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VACUUM WEYL COSMOLOGIES IN D 
DIMENSIONS 

K. A. BRONNIKOV and V. N. MELNIKOV 
Center for Surface and Vacuum Research, 8 Krawchenko str., Moscow 117331, 

Russia 

(Received October 19, 1994) 

Vacuum cosmological models are considered in the context of a multidimensional theory of gravity 
with integrable Weyl geometry. A family of exact solutions with a chain of internal spaces is 
obtained. Models with one internal space are considered in more detail; nonsingular models are 
selected. 

1. Scalar fields play a significant role in modern cosmology (Staniukovich and 
Melnikov, 1983) ,  in particular, in various inflationary models. However, there is an 
inherent problem of the origin of this field. It can be naturally solved in multidimen- 
sional models where scalar fields are represented by extra-dimension scale factors 
(Bronnikov and Melnikov, 1992) and other models with generalized geometries such 
as the Weyl geometry (Novello e2 al., 1993) .  In both cases nonsingular cosmological 
models have been obtained. 

Here we consider a scheme unifying the two approaches, i.e., multidimensional 
cosmology with an integrable Weyl geometry. Since the most reliable results are 
obtained on the basis of exact solutions, we try to  find them in the simplest cases. 
Recently some results have been obtained in the same scheme using numerical meth- 
ods (Konstantinov and Melnikov, 1994). 

2. 
defined by the metric gAB and the connection 

Consider a D-dimensional manifold WD with an integrable Weyl geometry 

where are the Christoffel symbols for the metric QAB,  w is a scalar field and 

Gravitational field is determined by the tensor gAB and the scalar w ,  just as in 
scalar-tensor theories (STT) of gravity. As is the case with STT, the gravitational 
Lagrangian may in general contain various invariant combinations of and w .  
Let us restrict ourselves to Lagrangians (a) linear in the scalar curvature and (b) 
quadratic in W A .  Then the general form of the Lagrangian is 

W A  = aAw. 
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122 K. A. BRONNIKOV A N D  V. N.  MELNIKOV 

L = A(w)R + B ( W ) W ~ W A  - ~ A ( w )  + L,,  (2) 
where R is the Weyl scalar curvature corresponding to the connection ( l ) ,  A,  B and 
A are arbitrary functions and L, is the nongravitational matter Lagrangian. 

To simplify the field equations let us make use of the expression of R in terms 
of the Riemannian curvature R corresponding to the metric QAB:  

(3) 
1 
4 

R = fi + (D - 1 ) O w  - -( D - 1)(D - 2)LdAW,4 

(in and 0, the Riemannian connection Fic is used) and the conformal mapping 
well-known in STT (Wagoner, 1970), modified for D dimensions (Bronnikov and 
Melnikov, 1994) : 

S M N  = ~ - 2 / ( D - 2 ) -  g M  N . (4) 
Consequently, omitting a total divergence, we obtain the following form of the 
Lagrangian: 

(5) 
- 
L = A(u)Z. + F ( w ) ~ ~ ~ w A w B  + A4-D'(D-2)[ -2A(~)  + L m ] ,  

where 
(A, = dA/dw) 

is the Riemannian scalar curvature corresponding to the metric T A B  and 

F ( w ) =  1 A [ n B - ( D - 1 ) A  

3. 
L ,  = 0 and postulate the following structure of the space-time WD: 

Let us consider vacuum cosmological models in the theory described: put 

WD = R x MI x . . . x A4,,; dim Mi = Ni; (7) 

the subspaces Mi are assumed to be maximally symmetric. The component R 
corresponds to time r;  besides, we assume w = w ( T ) .  Thus, the effective Riemannian 
metric is written in the form 

n 

&2 = TAB d z B  = e37(?) d r 2  - 1 e2D*( ' )  d $ ,  (8) 
i= l  

where ds: are r-independent metrics of the Ni-dimensional spaces of conshnt cur- 
vature I - i ;  without loss of generality one can put Ir'i = 0 , f l .  

