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In this paper we consider 2D numerical simulation of the gravitational collapse of a rotating gas 
cloud. Calculations were made using numerical scheme in Lagrangian variables on triangular 
irregular grid with grid reconstructing procedure. The most important result is that at the end 
of calculations flattened disk-shaped body is formed. Previous numerical simulations which have 
been made in Eulerian coordinate system for the same initial conditions led to ring-shaped body 
formation. Our results qualitatively coincide with simulations made in Lagrangian coordinates by 
other authors. 

INTRODUCTION 

The choice and justification of umerical methods for 2D slculations for rotating 
bodies are very important. Astrophysical collapse problems are characterized by 
strong change of density and temperature during a short period of time and the 
necessity to include gravitation. Under such conditions, the known 2D hydrody- 
namical methods of calculations have been modified for inclusion of gravitation and 
possibility for steep gradients appearance (see, e.g. Larson, 1972; Bodenheimer & 
Tscharnuter, 1979; Kamiya, 1977; Black & Bodenheimer, 1976; BOSS, 1980; Nor- 
man et al.,  1980; Ardeljan et al.,  1987a). The group of Eulerian schemes shows that 
collapse results in the formation of a torus or a ring-like structure (Black & Boden- 
heimer, 1976; Boss, 1980), whereas Langrangian methods lead to the formation of 
a disk-like figure (Kamiya, 1977). 

Norman el al. (1980) used both methods (Lagrangian and Eulerian) to simulate 
collapse of a rotating core. Their improved Eulerian code, free of artificial inward 
angular momentum diffusion led to  disk formation, as well as their Lagrangian code. 
Norman et al. (1980) mentioned shortcomings of their Lagrangian code which made 
it less powerful then their Eulerian code: 

341 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
14

:5
6 

18
 D

ec
em

be
r 2

00
7 

342 N .  V. ARDELJAN el al. 

(1) poor accuracy of difference operators in distorted parts of the grid; 
(2) complicated solution of the Poisson equation; 
(3) expensive calculations. 
The last two shortcomings become not 50 important when using powerful com- 

puters. In our calculations we used about 12000 triangular sells, instead of 400 
zones of Norman ei al. (1980). That gave far better accuracy. The most important 
is the first point connected with grid distortion and loss of accuracy. The main 
advantage of our method in comparison with other Lagrangian ones, used in astro- 
physics till now, is using the procedure of grid restructuring that allows to overcome 
the grid distortion problem and carry on calculations through large compressions 
and expansions stages without loss of accuracy. This becomes possible because the 
adoption of a triangular grid allows to formalize the procedure of grid reconstruction 
and corresponding redetermination of cell grid functions, and to make it available 
in automatic regime in the process of calculations. 

Kamiya (1977) used a Lagrangian difference method for hydrodynamics and 
finite element approach for calculation of gravitational potential and demonstrated 
that a ring-like structure is formed when numerical (unphysical) angular momentum 
transfer toward the rotational axis takes place. This kind of numerical angular 
momentum transfer occurred in the calculations mentioned above made using earlier 
Eulerian difference schemes. 

Numerical methods for simulations of the collapse of rapidly rot.ating cool gas 
cloud must satisfy the following requirements: 

- absence of artificial transfer of angular momentum; 

- using of free boundary conditions a t  the outer boundary of the cloud when 
the boundary surface moves to a large extent. 

A cloud becomes flattened at  a developed stage of its collapse, and methods 
must provide sufficient accuracy when almost 90% of matter is in a thin layer 
(- 0.04& where Ro is the initial radius of the cloud) near the equatorial plane. 
That requires either strongly nonuniform grid, concentrated near the equatorial 
plane, or an adaptive Eulerian grid. The Lagrangian grid becomes significantly 
distorted during collapse, so restructing is necessary in the process of computation. 
The necessity of rezoning the grid was pointed out earlier by Kamiya (1977), who 
started calculation of the collapse with the Lagrangian method, but did not extend 
it to the developed stage because of grid distortion. 

