaps, we must stop the iterations according to condition 
(7.4). Unfortunately, in this case there is a danger that weak lines in the spectrum 
will be lost. In other words, in the final spectrum we shall find only the lines of 
those harmonics whose amplitudes obey the condition 

where A,,, is the largest amplitude in (6.6). 
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A more realistic approach which takes into account the presence of noise tells 
us that a complete suppression of the false peaks is not necessary for a reasonable 
interpretation of the spectrum. It is quite sufficient to reduce the false features so 
that they are below some level defined by the detection threshold D,.  In this case 
the end if iterations is determined by the condition (7.5). 

In reality, the suppression of weak signals is not strong if the contaminations of 
the spectra by noise and by gaps are comparable. In such cases only 2-3 iterations 
are needed. In the opposite case more iterations is required and the distortion of the 
spectral lines in the final spectrum may become noticeable. Still, even distorted, 
the remaining lines are the true ones, since after the complete synthesis of the 
correlogram we have no reason to expect the appearance of the “ghosts”. 

8 NUMERICAL RESULTS 

To see how our method works when data are taken from observations, we took a 
time series of the polar variations of latitude (henceforth, the PVL) 

Acp(t) = z ( t )  cos (A )  - y(t) sin (A), (8.1) 

where the coordinates of the pole z ( t )  and y(2) were taken from the Annual Reports 
of the BIH for 1967 to 1986 at the interval A t  = 0.1 yr. The values Acp(t) were 
computed for the longitude X of the Pulkovo observatory. This time series consists 
of the annual and Chandler harmonics with periods 1.00 and 1.18 yr, respectively. 
The properties of the PVL are well known and it is the reason to use it as a standard 
while testing new methods of spectral analysis. The original PVL is slightly noisy, 
that is why to  test our method in the presence of noise we added to the PVL the 
Gaussian noise with zero mean value in such a way that in all examples the ratio 
“signal to noise” equals unity. Also, in all numerical runs we fixed the significance 
level a t  q = 0.05. Besides this, to enhance the contrast between weak and strong 
lines in the spectra we plotted not the periodograms but square roots of them. The 
resulting correlograms and periodograms are given in the normalized form (with 
respect to the largest value). Below we show the application of our method to 
several typical patterns of gaps. 

8.1 

Figure 5 illustrates the application of our method to the time series PVL (120 
regularly spaced points without gaps). The levels D, and Dh are indicated for the 
periodograms. In this example, Dh denotes the level of the first side lobe (not the 
side peak). As expected, we have D, > Dh, and, strictly speaking, no cleaning is 
needed. Still, we made two iterations and suppressed both the noisy peaks and the 
structure of the side lobes. In this case the periodogram was contaminated by noise 
and side lobes (but not by the side peaks). 

A n  Even Distribution of Points 
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8.2 A Long Gap 

In this case of 120 regularly spaced points we omitted 54 points starting from the 
3 4 t h  one. The results of spectral analysis are shown in Fig. 6. The periodogram 
of initial time series with the long gap turned out to  be contaminated by false 
lines and noisy peaks. The detection thresholds are now in the relation D, < 
Dh. For this reason we made 3 iterations and obtained the 3-d order correlogram 
without gaps and the 3-d order periodogram in which all the false peaks have become 
unsignificant . 

8.3 Irregularly Missed Points 

Figure 7 illustrates the application of our algorithm to the spectral analysis of the 
PVL given at  120 points of which 57 points were randomly omitted. We see that 
the initial periodogram contains many features. In this case we have D, > Dh, so 
the spectrum can be interpreted without confusion. Still, we made one iteration 
and suppressed the level of noisy peaks and that of false lines. 

Periodic Gaps 

Off all the patterns of gaps the periodic gaps are the most typical of astronomical 
data. We tested our method for this case too, making 0.5 yr gaps following each 
other with 1 yr period. Figure 8 shows that our method worked successfully: two 
iterations were enough to separate true lines from noise and to suppress all ghosts 
below the detection threshold. 

9 ANALYSIS OF TIME SERIES WITH UNEVEN VARIANCE O F  NOISE 

The practice of long-time acquisition of data shows that the resulting time series are 
seldom uniform with respect to the intrinsic accuracy of the measurements. This is 
caused by various obstacles: aging of instruments, change of observers, periodical 
changes of weather, etc. The variations in accuracy are clearly seen in the compiled 
time series, the fragments of which have been obtained by observers at  different 
observatories. 

