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A GASEOUS DISK IN EXTERNAL BARRED 
POTENTIAL: ANGULAR MOMENTUM AND 

MASS TRANSFER 

V. V. LEVY, V. V. MUSTSEVOY, and V. A. SERGIENKO 

Volgograd University, Volgograd, Russia 

(Received April 20. 199s) 

The evolution of the gaseous disk of a flat galaxy in the field of external gravitational potential 
of stellar disk, spheroidal component and rotating bar-like perturbation is simulated. The bar- 
like perturbation amplitude is growing from zero up to some cut-off value and does not change 
thereafter. 

It is shown that with rapidly growing bar such disk passes through two stages of evolution. 
In the f i s t  one the mass and angular momentum redistribution (following the density spiral wave 
generation by bar potential) leads to dynamic separation of the central and peripheral regions of the 
disk. In the second stage a quasi-periodic process sets up. During every quasi-period there occur 
consequently: a superposition of two-armed spiral wave and perturbation ring moving outwards; 
a distortion of the spiral perturbation into a ring; the stop of the resulting ring-like perturbation 
and the development of the inward motion which reflect a t  the outer Lindblad resonance. 

The angular momentum and mass transport and physical mechanisms governing quasi-periodic 
process are analyzed in detail. A possible application of the results obtained to the interpretation 
of the dynamics of SB galaxies is discussed. 

KEY WORDS Gas dynamics, numerical simulation, barred galaxies 

1 INTRODUCTION 

A detailed investigation of the dynamics of angular momentum and mass transfer 
in gaseous disks is important for modelling of evolution of flat galaxies as well as 
for a correct treatment of observational data for such objects. On the one hand, 
if the transport mechanisms are effective, the observed distributions of angular 
momentum in galactic disks are not steady, and may greatly differ from those existed 
at  any previous stage of evolution (Gorbatsky, 1986; Saslaw, 1987). On the other 
hand, a number of investigators pointed out that rotation curves and gas surface 
density distributions are determined not only by the radial equilibrium of centrifugal 
and gravitational forces, but also by some dynamic effects caused by momentum 
transfer (e.g. Lynden-Bell and Kalnajs, 1972; Morozov et al., 1985~).  

In galactic gaseous disks the viscosity and nonaxisymmetric density waves can 
redistribute angular momentum rather effectively, and besides, such redistribution 
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2 V. V. LEVY et al. 

may be caused by nonaxial symmetry of gravitational potential (due to tidal inter- 
action, development of stellar spiral or bar modes, etc.). The two latter mechanisms 
are closely related to each other, since nonaxisymmetric potential inevitably leads 
to the generation of gas density waves in potential wells of stellar density waves 
(Roberts, 1963; Marochnik et  al., 1983; Kovalenko and Levy, 1992). 

Momentum exchange due to interactions of interstellar gas clouds largely gov- 
erns viscous transport of angular momentum in stellar-gaseous disks in the absence 
of spiral density waves (Gorbatsky, 1986). Typical parameters of the cloud motion 
(with mass of about lOOMo), the “free path length” between “collisions”, the num- 
ber of collisions during the life time, etc.. allow to describe this process quite well 
with collisional viscous perfect gas equations, clouds being treated as gas particles 
(molecules)+. A number of numerical experiments (Gorbatsky and Serbin, 1983; 
Gorbatsky and Usovitch, 1986) were performed, where a gaseous disk with param- 
eters close to those of the Galaxy was investigated. Their calculations showed that 
the radial gas flows constant in direction arise due to angular momentum transport 
from inner regions of the disk to outer ones. These flows are directed inwards in the 
inner regions and outwards in the outer, the latter leads to  a considerable growth 
of the outer radius of the disk. In the typical time of 5 x lo8 + lo9 years as much 
as several tenths of the total gas mass flows out through this radius. Besides, the 
nonuniformity of radial velocities produces significant local maxima of gas surface 
density. 

Similar consideration of the gas of giant molecular clouds (mass of about lo5 t 
106Ma) treated as molecules shows that such gzs exhibits some viscosity due to 
gravitational interaction of the clouds, though being collisionless (Gorbatski and 
Serbin, 1983; Fukunaga, 1983). Their numerical simulations demonstrate how the 
initially uniform distribution of GMC produces a ring similar to that being observed 
with a density maximum a t  a radius of 5 kpc. 

Angular momentum transport associated with the dynamical friction of GMC 
upon stellar disk was discussed by Surdin (1980), Lipunov (1982), Sil’chenko and 
Lipunov (1987a, 198713) in the model of collisionless gas of GMC. Sil’chenko and 
Lipunov (1987b) also included viscosity. 

A spiral density wave can transfer angular momentum in a stellar disk (Lynden- 
Bell and Kalnajs, 1972) as well as in a gaseous one (the latter was extensively inves- 
tigated in application to accretion disks - see, e.g. Papaloizou and Pringle, 1985, 
1987; Glatzel, 1987; Savonije and Heemskerk, 1990; Papaloizou and Savonije, 1991). 
The understanding of the origin of excitation and support of global nonaxisymmet- 
ric modes is of crucial significance for analysis of the problem. In the gaseous disks 
the stellar density wave (gas feels it as a gravitational potential well - Roberts, 
1969; Marochnik et al., 1983; Kovalenko and Levy, 1992), or the hydrodynamic 
instabilities due to self-gravity (e.g. Papaloizou and Savonije, 1991) or produced by 
the radial gradients of the disk parameters (Fridnian, 1978) may be of that origin. 
These instabilities, in turn, may be caused by: 

tThe concept of viscosity for such a gas was introduced by Mishurov ei al. (1976) in their study 
of galactic disk stability. 
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A GASEOUS DISK 3 

(i) an unstable distribution of mass forces acting upon the “fluid particles” at  
any deviation from initial equilibrium condition of the disk (the gravitational, 
groove, centrifugal, “strong” dissipative, entropygradient and other instabil- 
ities - see, e.g., Papaloizou and Savonije, 1991; Morozov 1977, 1979, 1989; 
Fridman, 1990; Baev, 1989; Morozov et  al., 1986; Levy and Morozov, 1989; 
Morozov and Hoperskov, 1990); 

(ii) action of surface forces (Kelvin-Helmholtz instability that is due to  the Ber- 
noulli effect - Fridman, 1990; Morozov e t  al., 1986); 

(iii) resonant interaction between the wave and the basic flow in the vicinity of 
the corotation radius, where their angular velocities coincide, orland between 
the modes with different signs of energy density localized on either side of the 
corotation (Papaloizou and Pringle, 1985, 1987; Glatzel, 1987; Savonije and 
Heemskerk, 1990; Papaloizou and Savonije, 1991; Glatzel, 1990). 

Of course, excitation by a combined mechanism (the groove-centrifugal - Frid- 
man, 1990, and the resonant-centrifugal - Morozov e t  al., 1992, etc.) is possible. 
Note that the character of the redistribution of material and angular momentum 
depends crucially on the specific mechanism of the spiral wave development (cf. 
Mustsevoy and Prokhorov, 1992). 

Angular momentum transfer in rotating disk systems with nonaxisymmetric 
gravitational potential was often considered in application to tidal interaction in 
stellar galactic (Toomre 1977, 1981) and gaseous accretion (e.g. Sawada e t  al., 
1987; Larson, 1988; Spruit, 1989) disks, i.e. with a perturbation source lying away 
from the disk, and, consequently, its influence was maximal at one side of the disk 
and minimal at the opposite side. Besides, angular momentum exchange (dynamic 
friction) between the bar potential and stellar galactic disk was studied by Little 
and Carlberg (1991). 