Lagrangian numerical schemes are free of the artificial transfer of angular mo- 
mentum, and free boundary conditions a t  the outer boundary of the cloud can be 
satisfied exactly. As pointed out by Normal e l  al. (1980), cells become flattened 
near the equatorial plane soon after the start of the collapse, thus significantly re- 
ducing the accuracy of calculations. They suggested the grid to  be refined near the 
center of the cloud. Our calculations show that the grid should be refined not only 
in the central part of the cloud but also near the equatorial plane. 

Ardeljan e l  al. (1987a) solved t.his problem using an implicit conservative differ- 
ence scheme on a Lagrangian triangular grid, whose stability was proved in several 
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mathematical papers (Ardeljan & Chernigovskii, 1984; Ardeljan e t  al . ,  1987~).  The 
severe restriction on the number of grid points and the absence of the grid restruc- 
turing procedure urged the termination of the calculation of the variant with rapid 
rotation soon after reflection of the shock at the equatorial plane. The conclusion 
about the formation of a disk-like structure obtained in this paper was doubted by 
Boss (1989), who stated that ring formation occurs at later stages. Our present 
results have shown that the feeble ringlike structure develops transiently after the 
appearance of the shock wave. It disappears soon during an expansion phase and 
never reappears. 

The use of a 2D code to  simulate the collapse of a rapidly rotating cloud cannot 
describe the development of the three-axial instability which occurs at  large ratios 
of rotational energy to  gravitational one (Ostriker & Peebles, 1973). Nevertheless, 
the development time of the tree-axial instability exceeds the free-fall hydrodynam- 
ical time (Chandrasekhar, 1973; Miyama, 1992). Therefore, we expect that the 
dynamics stage of collapse calculated here can be described by a 2D code rather 
adequately. 

In this paper, the 2D problem of the collapse of a rapidly rotating gas cloud 
was calculated using the Lagrangian method with a triangular grid for which t,he 
following improvements have been made, compared to the method used by Ardeljan 
e t  a / .  (1987a): 

(1) The grid restructuring procedure developed by Ardeljan et al. (1985) was 
introduced. It allowed us to  follow the collapse of the cloud throughout formation 
of shock wave up to the phase of secondary compression which takes place at much 
higher entropy. Ardeljan e t  al. (1987a) terminated this version of simulations just 
before the moment of the shock formation because grid distortions in the inner 
parts of the cloud prevented further calculations leading to a loss of accuracy with 
possible overlapping of the grid. Nevertheless, the conclusion of Ardeljan e l  al. 
(1987a) concerning formation of a disk structure is confirmed here. 

(2) Relative accuracy of calculations in the region surrounding rotation axis is 
not sufficient in first-order methods for the solution of the Dirichlet problem for the 
Poisson equation. The radial component of the gravitational force near the z-axis is 
small F, - r, and it is comparable with numerical error at small r. The ignorance 
of these facts by Ardeljan et  al. (1987a) resulted in false anisotropy of gravitational 
force near the z-axis and formation of an artificial “dumbbell” structure in the 
central part of the cloud. 

In our simulations, the region close to the rotation axis is handled separately in 
order to  minimize numerical errors. As a result, gravitational force was computed at  
better accuracy near the center, and, no artificial structure (“dumbbell”) emerged 
and smooth density behavior was obtained. 

(3) Owing to  better computing facilities (CONVEX C220 instead of BESM- 
G ) ,  the number of grid cells was  approximately 12000 compared with only 39G 
used by Ardeljan et al. (1987a). This quantitative modification has led to a 
qiialitative improvement: elimination of numerical errors near the axis, resolved 
shock front and determination of the amount of matter (-5%) drawn away by bhe 
shock. 
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The method developed here can be applied to the problem of core collapse, 
to the formation of rapidly rotating neutron stars (Ardeljan et al., 1987b) and to 
magnetorotational supernova explosions (Bisnovatyi-Kogan, 1970). 