It is a curiosity, but in the vast scope of special literature dedicated to spectral 
analysis, treating of time series with variable noise component has not yet been 
considered. The first step smoothing procedures are of little importance in this 
case, since they redistribute the noise and spoil those fragments where the accuracy 
was initially good. Still, there is one simple way to make the time series uniform with 
respect to noise. I t  implies that all the measurements should be properly weighted. 
This approach is widely used in the least squares technique. One can hope that the 
weights will suppress the noise component, but at  the same time it is clear that the 
weights may substantially change the spectral content of the systematic component. 
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If some points of the time series are multiplied by zero weights, then it means that 
these points are simply omitted. Whence it is clear that the treating of time series 
with assigned weights is close to  the problem of treating gapped time series. 

Now we assume that the polyharmonic function (6.6) is observed in such a way 
that a t  various time points the root mean square error has two values u1 and u2, 
(61 < ~ 2 ) .  For this reason the time window function is determined as follows: 

(9.1) 
if at point t the r.m.s.e. equals u1 
if at point t the r.m.s.e. equals u2. 

w(t) = 

All remaining definitions and mathematical relations remain unchanged except that 
the value r in the definition of Dq must be replaced by 

where A is a fraction of weighted information (with respect to the total number of 
points, for example), p1 is the “signal to noise” ratio a t  those points where w( t )  = 1. 

Now, we again give numerical results to show the application of our approach 
to the variably noised time series. 

9.1 A Long Fragment of  Measurements with Low Precision 

This time the PVL was divided into 3 segments containing 33, 54 and 33 points. 
It was assumed that the first and the third fragments were measured with high 
precision (“signal to noise” ratio was 2), while the second segment with low precision 
(“signal to noise” ratio was 0.2). In Figure 9 we see that the periodogram of the 
raw time series is too noisy to be properly understood. After weighting the 54- 
point segment with w(t) = 0.316, the level of noise in the periodogram substantially 
decreased, and at  a 95 percent confidence level we could claim the detection of four 
lines. The inequality Dh > D, tells us that false peaks are present among these 
four peaks. One iteration suppressed the noise peaks and forced the ghosts to fall 
below the detection threshold Dq/Dkax.  As a result, the two lines - the annual and 
Chandler’s ones are clearly seen far above the level of 0.05 significance in the 3-d 
order periodogram. 

9.2 Periodic Changes of Accuracy. 

Figure 10 illustrates spectral analysis of the PVL when the “signal to noise” ratio 
varies from 0.1 to 10 a t  a 1 yr period. Again, the periodogram of the initial time 
series turned out to be strongly contaminated by noise. The suitable weighting by 
w ( t )  = 0.1 at once gave a periodogram with strong false peaks, which have been 
eliminated by iterations. 
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9.3 A Strong Noise at Randomly Distributed Po in t s  

In this example it was simulated that the “signal to noise” ratio equals 10 a t  57 
randomly chosen points while a t  the rest of 120 points, considered in example 9.1, 
it is 0.1. Figure 11 shows the work of the method under consideration in this 
case. We have the same situation: the weighting decreases noise but produces 
false lines. The cleaning procedure based on the iterated correlograms reduces 
the “ghosts” below the detection threshold, leaving only two real lines in the final 
periodogram. 

10 CONCLUSIONS 

The idea of the Time Interferometer is useful for it helps us to adapt some methods 
of interferometry to problems of the spectral analysis of time series (and, hopefully, 
vice versa). This concept forced us to make a thorough comparison offundamentals, 
method and problems common to both sciences. Partially such study was made by 
Roberts et al. (1987) when they transferred the two-dimensional CLEAN algorithm 
(Hogbom, 1974) widely used in the radio-astronomy to the spectral analysis of 
gapped time series. 

The basic topic of this paper is an attempt to use the idea of the ( u  - v)-plane 
synthesis to the computation of correlograms. This idea follows from the conceptual 
identity between the visibility data and the correlogram. Two methods of the 
correlogram synthesis have been proposed. The first one is basically interferometric 
and can be realized if the time series is given as a set of realizations. When the 
only realization is available, the averaging over realizations is replaced by time 
averaging. In this case one can synthesize only product of correlograms and a 
certain correlation window. Here the idea od synthesis becomes not so evident, 
and its further development has led us to  the method of iterated correlograms. 
This method was described in detail and its applications to gapped and weighted 
astrometric time series was made. 

In fact, the method of iterated correlograms solves the so-called restoration 
problem. The simplest inverse method to  solve this problem is based on the de- 
convolution of Eq. (2.10), but this way is successful only in the absence of noise. 
In the presence of inevitable noise associated with any measurements, the simple 
deconvolution method proves to be unsuccessful (Brault and White, 1971). On 
the contrary, our method is not inverse since it is based essentially on direct cor- 
relation transforms which can only suppress noise, not to enhance it. From this 
follows that our method is stable in the presence of noise. As mentioned above, 
our method suppresses weak harmonics as well and the more the longer the gap is. 
For this reason the application of the method should be restricted to time series 
in which the total length of gaps is no more than 50-70 percent of the total time 
span. 
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