We think it to be rather interesting to investigate the dynamics of angular mo- 
mentum redistribution in gaseous disk in the field of a rotating nonaxisymmetric 
stellar bar. Our attention to this model is caused by the following considerations. 
We guess that some interesting effects may be revealed in this model such as a reso- 
nance between the wave of potential and eigenmodes of the gaseous disk, excitation 
of hydrodynamic gradient instabilities by finite amplitude perturbations, etc., and 
we expect the mass and angular momentum transport to be significantly more ef- 
ficient and occur at  shorter typical times than in the case of self-amplification and 
self-support of perturbations growing from a linear stage. Finally, the data on the 
evolution of disk parameters and spiral structure obtained in experiments with a 
model like that may be very useful in interpretation of processes taking place in SB 
galaxies. 

Note that numerical experiments with a similar model were performed earlier, 
but the objects of study were either the spiral pattern development and evolution 
(see Athanassoula, 1980; Korchagin and Shevelev, 1980, 1981; van Albada and 
Sanders, 1982; Roberts and Haustman, 1984; Matsuda e l  al., 1987) or the gas 
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4 V. V. LEVY et al. 

dynamics in the central part of the disk, the inflow and outflow rates in the galactic 
nucleus region (Athanassoula, 1988; Afanas’ev et a l . ,  1989)t. 

This paper appeared as a result of combination of two approaches to gas disk 
investigation. The numerical experiments performed by VVL with different aimes 
(see footnote 2 )  gave a lot of data that confirmed the theoretical results obtained 
by VVM. 

In Section 2 we formulate the problem and give the model description and basic 
equations. Section 3 describes the method of numerical experiment and the values 
of parameters used. The results are analyzed in detail in Section 4, and Section 5 
is devoted to possible astrophysical applications. 

2 THE MODEL AND BASIC EQUATIONS 

We consider the evolution of a gaseous disk rotating in an external gravitational field 
simulating the stellar subsystems of a flat galaxy - a spherically symmetric (halo 
and corona) and axisymmetric (disk). Not-axisymmetric component simulating 
the excitation of stellar bar-mode grows smoothly and comes to  a fixed amplitude 
(nonlinear saturation). 

2.1 The Gravitational Potent ial  

The surface density distribution in the stellar disk is assumed to be exponential: 

a*(r)  = a*oexp(-r/L,), (1) 

where T is the distance from the disk axis of rotation, L ,  is the typical length scale of 
surface density. Hence the total mass of the disk is M D  = 27ra,oL;, its contribution 
to the gravitational potential of the system is the following: 

here ZI(z) and Ko(z)  are the modified Bessel functions, G is the gravity constant. 
The distribution of volume density of the spherical component is assumed to 

been 
e*(s) = e*o/(l+ s 2 / G ) ,  (3) 

where s = ( r 2  + .z2)l/’ is the distance from the center of the system, RH is a typical 
size of the halo core. In order to calculate the potential of halo correctly we have 
to scale it in such a way that @ H ( S )  + 0 at  s + 00. Besides, since it is spherically 
symmetric and the numerical grid is finite we may assume ~ * ( s  > T,,,) = 0, where 
rmax is an outer boundary of the numerical grid. 

tIn this paper we do not discuss the processes in the central (close to nucleus) part of the disk, 
since they are objects of special consideration (Levy, 1993). 
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A GASEOUS DISK 5 

The axisymmetric potential in the plane of the gaseous disk, 

 TI^ = 0) ‘d‘O(r) = $ ‘ D ( r )  -k $If (r ) ,  (4) 

(5) 

is disturbed by a bar-like perturbation, so that the total potential of the system is 

$‘(r ,v~t )  = $‘O(r) (1 +&(r,t)coS[2(Y7- R B t ) ] )  I 

E ( T ,  t )  = &oA(t)(r/a)2[1 + ( r / ~ ) ~ ] ] - ” / ” ,  

~ ( t )  = 

where RE is the bar angular velocity, and the amplitude function of the perturbation 
is 

(6 )  

(7) 

where 
if t < 0, 

if t > 78, 
sin2 ($$) , i f 0  5 t 5 T B ,  { 1: 

EO is the “bar amplitude”, 78 is its typical time-scale. The typical length-scale of 
the bar a is taken as the length unit hereafter. 

2.2 

We neglect self-gravity of the gaseous disk, i.e. we assume its mass to be small, 
so that the redistribution of mass during the disk evolution cannot affect the grav- 
itational potential of the system. Besides, we suppose that the total mass of the 
gas in the disk MG is conserved (that is, star formation and cloud formation of gas 
ejected by stars balance each other). We assume the initial gas density distribution 
to be exponential: u(r , t  = 0) = uoexp ( -T/L, , )~ and internal energy per mass unit 
to be constant: e = const. It means that the disk is initially isothermal and may 
be described by equation of state for perfect gas: 

The  Model of the Gaseous Disk 

where p is the two-dimensional gas pressure, y is the two-dimensional specific heats 
ratio. 

Following Churilov and Shukhman (1981), we assumed y = 3/2. Note, by the 
way, that the applicability of Eq. (8) with such a value of y to a gas of cloud- 
macromolecules has observational evidence besides theoretical results of Churilov 
and Shukhman (1981). Indeed, in a polytropic gas the surface density and sound 
speed c, (for the latter the dispersion of interstellar gas cloud velocities assumes) 
are not independent but are related (see, e.g. Fridman, 1990) as c , ( T ~ ) / c , ( T ~ )  = 
[u(.1)/u(r2)](Y-’)/ /”,  where q and r2 are arbitrary radii. At the same time, ob- 
servations show (Sanders et al., 1984) for the solar neighborhood (TO x 10 kpc) 
that uO x 8M,/pc2, c,, x 8 km/s, and in the central region ( re  x 1 kpc) 
u, x 600MO/pc2, csc x 20 km/s, which roughly (allowing for observational errors 
and the fact that in central regions of a real disk the law governing the processes in 
gas surely differs from the polytropic one) corresponds to the value of y = 3/2 and 
we have no reasons to regard this feature to be specific only for the Galaxy. 
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6 V. V. LEVY e t  al. 

We simulate the cooling of the gas of cloud-molecules due to  radiative energy 
losses. Such losses are rather small a t  T < TO 21 lo4 K and rapidly grow at 
T > To. This statement may need some comments for in reality not the gas of cloud- 
molecules but the diffuse gas radiates. Nevertheless, there is a strong correlation 
between the value of dispersion of cloud velocities and the gas luminosity, which may 
be explained with the following considerations (see, e.g., Gorbatski, 1977). First, 
in colliding clouds shock waves appear accompanied by radiation. This radiation 
is the more effective, the higher kinetic energy of the relative motion of the gas 
particles is, which, in turn, grows along with the dispersion of cloud velocities 
(the direct collisions are rather rare - in average over the disk a cloud suffers one 
collision during its life time t o  x 5 x lo7 + lo8 - Gorbatski and Serbin, 1983). 
Second, the mean dispersion of cloud velocities coincides with the sound speed in 
the rarefied intercloud gas, which corresponds to  the temperature of the radiation 
threshold, T w lo4  K .  Consequently, when the dispersion exceeds the mean value of 
c, M 10 km/s, the cloud motion in the intercloud medium becomes supersonic and 
is accompanied by shock waves. Then the cloud is effectively dragged, its energy 
being transferred to  shock waves, which radiate it as usually. 