1 BASIC EQUATIONS; INITIAL AND BOUNDARY CONDITIONS 

Hydrodynamical equations with gravity for modelling unsteady processes in rotating 
gaseous bodies are: ., 

d x  dP -- - u ,  - + p v . u = o ,  

p- = - v p -  PV@, 

p - + p v . u = o ,  9 = - = - ,  & = -  
dt  P P  y - 1 '  

dt  dt  
d u  
d t  

dE 1 m  TR 

V 2 9  = 4aGp. 
where $ is the material time derivative, x = ( r , z ) ,  u = (u ' ,u~ ,u*)  is the ve- 
locity vector, p pressure, E internal energy, @ gravitational potential, p density, T 
temperature, G gravitational constant, 72 universal gas constant, and 7 adiabatic 
exponent. Axial and cylindrical symmetry are assumed. 

For the initial conditions, we assumed that the cloud is a rigidly rotating uniform 
gas sphere with the following parameters: 

p = 1.492 x g/cm , 3 p = 1.548 x lo-'' dyn/cm2, 
r = 3.81 x 10l6 cm, w = 2.008 x rad/s, (2) 

M = 1 . 7 3 ~ ~  = 3.457 1033 g, = 513, Ur = u z  = 0. 
At the outer boundary of the gas cloud, pressure is equal to a small constant ( p  = 
0.87 x dyn/cm2). At the outer boundary of the cloud, gravitational potential 
0 is defined by an integral formula using the expression for the volume potential. 

The set of equations (1) was written in nondimensional form. All dimensional 
variables were presented in the form F = FoF, where FO is the scale factor and 
is a dimensionless function. The scale values are chosen as: 

3 16 po = 1.492 x g/cm , ro = zo = 3.81 x 10 cm, 

uz = ut = rot;', 
t o  = 5 x 10" s ,  

wo 3, q t o ,  To = u,2/72, €0 = uo- 

PO = 
80 = 4xGpor;, 

2 

In terms of the dimensionless variables, the set of equations (1) is written in the 
form (with tilde omitted): 

- d x  
dt - u, - dP - + p v  . u = 0, 

dt  
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T d& 1 T  
P - + p V . U = O ,  r ) = - = - ,  e=- P P  7- 1’  dt 

V2@ = p. 

System (3) is solved with the following boundary conditions: 

uz = 0 at z = 0; 

ur = 0 at r = 0; 
and 9 is defined by the integral formula. Initial at the outer boundary p = 

conditions in nondimensional variables are the following: 

p = 1, w = 1.004, p = 1.78 x 

within the circle r2 + z2 5 1 at t = 0. 

2 NUMERICAL METHOD AND RESULTS 

The numerical method used in our simulation of collapse is based on a first-order 
implicit conservative Lagrangian scheme on an irregular triangular grid. For further 
details of the scheme, see Ardeljan e t  al. (1987~) and Ardeljan & Kosinachevskii 
(1993). I t  was modified to  make it applicable to  the case of a rotating gas cloud. 
Details of this modification and testing will be published elsewhere (Ardeljan e2 a/. ,  
1993). 

Initially the cloud has 

= Ein/lEgrl = 0.00425, p = Emt/lEqI = 0.324, 

here E,, being internal energy, Egr gravitational energy and Erot rotational energy. 
The parameters cr and p lie essentially in the same parameter range where ring was  
obtained by Boss (1980). At the initial collapse stage, the cloud begins to  contract 
along the z axis rather than along the equatorial plane due to lower pressure and 
rapid rotation. Influence of the gravitational force is balanced in the r direction by 
the centrifugal force. It should be noted that at  these times a “dumbbell” structure 
does not appear in the density distribution p(z) as it does in simulations of Ardeljan 
e t  al .  (1987a). The origin of that “dumbbell” structure is numerical error in the 
calculation of the gravitational force. 