Using the freedom to choose the t.ime coordinate T ,  let, us introduce the harmonic 
time by putting 

n 

i = l  

Then the Ricci tensor for T A B  has the following nonzero components: 
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VACUUM WEYL COSMOLOGIES 123 

n \ 

where the indices mi and ni belong to  the subspace M,. 
4. 
straint A = 0: 

The field equations take an especially simple form under the additional con- 

They can be integrated completely under the above assumptions if (i) all the sub- 
spaces Mi are Ricci-flat and (ii) if one of M i  (for instance, M 1 )  is a space of nonzero 
constant curvature ( K 1 ) .  Indeed, putting Ir'i = 0 ( i  > l),  we obtain: 

( F L 2 )  = 0 3 FLj2 = const; (13) 
j i = o  3 ~ i = ~ i o + h i r ,  i > l ;  (14) 

(15) 7 - jl = -Ii'ld2e27-2B1 

where d + 1 = N1 = dimM1. Equation (15) leads to  different results for different 
Ii'l: for K1 = 0 (case (i)) Eq. (14) may be regarded to include i = 1; for Zi'l # 0 
(case (ii)) we get: 

(16) 8 1 - 7  = -cosh k ~ ,  k > o ( ~ 1  = + I ) ,  

2 1 - 7  = ~ . S ( R , T )  d . 7 ,  6 = 0; (Zr'l = -1) (17) 

d 
k 

(d/k)sinh kr,  L > 0, 

{ (d/k)sin kr ,  6 < 0, 

where k = const and another integration constant is eliminated by a part,iciilar 
choice of the origin of T. Finally, a combination of components of ( 1  1) representing 
the time component of the Einstein equations (the init,ial data equation) 1ea.ds to 
the following relation among the .integration constant: 
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Thus the set of equations (1 l ) ,  (12) has been integrated by quadratures. 
Insofar as the original functions A ( w )  and B ( w )  and hence F ( w )  are arbitrary, 

it is difficult to describe the physical properties of the models in a general form. 
Therefore here we restirct ourselves to some simple special cases. 

Thus, we assume A G 1 while B(w) remains arbitrary, so that the metric TAB 
and gAB coincide. 

5. As the first step consider 4-dimensional cosmologies: put n = 1 , d  = 2 and 
p1 p(r).  The condition that r is a harmonic coordinate takes the form y = 3p 
and for the scale factor we get: 

1/2s(k,r) ,  Ii‘l = 1, 
e 2 P  = a’(.) = e k r ,  A-1 = 0 ,  (20) { 1 / 2 ~ 0 ~ h  k ~ ,  l i l  = -1, 

while the physical time is determined by the integral 1 = f e'er) d r .  The constant 
k is connected with the “scalar charge” S according to (18), (19) where one should 
substitute hi = O(i > 1) and hl = k/2: 

2s = { 3k’sign k, I<, = f l ,  
3k2, li‘l = 0. 

I t  is easy to obtain that in the case of a spherical world (K1 = 1) the values 
T = A m  correspond to finite times i l  and t z  at which a = 0 (the initial and final 
singularities). For a flat world (K1 = 0) at k # 0 and a hyperbolic one (K1 = -1) 
at k > 0 an initial or final singularity is observed at  infinite r .  In the special 
case Ii‘l = -1, k = 0 we obtain the Millie vacuum model which is known to 
describe a domain in flat space-time (in this case S = 0, so that the scalar field is 
trivial). 

Finally in the case where Ii1 = -1 and k < 0 we see that the limits T + 0, r / l k l  
correspond to  t + f m ;  the scale factor a(2) decreases in an asymptotically linear 
manner in the remote past ( t  + -m), reaches a minimum a t  r = r / 2 ( k (  and grows 
in an asymptotically linear manner at t -+ 00. The model is time-symmetric with 
respect to the moment of maximum contraction. 

From (21), a necessary condition for the existence of nonsingular solutions is the 
restriction F < 0 on the function ( G ) ,  or, in terms of the initial function B ( w )  : B < 
3/2. 

6. 
of the ordinary physical space (N1 = 3), while b ( t )  
space (N2 = N). 

6.1. 

These results confirm those of Novello et  nl. (1993). 

Consider now the metric TAD for n = 2; let n ( t )  s eDl(r)  be the scale factor 
e P z ( ’ )  is that of the internal 

In the case Ii‘l = 0 (spatially flat models) we obtain: 

(22) &2 = e 2 ( 3 h ~ + N h 3 ) r  dT2 - e 2 h l r  ds: - e ? h ~ r  ds;,  

where, without loss of generality, the scales in A41 and A42 are chosen so that 
p10 = /?20 = 0. Herewith, 
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VACUUM WEYL COSMOLOGIES 125 

6(h1 + N h ~ / 2 ) ~  = N ( N  + 1 / 2 )  + S.  (23 )  