Note that the two described above ways of cooling of cloud-molecule gas are 
working for the clouds of small mass (20+300M0, e.g., clouds HI and dark clouds - 
cf. Bochkarev, 1991), and do not work for GMC. The first way fails due to the 
GMC gas being collisionless, the second one cannot be applied to  the clouds of 
mass lo5 + 106Ma because they cannot be dragged significantly during their life 
time. Thus, we study not the dynamics of existing GMC, but the possibility of GMC 
formation from the clouds of small mass (see Section 4.6), following Gorbatski and 
Usovich (1986). 

We suppose the gas motion to  be circular at  initial time, V,(r, (p, t = 0 )  = 0, and 
the azimuthal velocity component is determined from radial balance of forces: 

Since the disk initial condition is isothermal, the relation d p  = (y - 1)eda  is valid 
and it follows from Eq. (9): 

V,(r, t = 0) = [d ,bo /ar  - r (y  - 1 ) e / ~ , ] ~ / ~ ,  (10) 

The hydrodynamic equations describing the gaseous disk evolution in an  inertial 
frame of reference are the following: 

(11) 
ab a(ruvr) a ( b b )  = o,  
at Tar racp 
-+- +- 
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A GASEOUS DISK 7 

Here Eo = e+1 ,h+(V~+V~) /2  is the total gas energy per unit mass, 0 is a parameter 
describing gas thermal conductivity, L(e) is a function assumed for the radiation 
losses of gas internal energy. Wrr, Wr, and W,, are the components of the viscous 
stress tensor. 

8.3 Dissipative Effects 

It is evident from Eqs. (11)-(14), that we attempt to include explicitly the effects 
of viscosity and thermal conductivity which act on the gas of clouds. 

The viscous stress tensor components in the disk plane can be written in the 
form 

Wrr 

where 

9 and C are the two-dimensional coefficients of surface shear and volume dynamic 
viscosity (related to  the corresponding three-dimensional quantities as 9 M qv H 
and C w C v H , H  being the disk thickness). 

We made several test runs using the following values of parameters: 0 = 29, 
C = 9 = lo4 + 1 0 - 3 ~ o ~ 2 Q B  (which corresponds to rp = 8 x (10’ + lo3) g cm-l s-’ 
with H ’ w  0.5 kpc). Furthermore, a series of runs was performed with 11 = C = 6 = 0. 
The comparison of the results of the two series exhibit two features. First, in 
“nondissipative” simulations an unavodable (for our computational method and 
grid - see Section 3) numerical viscosity occurs, and, second, it acts qualitatively 
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8 V. V. LEVY e t  01. 

and quantitatively similar to  the physical viscosityt with ‘1” e 3 x lo3 gcm-ls-’. 
Gorbatski and Serbin (1983) and Gorbatski and Usovich (1986) estimate the value 
of gv for the Galactic disk to be at  about this value. This allowed us assume 
I] = < = 0 = 0 in further simulation runs. 

When choosing the radiation energy loss function L(e)  for Eq. 14 we took into 
account that cloud drag described in Section 2.2 is not instantaneous but occurs 
during a finite period. To simulate this process, the following scheme was ap- 
plied. At every time step the energy at  meshpoint where e ( r , cp )  < emax (emax 
corresponds to T a lo4 K) was left unchanged, otherwise the mesh “radiated” 
A e  = X[e(r ,cp)  - e m a x ] ,  where X 5 1 (we adopted X = 0.5). Note that in similar 
models of Athanassoula (1980), Korchagin and Shevelev (1980, 1981), van Albada 
and Sanders (1982), Roberts and Haustman (1984) and Matsuda e t  al. (1987) the 
radiation energy losses were neglected. 

3 COMPUTATIONAL METHOD 

3.1 

In our experiments we used the numerical scheme of “large particles” (Belotserkovski 
and Davydov, 1982) in polar coordinates. The computational grid consisted of 
Nr x N,,, grid points ( N ,  = 150, N,,, = 90) and occupied a semicircle due to  the 
obvious bisymmetry of the model. The grid was equally spaced in the cp-coordinate 
( A 9  = 1/NV), the radial spacing was adopted as 

Computat ional  Metod and Values of  Parameter s  

i+ 1 i 
Ari = RL { sinh [ N,+1 arcsinh ($)I - sinh [ -arcsinh Nr + 1 ($)I} , 

(19) 
where i is the meshpoint number (1 < i < Nr); RL = 1 and R,u = 10. At the center 
of the grid there was a single circular point with radius of rmin = 1.986 x At  
the outer grid radius rmaX = 10, the flow across the boundary was forbidden. 

The major semi-axis of the bar a was taken as the length unit (see Eq. 6), and 
the bar rotation period TB = 21/08 as the time unit. The model parameters were 
adopted as L,  = 3, RH = 1, TB = 0.3, TB = 1 or TB = 3 in these units. We used 
a constant time-step At = 0.0001. The mass ratio of the stellar components (halo 
to disk) was adopted as M H / M o  = 0.567 and we let the gas angular velocity at  
r = a to be R(a,t  = 0) = 1 . 9 0 ~  throughout all the experiments. Such a value 
of R is motivated by bar-mode stability investigations (Polyachenko and Fridman, 
1976) and numerical experiments (Sellwood, 1980; Morozov, 1981; Mikhajlova and 
Morozov, 1988) showing that the bars excited in central regions of the disks (having 
a solid body rotation) are saturated rather soon and possess the phase velocity 
which is about twice lower than the disk angular velocity. The gas internal energy 
e = c;[y(y - 1)I-l a t  initial moment was  chosen in such way that V,(r = u)  = 

tThis fact agrees with all we know about numerical dissipation and dispersion - cf. Fletcher, 
1988 
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A GASEOUS DISK 9 

aO(r = Q) = ~OC,. Finally, the amplitude of the bar-like distortion of gravitational 
potential was set according to € 0  = 0.1, €0 = 0.3 or € 0  = 0.5. 

To simplify the estimations of the parameters in dimensional units we give the 
typical values a M 1 + 2 kpc, R $;: 100 km s-l kpc-’ and u(r 5 0.3 kpc) M 
(0.5 + 2) x 1 0 3 ~ ~ / ~ ~ 2 .  

3.2 Interpretation of the Results 

When interpreting the numerical results, we used an obvious fact that all the quan- 
tities are periodic in azimuthal coordinate. Averaging Eq. (13) over p, multiplying 
it by r and representing all the quantities involved as a sum of a mean value (0) 
and perturbation CP’ = 0 - (a), one can easily obtain a relationship describing the 
angular momentum balance between the perturbations and the mean gas flow in 
the disk: 

(20) 
dH l a ( r F )  l d ( r Q )  - dh 1 d ( r f )  1 d(rq) + -- - + -- - -- 
at r at r ar - - ‘ - a t - P d P  r ar ’ 

where H = r(u)(V+.,) is the mean angular momentum density of the basic flow 
and axisymmetric perturbations; F = r(u)(Vr)(V,,) is the mean radial angular 
momentum flux density of the basic flow and axisymmetric perturbations; Q = 
?(q)/a(O)/ar is the mean radial angular momentum flux density of the basic flow 
and axisymmetric perturbations due to dissipation; h = r(u‘Vi) is the mean an- 
gular momentum density of nonaxisymmetric perturbations; f = r{ (cr)(K’Vi) + 
(V,)(u’V:) + (K)(u’&’Vi) + (u’K’Vi)} is the mean radial angular momentum flux 
density of nonaxisymmetric perturbations; q = r(a’aO’/ar) + (q‘dv,‘/d(o) is the 
mean radial angular momentum flux density due to dissipation of nonaxisymmetric 
perturbations; = (u’d$’/a(p) is the angular momentum exchange rate between 
the waves of surface density and gravitational potential. 

