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COSMOLOGICAL TESTS FOR DETERMINING 
REAL SPATIAL AND TIME 

DIMENSIONALITIES OF OUR UNIVERSE 

A. D. POPOVA and G. N .  KULIK 

Sternberg Astronomical Institute, Moscow 

(Received October 31, 1994) 

In the framework of the homogeneous and isotropic cosmological model with arbitrary (non- 
integer) space and time dimensionalities, we derive the three classical cosmological tests: visual 
bolometric magnitude, angular distance and the number of sources versus redshift. We also obtain 
the deceleration parameter and the age and modem radius of the Universe. 

There are promising tendencies in modern physics stemming from theories of frac- 
tals and theories of dynamical chaos to describe physical reality as structural and 
chaotic. For us, they suggest an idea to transfer features of such a description to  
space and time themselves. We are accustomed to consider our space and time as 
continuous, however this can turn out to be incorrect. The continuality of our space 
cannot be confirmed by a finite number of physical experiments (Harmuth, 1989); 
but a noncontinuous space can have another (arbitrary) dimensionality. Thus, the 
main concepts which could be revised are those of the dimensionalities of space and 
time. We also agree with an opinion that the dimensionalities of space and time 
might be noninteger and vary on various scales. 

Recently, we argued for that the spatial dimensionality decreases form 3 on lab- 
oratory scales up to 2 on cosmological scales. This could help to  avoid discrepancy 
between the availability of luminous matter and its dynamics and that between the 
relatively short age of the Universe in the standard FRW cosmology and the age 
of globular stellar clusters and galaxies. Now we make an attempt to  include into 
consideration noninteger dimensionalities of both space and time taking as a basic 
a FRW-type model and to infer simple observable consequences. 

Thus, in our constructions, we think that the cosmological dimensionalities rn 
and n of time and space differ from the laboratory values m = 1 and n = 3. 
Unfortunately, we have no formalism to  take into account a possible smooth change 
of m and n when passing to cosmological scales and have to consider m and n 
constant. .We introduced (Popova, 1994) a relative radius Ro between any two 
bodies where the space dimensionality for them changes by leap from 3 to n. We 
note that our constructions do not require an analogous characteristic quantity for 
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time. As it has been explained, we are mcwtly interested in values 2 < n 5 3 (the 
case n = 2 is in some sense distinct), and it is enough to impose m > 0. 

As for observational predictions, we consider the three classical cosmological 
tests: visual bolometric magnitude, angular distance and the number of sources 
versus redshift and also obtain expressions for the age and modern radius of the 
Universe and the deceleration parameter in some approximations. Certainly, this 
consideration does not give a simple way for determining real m and n from obser- 
vations because there are too many parameters to determine from available tests, 
however we emphasize that we propose another conception for the interpretation of 
suitable observed dependencies. 

Consider the metric interval which is a topological product of a homogeneous 
and isotropic n-dimensional “spatial)) space and a flat m-dimensional “temporal” 
space: 

ds2 = c’(d2: + dt; + . . .+ dt:) - a2( t )  d l tn ,k l ,  

where dltn,k, = dr2 + i 2 (r )  dat,,) is the metric interval of the n-dimensional space 
with constant Gauss curvature (whose sign is k = -l,O,+l) with &r) = s in r  for 
k = +1, &(r) = r for k = 0 and $(r) = sinlir for k = -1, da( is the element of 
angular separation. The scale fact.or a depends only on the radial time coordinate n) 

2 = (1: + t ;  + . . . t m )  2 I f 2  

To accomplish our model, we assume that the Universe is filled with hydrodynamic 
matter, however, in order to  avoid further restrictions than necessary, we should 
introduce a new parameter p’ (Popova and Kulik, 1994) which plays the role of 
pressure (perhaps, tension) in the temporal space. We denote A, B = 1 ,  ..., m and 
i ,  k = 1, ..., n, and then we can write nonvanishing components of our stress-energy 
tensor 

TAB = ( 6  +p‘ )uAUB -P’gAB, Tik = (c  + p)uiuk -pg:k. 

Here 6 ,  p and p’ depend only on 2 .  The quantities U A  = t A / i  represent the time 
components of a n  (m + n)-velocity vector field (with the uni t  norm) comoving with 
matter, so that u, = 0. 