In the special case 3hl + Nh2 = 0 the time coordinate T is synchronous, or 
physical. The metric (22 )  is nonsingular a t  finite r and described an exponential 
expansion (inflation) of one of the space (e.g., the physical one, MI) and a simul- 
taneous exponential contraction of the other, Mz, since hl and h2 have different 
signs. However, from (23 )  and (13 )  

S = FLjz = -h:(2N + 1 ) / N  < 0 .  ( 2 4 )  
So a necessary condition for the existence of the special solution (22 )  is 

B(w)  < ( D  - 1)(D - 2 ) / 4 ,  (25 )  
which is more general than B < 3/2 from Section 4. 

dt = e H T d r  leads to the metric 
In the more general case 3hl + Nhz = H # 0 a transition to the physical time 

&2 = dt2 - t Z h l / H  ds: - t2hdH d s f ,  ( 2 6 )  
which is singular at t = 0 if at least one of the constants hl or h2 is nonzero. At 
hl = h2 = 0 the metric is static and (24)  implies that either w = 0 (the solution is 
trivial), or F 

6.2. 

0, a special choice of B such that W ( T )  has no dynamics. 

For a spherical world ( K l  = 1) the metric is 

dS2 = - ds:] - eZhT dsg, 

where ds: is the line element on a unit sphere. A consideration similar to that in 
Section 5.1 leads to the following conclusions: 

(a) The model behavior is classified by the values of the constant h = h.2 as 
compared with k > 0. The physical time 1 = f e7(') d r  va.ries either within 
a finite segment [ t l , t 2 ]  (if lNhl < 3k) ,  or within a semi-infinite range (if 
lNhl 2 3k) .  

(b) At any finite boundary of the range o f t  at least one of the scale factors a( t )  
or b( t )  vanishes, i.e., a singularity takes place. 

(c) At t -+ f o o  either a 4 0, b -+ 00, or conversely, a -, 00, b --+ 0. 

The value of S = FW2 is determined at Ii'l = f l  from 

3k2sign k = N(N + 2)hZ + 2 s .  
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6.9. For hyperbolic models (K1 = -1) the metric h a s  the form 

ds2 = - - ds:] - e2hr ds:, (29) 

which is the same as (27), but with the function cosh k r  replaced by s(k, r )  defined 
in (17). Without loss of generality, let us assume r > 0. 

The model behavior can be briefly described as follows: 

(a) At k > 0, N h  5 -3k or k = 0, h < 0 the physical time t = f JeY(') d r  
ranges from -m to  +m. The factor b ( t )  = eh(r )  varies from a finite value 
at  r = O ( t  = -00) to zero at r -+ oo(t + do). The factor a( t )  describes 
a power-law contraction from infinity (at t -* -m) to  a regular minimum 
and an infinite (in general, power-law) expansion at  t -* 00. There is no 
singularity at finite 2 .  

(b) At k 2 0, N h  > 3k the model is singular at finite t corresponding to  r + do. 

In the special case h = k = 0 we come again to the Milne model (see Section 4) 
supplemented with the space M2 having a constant scale factor. 

(c) At k < 0 the time t ranges again from -00 to  +00. The factor a( t )  behaves 
as it did in item (a), however, its variation at  t + foo is linear (but in 
genera1 with unequal slopes at  the two asymptotics). The factor b ( t )  changes 
monotonically between two finite boundary values. 

Unlike the 4-dimensional models (Section 4), the nonsingular multidimensional 
ones with h # 0 exhibit a time-asymmetric behavior of a(t).  

It is seen in a straightforward way that in all the nonsingular models the re- 
quirement (25) is imposed on B(w) ,  which, as it could be formulated in general 
relativity, implies a negative scalar field energy density. 

Some properties of the above models have been discovered in numerical calcu- 
lations for a number of special cases with D = 5 and D = 6 (Konstantinov and 
Melnikov, 1994). 

We conclude that some of the multidimensional Weyl cosmologics are nonsin- 
gular: there are special flat-space models with eternally increasing or decreasing 
scale factor (such models are absent in the 4-dimensional approa.ch) and there are 
more general hyperbolic models with a cosmological bounce generalizing the 4- 
dimensional ones (Novello et al., 1993). However, it should be taken into account 
that we have considered only one conformal gauge (although, in a certain sense, 
the most natural one), while, in the others the picture of singularities may change. 
The choice of a conformal gauge, connected with the choice of a system of measure- 
ments, is a separate problem (Staniukovich and Melnikov, 1993), especially when a 
generalized geometry is used; its solution depends on the specific form of interac- 
tion between matter and geometry, which subject is beyond the scope of vacuum 
cosmologics. 
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