Note, that an equation of angular momentum balance obtained from linearized 
equation (see, e.g. Savonije and Heemskerk, 1990) contains only the first term of 
the four appearing in the above expression for f ,  i.e. the one characterizing angular 
momentum transport due to the Reynolds stress. The second and the third terms 
describe angular momentum transfer due to (respectively) radial and azimuthal 
gas flows induced by the nonaxisymmetric wave, and the fourth one arises due to  
interaction between the perturbations of density and both velocity components. 
These effects are essentially nonlinear. 

4 NUMERICAL RESULTS 

Since the results of all the experiments agree qualitatively, we restrict discussion to 
the run with TB = 1, E = 0.3 and A = 0.5. 
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10 V. V. LEVY et al. 

4.1 Mass Redistribution and Geometry of Perturbations 

In all the runs the two stages can be distinguished in the evolution of the gaseous 
disk. 

The first stage lasts for about three typical times of the bar development TB . At 
this stage the gravitational potential wave with amplitude growing in time excites 
a density wave in the central region of the disk. This wave looks like a barred two- 
armed spiral wave (see Figure 1). It also grows in time occupying the larger area in 
r and its pitch angle (the angle between the tangents to the spiral and circumference 
of a given radius) is p M 20+30° near the bar edge and decreases along the spiral arm 
down to zero. When the bar comes to saturation, it no longer supports the spiral 
wave, and the latter is distorted into the “ring” by differential rotation. Hereafter 
we use the term “ring” to describe a nonaxisymmetric perturbation looking like a 
distorted ellipse (dipole and quadrupole components are well recognized), in the 
same way as it is observed in SB galaxies. This ring-like perturbation, in its turn, 
moves inwards from dimensionless radius r M 5 to r M 3. This is the end of the first 
stage. At this time the initial radial distribution of the average (over p) surface 
density (c) suffers significant changes: it becomes lower than the initial value by 
the factor of 20 in the central region, exceeds it by almost an order of magnitude 
at r 5 0.25 and decreases by more than an order of magnitude at 1 5 r 5 2 i 3. 
Further, this distribution of (c) at r 5 3 remains qualitatively same, though the 
contrasts to the initial value still grow. 

At the next stage a quasi-periodic process sets up in the gaseous disk, its quasi- 
period decreases in time, as well as deviations from periodicity. The quasi-period 
(QP) is about Top M 2.5 + 3 for the first several QPs, but near the time t = 14 
its value becomes quasi-steady: T Q ~  M 2. The sequence of processes during every 
QP is similar to  that described above for the first stage. Visible distinctions are 
the higher amplitude but smaller linear size of the central bar-like structure and a 
visible “separation” of the spiral waves from the bar edgest their pitch angles being 
smaller ( p  M 12 + 20’ at the arm beginning) and life time much shorter (during the 
time of t M 0.5 the spirals are distorted into a ring by differential rotation) - see 
Figure 2. In its turn, the ring splits into two rings, the first moving inward to the 
disk center and the second outward. Though this outer ring motion is essentially 
supersonic during the first QP’s - its starting radial velocity is about 35 + 45 at  
r M 3.5 + 5 (3.5 i 5 kpc in dimensional units), it falls to  15 + 25 km/s at r M 8 (and 
the perturbation vanishes immediately afterward), while c, M 10. Naturally, such 
propagation velocities of the perturbations cause considerable viscous dissipation 
of energy. In the following QP’s the velocities fall to the starting values of about 
10 km/s and ending values of about 7 + 8 km/s. 

The evolution of the surface density Fourier-spectra is shown in Figure 3, the 
spectra are calculated at four typical radii for six different times during one QP. 
The symmetry of the computational grid suppresses the odd harmonics and only 
the even ones appear in the spectra, i.e., exp (imp) with m = 2n, n = 0 , 1 , 2 . .  . 

tThis effect is due to the density depression in the “background” (c). If the contours of the 
relative amplitude of the perturbations u / ( c )  were plotted, the wave continuity would be evident. 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:3
9 

18
 D

ec
em

be
r 2

00
7 

A GASEOUS DISK 11 

Y 
8 

4 

0 

-4  

8 

-8 -3 0 4 8 s  

4 -  

0 -  . 

-4  - 

Figure 1 The gas surface density evolution during the first stage. The contour plots are shown 
for the following levels: with solid lines: a, 0.1, 0.3, 0.5, 0.7, 0.9; b, 0.1, 0.5, 1.0; c, 0.1, 0.5; d ,  
0.01, 0.5; e, f, 0.001, 0.5; with dotted lines - a, 0.05, 0 .2,  0.4, 0.6, 0.8; b, 0.05, 0.25, 0.75; c, 0.05, 
0.25, 1.0; d, 0.001, 0.1, 1.0; e, O.OOO1, 0.1, 1.0; f, 0.001, 0.5. The closed banandike contours in 
Figures Ic-f depict the regions of minimal density. The bar and gas rotate counter-clodtwise. 
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Figure 2 The gas surface density evolution during one of the quasiperiods. The contour plots 
are shown for the following levels: with solid lines: a, 0.1, 0.4; b, c , 0.1, 0.2; d ,  0.2, 1.0; e, 0.2; 
f, 0.75; with dotted lines - a, 0.00001, 0.2,  1.0; 6, c ,  O.OOOO1, 0.5, 1.0; d ,  0.00001, 0.5; e,  0.00001, 
1.0; f, 0.0001. 0.5. The closed banana-like contours in Figures lc-f depict the regions of minimal 
density. The bar and gas rotate counter-clockwise. 
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'0 2 4 6 8 1 0  12 1 4  1 6  1 8  20 22 t 
m-.4 

- r - l T - V  

'0 2 4 6 8 70 12 7 4  76 1 8  20 22 t 
Figure 5 The evolution of amplitudes of surface density predominating azimuthal harmonics 
m = 0, 2,  4. The contours are shown on the plane r , t  for the levels 0.001, 0.1, 1.0 (dotted lines) 
and 0.01, 0.5 (solid lines). 
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16 V. V. LEVY et  al. 

T I - C - '  Y --. 8 . 8  ' I .  

8 : b )  t=21.33- 
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Figure 6 The evolution of the gas radial velocity distribution in the disk plane during one of 
quasi-periods. Solid lines correspond to the regions where the gas moves outvards, dotted lines- 
to the center. The levels f O . l ,  0.5, 1.0 are plotted. The bar and gas rotate counter-clockwise. 
The same moments as in Figures 2-4 are shown. 
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The corresponding azimuthal profiles of the perturbations are presented in Fig- 
ure 4. 

Figure 5 illustrates the evolution of the amplitudes of dominant harmonics m = 
0,2 ,4  of the surface density. It shows that all these harmonics propagate outward in 
the r-coordinate as a sharp peak on the amplitude distribution moving as a whole, 
while the backward motion rather moves this peak towards lower 7’s .  Thus, the 
outward motion is a wave propagation, while backward motion is its disruption. 
The perturbations of the harmonics shown are in phase, which is typical of this 
process. 

The distribution of radial velocities in the disk plane is of certain interest (see 
Figure 6). Note that our results confirm the results by Afanas’ev el al. (1989), who 
obtained a bisectorial flow structure in similar experiments. 

4.2  The Radial Mass Flux 

Two regions in the r-coordinate can be distinguished in the gaseous disk where mass 
transport seems to be quite different. 