After that we can derive the set of the Einstein-like equations (Popova and 
Kulik, 1994): 

(1) 
m - l a  t i - 1  

a m - l a  n - 2  a’ kcz 
(n-1)  [ -+-- 1 a + 2 (7 + F ) ]  = -X(m,n)P, (3) 

where x(,,,,,) is an Einstein-like constant, and dot denotes differentiat.ion with re- 
spect to t .  As usual, Eqs. (1)-(3) are not independent due to the contracted Bianchi 
identities (and a conservation law) and require an additional condition in the form 
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COSMOLOGICAL TESTS 115 

of “the equation of state”: @ ( c , p ’ , p )  = 0 with @ a function. For the purpose of 
deriving cosmological tests, we confine ourselves to a dust-filled Universe [p = 0, 
however p’ remains a free parameter determined by (2)]. After that Eq. (3) serves 
as the equation for finding the scale factor: 

Starting with integer m and n, we further make the following crucial step: after 
deriving Eqs. (1)-(4), we here consider m and n as real (noninteger) parameters, 
and the only restrictions m > 0 and n > 2 are as yet sufficient. 

Generally, solutions to Eq. (4) cannot be expressed via elementary functions. Its 
partial solutions (Popova and Kulik, 1994) have diverse properties. For example, 
in the case k = 0 with m # 2 we have 

a(t) o< p(2-m)/“ .  (5) 

It is easily seen from (5) that the value m = 2 plays the role of some critical time 
dimensionality which separates expanding (rn < 2) and contracting ( m  > 2) solu- 
tions. For m = 2, there is an expanding logarithmic solution. From the substitution 
of the solution (5) into the set (1)-(3), surprisingly follows “the temporal equation 
of state”: p’ = c,  

As for the propagation of light, we assume that light propagates along the time 
direction ‘UA. (In this time “lives” the dust- fluid.) On the (m + n) isotropic a.nd 
homogeneous background, independently of m and n, the eikonal equation in the 
high-frequency approximation has a solution v(t)a(t) = Const with Y the frequency 
of light. Whence, in recalling the definition of the redshift z = (Y - YO)/VO where 
v is frequency at  the moment of emission, and YO is frequency at the moment of 
observation, we can write as usual 

a = ao(1 + % ) - I .  ( 6 )  

Here and below the index “0” denotes quantities which correspond to the modern 
epoch of the Universe. 

The Hubble parameter is defined as usual, H = a/a.  The critical energy density 
ccr can be determined from (1) when imposing k = 0, this leads to the standard 
definition of the density parameter R = c/ccr. Then, with the aid of ( l ) ,  we obtain 
an expression for the modern (physically) dimensionless radius, DR, of the Universe 

which is useful by itself and is necessary for deriving the cosmological tests. In our 
model with rn # 1, Eq. (7) involves the quantity toHo which is a dimensionless age, 
DA, of the Universe. This is not however the case for m = 1. The same is true for 
the deceleration parameter (see below). 
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Now we'come to the derivation of the tests. To do this, we must have the 
dependence of the coordinate radius r on z (see Zel'dovich and Novikov, 1975). For 
a light ray coming from a light source to us, the following differential relation holds: 

Thus, the next step is to  find the dependence of d t / d z  on z .  Equation for t ( z )  
follows from (4) with the use of (6) and (7), if one comes to  the inverse function 
t ( a )  instead of a( t ) :  

+- 2 

We see that the age, i.e. to = t (O) ,  also enters Eq. (9), meaning that Eq. (9) is 
in some sense an intergredifferentinl one. However, in approximations which are 
considered below, this fact does not give additional difficulties for solving Eq. (9). 

Now, let us denote (d2 t /dz2 )o  = Hi'@ and make sure that (d t /d z )o  = -Hi1 
for z = 0. Then, without any approximations, we have from (10): 

n + 2  m - 1  n - 2  
(f20-1) 2-- 

2 +- toHo +- 2 ( toke + 1 )  
* = -  

Note that the modern value of the deceleration parameter, which is defined in a 
standard way as q = -aa/a2, can be also expressed via g: 

q o = H 0 ( 2 )  0 - 2 = \ k - 2 .  

Now we present expressions for the cosmological tests in the first two non- 

(i) Visual magnitude 11s. redshifl. The distance modulus 1% - M is expressed as 
vanishing orders in t. 

cz 5 m - M  = 5 I g - + - I g e . [ n + 3 - ( n -  
Ho 4 

where m is a visual magnitude, M is an absolute visual magnitude, r denotes the 
gamma function, and Ro is a distance where the space dimensionality changes by 
leap. We have supposed in (12) that the quantity Ro/r x RoHo/cz is sufficiently 
small. 
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COSMOLOGICAL TESTS 117 

(ii) Angular distance VS. redshifl. The second test is usually expressed as the 
distance along the curved n-dimensional sphere which can be determined from the 
linear ( I )  and angular (0) sizes of an extended source: 

2 
R(z )  = - = - 1 - - (1+ 8)]  . 0 ' Ho c z [  2 

(iii) The number of sources us. redshifl. The differential d N  of the sources of a 
required sort within the redshift interval dz is 

where i i o  is the density of these sources at z = 0. 
One can check that for m = 1 and n = 3, the quantities (11)-(14) acquire 

familiar forms coinciding with those in Zel'dovich and Novikov (1975). For rn = 1 
and arbitrary n ,  they coincide with those obtained by Popova (1994a). 