The velocity field shows that matter falls to the equatorial plane throughout 
most of the coinputational domain. Gas moves slowly along the equatorial plane 
only at  periphery. At t = 1.27G856, the cloud continues to  contract and becomes 
flatter; density a t  the center of the cloud is p N 1 5 0 ~ 0 .  In spite of the fact that an 
implicit difference scheme is used, the solution of (1) changes with time so rapidly 
at  tliat stage that, in  order not to reduce the accuracy of the calculations, we have 
chosen the va.lue of the time step corresponding to the Courant number which is 
less than one (see Richtmyer & Morton, 19G7). 
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TIYE- 0040000 

EQUATOR 

k n r l t y  coatow -= 0.010000 

1 -  
0 -  
5 -  
4 -  
6 -  
6 -  
T -  
6. - 
0 -  

10 - 

0.074411 
0.07- 

0.07uw 
0.WIwI 
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0.- 
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0.07- 

0.mm1 

EQUATOR 

Figure 1 Numerical grid (a) and density contours (b) for t = 0.040000. 
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Figure 2 Density distribution along the z-axis (a) and t-axis (b) for t = 1.285635. 

A time sequence of the cloud shapes is shown in Figure 7. In the inner parts of 
the cloud density grows monotonically up to  the moment t = 1.285635 moment of 
maximum contraction), and, at  that moment, it amounts to p - 1 9 5 ~ 0 ,  p being the 
initial density here (Figures 2a-b). 

Availability of the grid restructuring is important at this stage of calculations. 
Otherwise, the triangular grid would be distorted due to strong, nonuniform con- 
traction. At the final stage of the first contraction at  t = 1.285635, the cloud has 
an ellipsoidal shape with semiaxes in a ratio of - 1 : 5. The internal part of the 
cloud, which contains up to 90% of matter, is an ellipsoid with semiaxes in a ra- 
tio of w 1 : 100 (Figure 2a). The number of grid points in every section parallel 
to the polar axes is no less than 15 at  this stage of collapse (the calculated re- 
gion is a quarter of the ellipse). The cloud contracts up to 2 = 1.285635 when a 
shock wave appears. Plots for t = 1.299834 (Figures 3a-b) show the stage when 
the shock is definitely formed and reflected a t  the equatorial plane. The front of 
the shock c‘an be clearly seen in a plot for the central part of the velocity field 
(Figure 3b). 

Velocity field near the equatorial plane has a quasi-periodic vortex-like structure 
(see Figure 3b), and a set of feeble rings appears near the equatorial plane. The 
quasiperiod is about ten knots in the r direction; therefore, we conclude that it is 
a physical rather than numerical phenomenon resulting from an instability in the 
gravitational field behind the shock wave. 

The wave structure behind the shock in the presence of gravitational force was  
studied analytically in a 1D acoustical approach by Lamb (1989) and numerically 
for 1D gravitational gas dynamics by Kosovitchev & Popov (1979). The main 
reason for this effect is the influence of gravitational field on dispersion properties 
of matter. Our 2D picture could be induced by the same effect. 

The same “wiggly” structure of velocity field was found in calculations of the 
initial stage of the same collapse problem made using the piece parabolic method 
on Eulerian grid (Ruffert, 1994). 

The formation of the shock wave and its reflection signify the end of the first 
contraction stkge. 
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Dcnslty contourr TIME- 1.299834 

EQUATOR 

Veloclty field TIME- 1.299834 

1 - 0.021851 
2 - O . W I 1 0 4  
3 - 0.170367 
4 - 0.402418 
5 - 1.343353 
8 - 3.656479 
7 - 0.044153 
6 - 27.051643 
0 - '13.401041 

10 - 199.787521 

EQUATOR 

Figure 3 Density contours (a) and central part of the velocity field (b) for t = 1.299834. 
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Denrity contourr TIYE= 1.774253 

EQUATOR 

Velocity flcld TIME= 1.774253 

1 -  
2 -  
3 -  
4 -  
5 -  
8 -  
7 -  
8 -  
0 -  

10 - 

0.000006 
1.843002 
3.880158 
5.529234 
7.37231 I 
9.215307 

11.061)463 
12.901540 
14,7448 17 
18.567882 

Figure 4 Density contours (a), velocity field (b), central part of the velocity field (c), density 
distribution along the z-axis (d) and r-axis (e) and distribution of angular velocity along the r-axis 
( f )  for t = 1.774253. 
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Velocity field TIME= 1.774253 

C 

f 

EQUATOR 

L 

f 
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Figure 4 Continued. 
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Figure 5 Time variation of different types of energy. 