In the central region (close to the nucleus) the radial mass flux distribution 
seems to be qualitatively the same during the experiment, the quantitative changes 
never exceed 50% and occur rather rarely (once per 4 t 6 revolutions of the bar). 
This region radius is maximal ( r  M 1.8) at t M 1.5 and then a t  t M 4t5 it falls to the 
value of r x 0.4 not changing thereafter. The mean densities of axisymmetric mass 
flux (cr)(V,) (Figure 7a) and radial mass flux due to nonaxisymmetric perturbations 
(u’K‘) (Figure 7c) are the same by order of magnitude but opposite in direction. 
The resulting radial mass flux density (crVr) z (u)(V,)  + (cr‘K’) (Figure 7b) is co- 
directed with (u) (V, ) .  

In every part of the disk, except the central region described above, the radial 
fluxes change their direction quasi-periodically in time. The axisymmetric mass 
flux exceeds the radial mass transport due to nonaxisymmetric perturbations by a 
factor of 5 t 10, but the direction of the flux is always the same, in the contrary 
to the central region. Though the radial fluxes in this outer region change their 
direction quasi-periodically, there exist zones where the gas moves only inward or 
only outward when averaged in time. Figure 7d illustrates this fact with contour 
plots of mass flown through the circumference of radius r from the beginning of the 
simulation beginning to current time t .  This mass is calculated as: 

Just as we expected, the mass flux averaged over time and radius is directed 
to the disk center. The angular momentum transport to the outer regions (see 
below) and radiation losses cause the gas accretion rate and the system total energy 
decrease. The total potential energy (defined as integral of all, over the disk surface) 
relative decreasing during the simulation time was (Ut,22-Ut,o)/U = -0.043 (here 
Ut=22 is the value of U averaged over a QP from t = 21 to t = 23). 
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The results exhibit an obvious auto-oscillatory character of the processes occur- 
ring in the disk, and since the dissipation is present, an energy source is required. 
If we assume the stellar bar-mode to  be this source, the amplitude of the bar-mode 
is hardly constant. When the QP process is set, the energy and angular momentum 
exchange between the bar potential and the gas occurs only at  r 5 0.5 (see below). 
The reason is either the density wave which is almost in phase with the potential 
wave, so that  (uap/ap) 4 0 (cf. Eq. 20), everywhere except the vicinity of the 
nucleus (see above), or the vanishing amplitude of one or both waves. Thus,  gravi- 
tational energy released during the gas accretion feeds the auto-oscillatory process. 

4.3 Angular Momentum Redistribution 

The angular momentum redistribution occurs in different ways in the regions in the 
r-coordinate with the altering of processes of mass transfer. 

In the QP regime the angular momentum flux density distribution along the 
r-coordinate stays qualitatively the same in the central region. The quantitative 
changes never exceed 50%, as for the radial mass flux density, the typical times are 
the same. The radial curves of angular momentum flux density in this region along 
with the radial distributions of its components (Eq. 20) at t = 25 are shown in 
Figure 8. Comparing Figure 8 e  with 81, one can see that the angular momentum 
flux of axisymmetric and nonaxisymmetric perturbations compensate each other in 
the central region. Here the angular momentum density weakly and monotonically 
decreases with time due t o  viscous absorption (see Figure 8g and 8 h ) .  

In outer regions all the components of the angular momentum flux are changing 
in value and direction quasi-periodically. The most intense transport of angular 
momentum in this region occurs between r M 2.5 and r x 6 + 7, i.e. where the 
density perturbations of considerable amplitude propagate. Figure 9 illustrates 
the contributions of different mechanisms into the angular momentum transport 
by nonaxisymmetric perturbations. One can see that the angular momentum flux 
density of radial flows induced by nonaxisymmetric waves predominates during all 
the simulation time. The same follows from the comparison of Figure 10a (contour 
plots of the total mean radial angular momentum flux density of nonaxisymmetric 
perturbations) and Figure 1Oc (contour plots of its component due t o  perturbed 
radial flows). Though the disk is disturbed by the potential wave with the azimuthal 
wave number m = 2,  in the region of 2 5 r 5 7 the contributions of axisymmetric 
flows (Figure lob)  and viscosity (Figure 1Od) dominate in the angular momentum 
transport. This fact, seeming not so evident, we illustrate in Table 1, where maximal 
values of different components of the angular momentum flux density in the zone 
discussed are normalized t o  the maximal value of the viscous flux+, 

Note that  the nonadditivity of intensity maxima of different components of the 
angular momentum transport by nonaxisymmetric perturbations is due to some lag 
of these maxima in r and t .  

tThe data in Table 1 correspond to a QP process after it sets. 
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Table 1. 

Mechanism of angular momentum transport 

Maximal relative intensities of the angular momentum flux components 

Intensity 

Viscosity 
Axisymmetric radial flows 
Non-axisymmetric perturbations 
Including: 

1 .o 
0.17 
0.1 

- perturbation-induced radial flows rotating with basic flow 0.1 
- radial drift of induced azimuthal flows in the basic flow 0.02 
- Reynolds stresses 0.007 
- interaction of V,!, V ,  and uL perturbations 0.007 

Rather unexpected is the fact of weak influence of angular momentum exchange 
between gravitational potential wave and surface density disturbances on the gas 
angular momentum. Figure 11 shows that,  in the QP stage, the rotating potential 
of the bar very weakly affects the angular momentum outside the central region. In 
Section 4.2 the reasons for this were discussed: they are a small phase lag between 
$’ and 6’ at r - 1 and a small amplitude of $’ at r >> 1. 

4.4 
The sequence of the processes occurring in the disk may be described in the following 
way. 

The gas flowing across the potential wells of the growing wave of gravitational 
potential accumulates there. The most rapid accumulation occurs not at  r 21 1, 
where the well is the deepest (cf. Eq. 6), but at r 21 0.5 for the following reason. 
In the central region the kinetic energy of the gas and bar relative motion grows 
with radius as r 2, and hence, while the well is shallow, this energy together with 
kinetic energy the gas obtained during its fall intcj the well may be enough to cross 
the potential wave, “climbing” up the opposite side of the well. Besides the gas 
inflow across the direction of the bar’s major axis, there exists a radial inflow into 
the potential well from the innermost region. Since the relative linear velocity of 
the bar and the rotating gas is small, the gas flows down from potential   hump^" 
towards the central saddle point (cf. Eq. 6) and then into the well. 

Non-uniform radial distributions of kinetic energy of the bar and gas relative 
motion and of the bar potential amplitude change the distribution of the phase lag 
between the potential waves and the density wave localized in it. Inside of r 2: 1 
(the constant angular velocity region) the lag is constant with radius, the potential 
minimum following the surface density maximum (in the gas rotation direction). 
With r growing from r 21 1 to r N 1.3 this phase lag steeply grows, and, beyond 
r 21 1.3, falls rather rapidly, and the density wave appears to be a trailing spiral 
with a rather small pitch angle (cf. Section 4.1). The density maximum typically 
coincides in cp-coordinate with potential minimum a t  r 21 1.9, i.e. at  the corotation 
radius r ,  of the bar potential wave and the density wave localized in i t .  These results 
agree well with those of Roberts (1969), Baker and Barker (1974) and Kovalenko 

The Physics of the first Stage 
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and Levy (1992), where it was shown that the shock wave develops on the rear (with 
respect t o  the gas flow) side of the potential well, then moves upstream to the front 
side, and is finally placed there if the inflow is steady. In our simulation, while the 
potential perturbation increases, the wave maximum slowly moves from the rear to 
the front side of the well and stops there at  the end of the first stage. It is implied by 
the distribution of the phase lag between u’ and $J’ that the gravitational potential 
perturbation extracts the angular momentum from the density wave inside r ,  and 
vice versa (cf. Eq. 20). The phase lag is such that r(u’Vi) < 0 at r < r ,  and 
r(u’V:) > 0 at r > r , ,  therefore the wave angular momentum grows in time (in 
absolute value), and the wave is amplified while the bar amplitude is increasing. 