We see that knowledge of (10) is a key for calculating the deceleration parame- 
ter (11) and the tests (12)-(14) in required approximations. As mentioned above, 
Eq. (10) is exact in the sense that it is obtained without any approximations. How- 
ever, to obtain it finally, we must know the value t o  that is solve (9) for t ( z )  and 
take t o  t ( 0 ) .  We have a success in doing this in the two different approximations 
when (1) (no - 1) is small and (2) (rn - 1) is small. 

w << 1. This approximation can be obtained only for expanding 
solutions with a = 00 at t = 0: This means that (2 - n/2) < in < 2. In this case, 
DA is approximately 

(1) (0, - 1) 

1 .  (15) 
2(2 - m) n - 2  n - ( 2 - m )  toHo = [ l -w-  

n n - 1 2n - (2 - rn)(4 - n )  

Evidently, for Ro = 1, DA effectively increases if n tends to 2 and m is smaller than 
unity. As for the w-correction in (15), it is negative at  least for 2 < n 5 3: The 
Universe is older when w < O[k = -11 and younger when w > 0 [k = +1]. 

Here, DR is given by 

(in - l ) n ( n  - 2) 
(n - 1)['2n - (2 - m)(4 - n)]  

( u o H o c - ~ ) ~  = - 1 ( n -  1)(2-m) ( l +  
IwI n - ( 2 - r n )  

Certainly, aoHo + 00 when w + 0 (flat n-dimensional space). The w-correction 
enters (16) with the factor (rn - l),  the latter can have both negative and positive 
signs. Therefore, the sign of a correction in (16) is determined by the sign of 
-w(m - 1). 

Expression for \k' acquires the form 

(17) 
n 

2(2 - rn) 
( n  - 2)[n - (2 - rn)][8 - 4m - 3n] 

2(n - 1)(2 - m)[(2 - m)(4 - n) - 2721' * = 1 +  + W  
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(2) (m - 1) p << 1. This approximation has a feature that the quantity m - 1 
enters Eqs. (7) and (10) only in combination with the DA ( t o H o ) ,  that is why for 
the latter we can take its value for m = 1: 

( t o ~ o ) l , , , = ~  = 2 j n d Z ) - ' F o ( n ,  0 0 )  (18) 

where Fo(n, Ro) G F(n ,  Ro; 0), 

and 2 Fl is the hypergeometric function. Some numerical values of (18) were pre- 
sented by Popova (1994a). 

Thus, using (18), expressions for S' and aoHoc-' can be easily obtained from 
(7) and (10): 

Expression. for the dimensionless age is more cumbersome, 

0 

x jmcitt-3/2(t)(1+ t)-2[(i + ZIn-2 - 11) * (21) 
0 

where 
(( 2 )  = R,( 1 + z y - 2  - Ro + 1 .  

We should add that Eqs. (15), (16) and (17) are i n  agreement with Eqs. (21), (20) 
and (19), respectively, if we make the approxima.tion in 11 in the former ones and 
that in w in the latter ones. 

References 

Harmuth, H.  F. (1989) Information Theory Applied to  Space-Time Physics ,  Moscow, Nauka, 

Popova, A. D. (1994) Astron. and Asfroph.  Trans. 5, 31. 
Popova, A. D. (1994a) Friedmann Cosmologg in Alterttafive Spofial Dimensions.  Solufions and 

Russian translation. 

Tests. To appear in Asfron .  and Asfroph.  I fans .  



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
14

:1
0 

18
 D

ec
em

be
r 2

00
7 

COSMOLOGICAL TESTS 119 

Popova, A. D. and Kulik, G .  N. (1994) On Homogeneous and Isotropic Cosmological Models wiih 
Arbitrary Numbers of T i m e  and Space Dirnensionalities. To appear in Astron.  and Astroph. 
Trans. 

Zel’dovich, Ya. B. and Novikov, I. D. (1975) The structure and Evolution of the Universe,  Moscow, 
Nauka (in Russian). 