This shock is stronger near the z-axis than in the outer regions and moves 
faster near the axis of rotation. Behind the front of the shock, density decreases 
rapidly. The shock wave reaches the outer boundary of the cloud near the z-axis 
at  t = 1.314921, with the density in the central cells being p - 9 3 ~ 0 .  The density 
distribution p ( r )  has a ring structure along the equator, i.e., the maximum density 
in the vicinity of the equatorial plane is reached not at the center of the cloud, but 
in its outer part. At that intermediate stage, density distribution near the plane 
resembles the final density distribution obtained with Eulerian difference schemes 
with similar initial conditions (Boss, 1980; Boss, 1989). 

At this stage of collapse, the Lagrangian and the Eulerian approaches give quali- 
tatively similar results (i.e., a ring-like density distribution). After shock formation, 
gas velocity near the equatorial plane changes its sign due to reflection. Although 
matter expands in the inner parts of the cloud behind the shock, the light enve- 
lope continues to contract until the shock reaches the free boundary of the cloud 
at t = 1.314921. The Mach number, characterizing the strength of the shock, is 
A4 w 30 near the center of the cloud soon after the moment of maximum contrac- 
tion and the shock wave reflection. The shock amplifies (and the Mach number 
increases) while it propagates outside the cloud. 

Instability appears later at the contact point of the shock wave and the free 
boundary. This leads to the overturning of the part of the envelope near the z-axis. 
This effect has no significant influence on the processes occurring in the core of the 
cloud, but it precludes running our code further owing to the nonlocal overlapping 
of the grid. To avoid this difficulty and to reduce curvature in the free boundary, 
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O 4 I  0.1 

velocities in the boundary mesh points were altered slightly by introducing a special 
operator in the difference scheme. 

The maximum density is still reached in outer regions on the equatorial plane, 
and the density distribution has a definite ring-type structure. The cloud begins 
to blow up and, a t  t = 1.356753, the shape of the cloud is close to its initial one 
(unit sphere), but with significantly nonuniform density distribution. After that 
moment the cloud also begins to  expand in the radial direction of the equatorial 
plane. When the contact point of the outer boundary and the shock wave reaches 
the equatorial plane the shock wave disappears but the cloud continues to blow up 
and, at t = 1.404643, has the shape of an ellipsoid prolate along the z axis. The 
constant-volume boundary condition, if applied at the outer boundary of the cloud, 
could at that stage of the collapse lead to a deviation of the flow picture from the 
real one. 

The cloud rotates almost rigidly during the first contraction and the following 
expansion stages. Only a small outer part of the envelope near the r axis rotates at 
a lower angular velocity. At t = 1.499228 the cloud consists of a small dense core 
and an envelope extremely stretched in the z direction. At  that stage the cloud 
begins to rotate differentially: central parts (close to the z-axis) rotate faster than 
outer parts of the cloud. The maximum density is still situated on the periphery 
of the equatorial plane. After t = 1.499228, the maximum density is located at 
the center of the cloud, and from this moment the density distribution preserves 
a disk-like structure. The central density of the cloud continues to decrease and 
reaches its minimum p - lop0 a t  t = 1.499228. 
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A 

3 
I 
N 
Y 

Y 
0 
& 

Figure 7 (a-c). Time evolution of the shape of the cloud. 

The second contraction starts in the core of the cloud after t = 1.499228. The 
density slowly grows at  the center. A low-mass, extended envelope continues to 
expand, part of its matter (- 5%) has kinetic energy larger than its potential 
energy and moves away to infinity from the cloud. The calculations ended at t = 
1.774253. The maximum relative error for the total energy was 4.9% at the end of 
the calculations. 

Figure 5 presents time variation of different types of energy. Figure 6 shows 
time variation of Q = Ein/lEgrI, p = Erot/lEpl and Q + p. The second cont,raction 
begins after t = 1.499228 with 

Q 0.08, /3 k: 0.34, (4) 
(see Figure 6). In the collapse simulations of Boss (1980), based on an Eulerian 
difference scheme, the disk was obtained with initial parameters close to (4). We 
conclude that the second and all following contractions definitely lead to the for- 
mation of a disk-shaped figure. 
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