In our simulation the linear stage of perturbation evolution is very short - soon 
after the bar is “switched on” , the higher harmonics of short wavelengths appear 
in the perturbation spectrum, and in the central region the perturbation seems to  
create the shock wave. Afterwards, the shock waves play an important role in the 
dissipation and nonlinear interaction between the mean flow and perturbations. In- 
side the corotation radius the mean flow leaves the wave behind and feeds i t  with 
energy and angular momentum; at  r > r ,  the wave runs ahead of the gas mean 
flow and, hence, speeds it up transferring to it the part of its energy and angular 
momentum. The angular momentum flux of nonaxisymmetric perturbations is di- 
rected outward from p , .  Since at r < r ,  the wave angular momentum is negative, 
the wave transfers the angular momentum from inner to outer regions. The pro- 
cess described and the efficient dissipation of nonlinear short wavelength harmonics 
provides a part of the transport of the angular momentum of the axisymmetric 
flow from the region r < r ,  to  r > T,. A similar process occurs during the wave 
self-amplification due to resonant instabilities in the gaseous disk (see, e.g., Savonije 
and Heemskerk, 1990; Papaloizou and Savonije, 1991), but its typical time scale is 
greater by a factor of 10’ t lo4 and, consequently, the angular momentum transfer 
rate is much lower. 

The viscous transport of angular momentum is much more intense, and it is 
directed away from T, .  The explanation is that (first) the rotation curve has an 
inflection point somewhere around this radius and (second) the negative angular 
momentum dissipates in higher harmonics inside r, ,  while it is positive outside r , .  

The angular momentum redistribution by viscosity and waves produces a radial 
axisymmetric gas flows from r,. At r > r ,  the gas which obtained energy excessive 
for its orbit moves outwards, while at r < r ,  the gas that lost some angular momen- 
tum falls to  the center. It seems to be significant that accreting gas gains velocity 
with respect to  that of its previous orbit. This resembles a well-known virial effect, 
but modified by continuity and compressibility of the medium: a fluid particle mov- 
ing inertially passes through the equilibrium orbit corresponding to  its new angular 
momentum value and stops at a smaller radius, it cannot, though, return to  the 
equilibrium epicycle for other particles, having lost their angular momentum for 
the same reasons. The particle rotation velocity exceeds the equilibrium value for 
a given orbit since the angular momentum tends to be conserved. 

Thus, when the bar comes to  saturation, the rotation velocity in the central 
region grows with respect to the equilibrium value, the excess of centrifugal force 
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in the radial balance being compensated by pressure gradient and viscous force. 
A surface density, pressure and angular momentum depression is formed near the 
corotation radius. Outside the hollow, the gas gains radial momentum and moves 
outwards as a density wave with a steep front, significant amplitude and supersonic 
velocity. 

Since then the disk is divided into two parts almost independent from each 
other dynamically. The material deficit in the density hollow region does not allow 
the density wave to gain significant ampliLude hear r C ,  so the angular momentum 
exchange between the bar and the gas ceases at r > T ,  (Eq. 20). Thereafter the 
bar potential role is restricted to  supporting the existing bisectorial flow structure, 
the density depression at the center and the density minimum at TILR < r < ~ O L R  

(OLR and ILR are Lindblad resonances, the outer and the inner). Therefore we 
restrict our discussion to  gas dynamics at r > r , .  

The perturbation moving outwards at a supersonic velocity quickly looses its 
energy in dissipation. A significant positive pressure gradient and still growing 
uncompensated gravitational force (due to  a decrease in the rotation velocity of 
fluid particles moving outwards and their tendency to conserve angular momentum) 
enhance this process. The wave stops as a result, and the density peak produced 
by the wave forces it to spread inwards. Simultaneously the angular momentum 
flux density becomes negative, since its component F = r(u)(Vr)(V,) becomes 
dominant (the perturbation is ring-like at  that time due to differential rotation). 
This backward motion makes the previous steep profile flatter, so the viscous effects 
become weaker and, hence, as the accreting gas angular momentum is conserved to 
a great deal, i t  gains rotation velocity moving inwards. It may locally exceed the 
value Vv(t = 0) because some angular momentum was transferred to  this gas in the 
previous phase of the first stage. Nevertheless, that does not occur while (Vr) is not 
small. 

The situation changes when the gas moving inwards approaches the OLR from 
which the perturbations may be reflected (see, e.g., Savonije and Heemskerk, 1990; 
Papaloizou and Savonije, 1991). Here the gas (and its angular momentum) is ac- 
cumulated for some period of time. It results in the appearance of a local region, 
where the specific angular momentum decreases outwards at r z TOLR, and the 
square of epicyclic frequency falls below zero: K’ = 2(Q)(2(Q) + r d ( f l ) / d r )  < 0. 

4.5 

Before the beginning of every QP a region (in r-axis) is formed in the dick where 
K~ < 0 (see Figure 12b). Such a distribution of rotation velocity corresponding to 
specific angular momentum (Q)r  decreasing outwards is known to be centrifugally 
unstable, even if the radial forces are balanced (cf. Eq. 9) - see Morozov (1977, 1979, 
1989), Fridman (1990) and Baev (1989). In our case the rotation curve in this region 
goes above the equilibrium one (cf. Figure 13a,  b ) ,  which leads to  the “explosive” 
development of the centrifugal instability. An interesting fact is the appearance 
(as a result of this) of a wave with the symmetry index (a nonlinear analog of the 
azimuthal mode number rn) i s  = 2 along with an axisymmetric perturbation with 

The Physical Origin of the Quasi-Periodicity 
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Figure 12 The evolution of the mean density of the basic flow angular momentum ( a )  and of 
dynamic resonances and the position of regions in the ?-axis where the specific angular momentum 
decreases outwards (s2 < 0) (b )  on the plane ( r , t ) .  In Figure 12a the contours for the levels of 
fO.l, 2.0 (dotted lines) and fO.O1, 1.0, 4.0 (solid lines) are shown; the areas inside of the contour 
0.001 are dashed. In Figure 126 solid lines correspond to the corotation radius, dotted ones - to 
the OLR. The regions of s2 < 0 are shown dashed. 

i s  = 0. A superposition of both produces rather complicated perturbed density 
patterns, as it was predicted by Morozov e2 al. (1992) from the linear analysis 
basis. 

The system supporting centrifugal instability evolves to equilibrium (according 
to the Le Chatelier principle), i.e. the region of n2 < 0 tends to vanisht. This 
process cannot occur through transport of angular momentum inwards, because the 
excess of it would increase there. The angular momentum is transported outwards 
via is = 2 and is = 0 waves (the latter case is obvious, for the material with its 
angular momentum is thrown out by uncompensated centrifugal force). Meanwhile, 
some part of the gas still moves inwards from the outer (with respect to the n2 < 0 
~ 

tBaev (1989) showed similar process in a disk without bar but with a rotation curve with 
velocity kink. 
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Fi ure 19 The evolution of the gas rotation curve during one of the quasiperiods. The dc ted 
line showes the initial (at the time of t = 0) rotation curve. The time moments are the same as in 
Figures 2-4. 6. 

region) disk (this motion starts much earlier - in the previous QP or at initial stage), 
so oppositevely directed angular momentum fluxes arise, and hence the region of 
tc2 < 0 survives for some time moving outwards (see Figure 12b). 

Comparing Figures 12a and 12b one can see that. the radial flux changes its 
direction somewhat earlier than the n2 < 0 regions appear. So the twoarmed spiral 
pattern does. The reasons are the following: 

(1) before the tc2 < 0 regions appear, the Kelvin-Helmholtz instability mechanism 
(the Bernoulli effect) excites the longest wavelength perturbation (is = 2). I t  
can reveal itself even if the rotation velocity falls slower than Q(r)  o( r -2  
(Morozov et al., 1985b); 

(2) the spiral waves grow faster then Morozov et al. (1985b) predicted, because 
initial perturbations of is = 2 are of finite amplitude - “rigid” excitation. 
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(3) the latter makes the nonaxial symmetry to  be essential, hence, two local in 
‘p diametrical areas of tc2 < 0 appear before the region of IE’ < 0 from (V,) 
forms. 

(4) the centrifugal mechanism amplifies the existing spiral wave and its pitch angle 
decreases. 

After the angular momentum flux directed outwards is established, the disk 
evolution is similar to  that in the corresponding periods of the first stage. 

We should note that a quasi-periodic process of the same nature for is = 0 
perturbations occurs in the laboratory experiments simulating the centrifugal in- 
stability in a rotating set-up with “shallow water” - cf. Morozov et  al. (1984, 
1985a) and Nezlin and Snezhkin (1990)t. When the mode is = 0 was developed, 
the fluid moved outwards from the velocity jump zone and the instability stopped. 
When the wave reflected from the set-up outer boundary returned, the instability 
arose again and so on. Our results allow to suppose that such a regime (called 
the relaxation regime by Nezlin and Snezhkin, 1990) can occur with no reflection 
from outer boundaries, due to retiring by pressure gradient, and, surely, due to  
non-compensated gravitational force, growing while the fluid (tending to conserve 
the angular momentum) moves outwards. 

Also one can notice that in our simulation as well as in the experiments of Mo- 
rozov et al. (1984, 1985a, 1985c), Baev (1989) and Nezlin and Snezhkin (1990) 
when centrifugal instability drives spiral waves, banana-like anti-cyclonic vortices 
appear between the arms, localized around the minima of two-dimensional distri- 
bution of surface density. See Nezlin and Snezhkin (1990) for detailed description 
of the vortices and their origin. 

4.6 Regions of Radiation and Possible Complex Formation 

Though our model is somewhat simplified and is not self-consistent, we think it to  
be useful to  discuss the results that may be compared to the observational data. 

The evolution of regions where the dispersion of velocities of cloudmolecules 
exceeds the value corresponding to emax (i.e. to  temperature T N lo4 K) during 
one quasi-period is shown in Figure 14. In these regions intense radiation from the 
(common) inter-cloud gas should be observed as it was discussed in Section 2.2. 

If parameters of the gas of cloud-molecules are known we can estimate the areas 
of possible giant molecular clouds formation (Goldreich and Tremaine, 1982) in 
accordance with the scenario of GMC formation due to gravitational instability 
proposed by Gorbatski and Usovich (1986). Figure 15 shows the regions of small 
Jeans scale (in two-dimensional geometry it is defined as X J  = c:/(Ga) - cf. Toomre 

tIn these experiments, velocity jump on the equilibrium rotation curve led to the centrifu- 
The gravitational potential distribution simulated with the bottom shape was gal instability. 

axisymmetric. 
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the quasi-periods. The bar and gas rotate counter-clockwise. The time moments are the same as 
in Figures 2-4, 6,  13. 
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Figure 15 The evolution of the regions in which the Jeans scale is smaller than 50 pc (contoured) 
during one of the quasi-periods. The bar and gas rotate counter-clockwise. The time moments are 
the same as in Figures 2-4, 6, 13, 14.  
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1964t) where the GMC formation may be expected. Note that in the regions shown 
in Figure 15 X J  falls down to 30 + 50 pc, i.e. becomes of the order of the size of 
GMC observed in the Galaxy - Golreich and Tremaine (1982). Since the possibility 
of GMC formation in frames of such a scenario is discussed by Usovich (1988) 
(all necessary estimations are given there), we restrict ourselves to pointing out 
the fact that the quasi-periodic displacement of the regions considered in r and 
cp coordinates and the cloud gas flows through the regions may lead to molecular 
ring formation in vicinity of 2 5 r 5 5 kpc just like in the models Gorbatski and 
Serbin (1983), Gorbatski and Usovich (1986)’ Usovich (1988) considered. Note that 
GMC formation must occur somewhat faster than it was expected from Usovich’s 
(1988) estimations because the instability is not purely gravitational but rapidly 
dissipative one (Morozov et al., 1986). The  viscosity diminishes the intensity of 
chaotic thermal motions of the clouds which surely is not of help for the GMC 
formation. 

Such small values of X J  stress that account of self-gravity is needed. We plan to 
include this and some other factors in the following series of simulation. 

4 . 7  Simulations with other Values of Parameters 

Some general considerations allow us to assume the existence of threshold values 
of the bar amplitude growth rate and its rotation velocity that are crucial for the 
QPR. 

Suppose that the bar linear velocity with respect to  the gas in the disk’s central 
part is subsonic: T(G(r  5 u )  - G,)/c, < 1. Hence, the shock waves will not 
appear in the potential well of the bar and, therefore, the density perturbations 
going from the bar ends will be small. So, the angular momentum transport in 
the outer regions of the disk will depend on viscosity to a great deal, and the disk 
evolution, in  general, will occur in a way simulated by Gorbatski and Serbin (1983) 
and Gorbatski and Usovich (1986). 

A similar situation occurs when the gas and bar relative velocities are large. 
Afanas’ev el al. (1989) showed that shock waves never appear in experiments with 
a retrograde bar, for the gas kinetic energy is large enough to allow the gas to cross 
the potential well of the bar. Besides, the larger the gas and bar relative velocity is, 
the larger corotation radius and OLR are. But the QPR described above requires 
rather long (in radius) area between the OLR and the disk edge. The wave going 
outwards can be reflected by the potential gradient (due to a rather sharp edge of 
the stellar disk) in a more realistic model. 

Unfortunately, we could not simulate significant shift of the corotation radius 
outwards in our series of experiments because a non-physical reflection at  the grid 
edge is inevitable. Small shifts of the corotation radius (from r 2 t o  r 3 
corresponding to 0, 2 88 km s-l kpc-’) does not lead to qualitative differences. 
~ 

tWe do not use the Toomre-Goldreich- Lynden-Bell criterion (Toomre, 1964; Goldreich and 
Lynden-Bell, 1965) and the unstable wavelength range determined from it, since the regions of 
riz < 0 periodically appear in our simulations. 
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I t  seems to  be natural that initial radial momentum obtained by matter in the 
first stage (up to the moment when the spiral perturbation is distorted into a ring- 
like structure) depends primarily on the bar amplitude growth rate. Nevertheless, 
when we changed its typical growth time from 7 6  = 1 to  TB = 3 we observed no 
significant difference, even the first stage time-scale remained the same. The point 
is that ,  though the force driving matter outwards is smaller, it acts for longer time, 
and the momentum becomes smaller only insignificantly. Yet this effect occurs, the 
evidence is the smaller value of the maximal radius which the perturbations reach 
during the first stage. It falls from P,,, N 5.7 + 6.0 in the model with TB = 1 t o  
P,,, 4 . 8 t 5 . 0  in the model with TB = 3.  The time-length of the first quasi-period 
falls, respectively, from TQP N 2.9 t o  TQP N 2.1. All the processes occurring at 
first stage and settling of the Q P R  are slower and less pronounced in the latter 
model. 

The  bar maximal amplitude EO changing in rather wide range (we tried E O  = 0.1, 
EO = 0.3 and €0 = 0.5) makes no essential difference in the results, though the mass 
and angular momentum flux densities grow and fall respectively. Nevertheless, 
Afanas’ev et  al. (1989) show that the flux distributions are very different at €0 = 
0.05. Perhaps, this value is a cut-off for the Q P R  which we discuss. 

4.8 

We turned off abruptly (with a jump) the perturbing influence of the bar potential 
in an experiment with TB = 0.3 and E O  = 0.3 at  t = 18. That  means that  we took 
E ( P , ~  > 18) = 0 in Eq. 5. 

After about 6 revolutions of the disk center since the bar turn-off the Q P  process 
dies away in the disk periphery ( P  2 2). The large-scale nonaxisymmetric perturba- 
tions of considerable amplitude become axisymmetric with radial wavelength 1.5 s 2  
and propagate outwards at  the sound velocity. The small-scale ones degenerate into 
yet smaller scale waves of vanishing but finite amplitude. Later on, the wavelengths 
and amplitudes of axisymmetric perturbations decrease too. 

We should note that after the Q P  process has decayed, the ring-like perturba- 
tions reach the grid’s outer edge (cf. Figure 16) and reflect i t .  In a more realistic 
model of the disk without steep outer boundary a constructive interference is im- 
possible, and thus, one can expect such perturbations to  be damped in shorter 
times. 

In the central part of the disk the bar turn-off means, first of all, that  the poten- 
tial saddle point disappears. Together with it the bisectorial structure of the flow is 
gone, because the gas outflow from the center is ceased while the inflow goes on,  for 
the gas looses its angular momentum due t o  viscosity. So, the central depression of 
the gas surface density vanishes, and (u) central peak grows monotonously (to the 
factor of 1.7 during 23 revolutions of the center after the bar turn-off), its typical 
diameter decreasing. 

The disk as a whole evolves towards a quasi-state, with parameters changing 
under the influence of viscosity, as it occurs usually for the case of a single-peaked 
rotation curve decreasing outwards (see Gorbatski and Serbin, 1983; Gorbatski and 

Disk Evolution after t h e  Bar Turn-Off 
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Figure 16 The radial distributions of temperature (4 )  and surface density ( 6 )  after 24 revolutions 
of the central region since the bar turn-off (solid lines). Dotted lines show the initial (at t = 0) 
distributions of the quantities. 

Usovich, 1986). Meanwhile, the gas compression in the vicinity of the inner and 
the outer maxima of the surface density is accompanied by its heating despite the 
radiation losses (Figure 16). The radiation losses are the factor that  allows the 
temperature exceeding the treshold value of To to remain almost constant in time. 
The temperature oscillations in the outermost parts of the disk we think to  be 
mainly the consequences of the boundary condition. 
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5 CONCLUSIONS 

First of all, our results reveal a possibility of dynamic separation of the central and 
the peripheral regions - the rapidly growing bar just makes a “barrier” of surface 
density hollow, and afterwards the wave of potential associated with bar has a small 
influence upon the gas dynamics in the outer regions. 

Formation of such a hollow of surface density between the central maximum near 
the nucleus and the outer molecular ring seems to be a common feature in the disks 
of flat galaxies of different types, since a very different disk evolution scenarios lead 
to it - see, e.g., Morozov e2 al. (1985c), Gorbatski and Serbin (1983), Gorbatski 
and Usovich (1986), Baev (1989), Zasov and Fridman (1987) and Fridman e2 d. 
(1990)t. This effect has to be more pronounced in barred galaxies. 

Besides the minimum of (u) close to the center (at r 21 200 pc), a hollow (depres- 
sion) in surface density appears while the bar is growing and survives thereafter. I t  
is similar to the one observed in many barred galaxies (and due to a saddle point 
of the gravitational potential). 

The gaseous disk with rapidly growing bar passes through two stages of evo- 
lution. In the first stage there appears dynamic separation of the central and pe- 
ripheral regions of the disk. In the second stage a quasiperiodic (auto-oscillatory) 
process sets up in the region outwards from the OLR. 

The spiral-and-vortices patterns arising at these stages are generated by different 
ways, though they look very much alike. At the first stage, the growing wave of 
bar potential is responsible for the pattern development, and in the very QP the 
pattern is driven by the Kelvin-Helmholtz instability and centrifugal effects. 

Although the gravitational potential is significantly non-axisymmetric, the ax- 
isymmetric mass and angular momentum transport are dominant. 

If we suppose that, though some simplifying assumptions were made, our simu- 
lations give a qualitatively valid description of the processes in real objects, then the 
possibility seems to be interesting that a barred galaxy may change its morpholog- 
ical types. It may evolve consequently into spiral, ring and theta and theta-galaxy 
in very small times of about loa years. 

It seems to be very interesting that relative change in the gas rotation curve 
may reach 20 + 30% at 1 5 r 5 3 kpc for a typical time of about 3 x lo7 years, 
that is, during one revolution of the central part. Meanwhile, different features of 
the rotation curve appear and vanish, such as negative gradient, discontinuity of 
velocity, etc. (see Figure 13). But since the velocity dispersion of stars is large 
and angular momentum exchange between the stars and gas is relatively small, the 
rotation curve of stars must not deviate significantly from its equilibrium even if 
the gas self-gravity is included. 

Since the gas rotation curve in a range of constant angular velocity exceeds 
the initial equilibrium one (i.e. determined by stars in the real disk) during all 

tNote that similar density minimum appeared in numerical simulation of quasi-Keplerian ac- 
cretion disks (Papaloizou and Savonije, 1991) due to the development of the spiral modes of 
resonantradiative instabilities. 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:3
9 

18
 D

ec
em

be
r 2

00
7 

36 V. V .  LEVY et al. 

simulation time, the dynamical friction effect must be significant at T 5 1 kpc. This 
effect can affect the results. We expect the gas accretion rate and rotation velocity 
to  grow and the surface density maximum to drift nearer to the center. 

Finally, we point out possible consequences of the fact that ,  in reality, the stellar 
bar energy is finite. Freeman (1966a, b, c) and Hunter (1974) showed that losses of 
the bar angular momentum result in the bar major axis shortening and its rotation 
velocity growth. Our experiments show that,  unlike the outer regions beyond the 
corotation radius, the energy and angular momentum exchange between the gas 
density wave and bar potential remains significant and never changes its sign in the 
central region during all simulation time. The faster the bar amplitude is growing 
in the first stage, the more intense the exchange is, and as a result, the more 
effective the bar shortening and speeding up goes. Since the relaxation processes 
must enhance the z-dispersion of the bar stars and distort the bar in the vertical 
direction, this may be viewed as a possible scenario of dynamic development of the 
bulge. An essential feature is that this scenario leads to  Hz regions distribution in 
the disk resembling the observed one (Sanders et al . ,  1984). Note that Pfenninger 
and Norman (1990) made similar conclusions in their study of the accretion of 
molecular clouds onto a central mass concentration (numerically integrating the 
cloud orbits simulated with point particles of the corresponding mass; the weak 
dissipation was accounted for). 

We believe that all the results given above indicate that a rapidly growing bar can 
lead to a bulge development, while the bar growing quasi-steadily may exist much 
longer - in times comparable with the Hubble time. This explains the existence 
of rapidly rotating bulges, elongated in the direction transverse to  the bar major 
axis, observed in some SB galaxies (see, e.g., Gorbatski, 1986). Such bulges may be 
produced by the bar mode appeared at an earlier stage of the galaxy evolution, and 
the existing bars could arise much later. Since the spheroidal component affects the 
bar mode stabilizing i t ,  the “secondary” bar orientation along the minor bulge axis 
is the most plausible. 
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