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ON PROPERTIES OF METRICS 
INHOMOGENEITIES IN THE VICINITY 

COSMOLOGICAL MODELS 
OF A SINGULARITY IN KALUZA-KLEIN 

A. A. KIRILLOV’ and V. N. MELNIKOV’ 

Institute for Applied Mathematics and Cybernetics 10 Ulijanova s t r . ,  Nuzhny 
Novgorod, SOS005, Russia 

Center  for Surface and Vacuum Research, 8 Kravchenko Sir. MOSCOW, 11 7331, 
Russia 

We discuss the dynamics of inhomogeneities of metric in a general solution to D-dimensional Ein- 
stein equation with matter sources satisfying the inequality E 2 p in the vicinity of a cosmological 
singularity. It is shown that a local behavior of a part of metric functions near the singularity is 
described by a billiard on a space of a constant negative curvature. If D 5 10, the billiard has a 
finite volume and, consequently, it is a mixing one. It is shown for this case that statistical prop 
erties of inhomogeneities of metric admit a complete description. An invariant measure describing 
statistics of inhomogeneities is obtained and the role of a minimally-coupled scalar field in the 
dynamics of the inhomogeneities is also considered. 

1 INTRODUCTION 

Qualitative features of a general solution to D-dimensional Einstein equations in 
the vicinity of the cosmological singularity are known to depend critically on the 
number of spacetime dimension [l]. In the case D < 11 an oscillatory regime occurs 
obtained first in Refs. [2]. In the opposite case D 2 11 the oscillatory regime 
turns out to be unstable and the last stage of cosmological collapse is described 
by the stable generalized Kasner metric. In the case D = 4, the existence of the 
oscillatory stage in the evolution of metric was shown to result in the fractioning 
of the coordinate scale of inhomogeneities of metric and finally in the formation 
of spatial chaos in metric functions [3]. The aim of this paper is to generalize 
the approach suggested in Ref. [3] and to investigate dynamics and properties of 
inhomogeneities of metric near the singularity in Kaluza-Klein cosmology. 

It is well known that matter with equation of state satisfying the inequality 
E < p does not change the behavior of metric near the singularity [4] and the only 
kind of matter effecting the dynamics of metric is a scalar field [2]. The scalar 
field results in the instability of the oscillatory regime as that of the dimensions 
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exceeding D = 10. Therefore, it seems to be sufficient to consider Kaluza-Klein 
cosmologies with D 5 10 filled with a scalar field. 

Thus, in this paper we consider D-dimensional Einstein equations with the mat- 
ter source given by a minimally-coupled scalar field. Using generalized Kasner vari- 
ables, we divide the dynamical functions connected with physical degrees of freedom 
in two parts. One part has a simple behavior while the other is described by a bil- 
liard on an appropriate Lobachevsky space. In D < 11, the billiard has a finite 
volume and shows stochastic properties. This stochasticity results in inhomogene- 
ity of dynamical functions and leads to the formation of spatial chaos. The presence 
of a scalar field results in the fact that lengths of trajectories on the billiard take 
finite values. This destroys the chaotic properties which, however, are restored in 
the limit when the ADM energy density for the scalar field turns out to be small as 
compared with that of gravitational variables. 

2 GENERALIZED KASNER VARIABLES 

We consider the theory in canonical formulation. Basic variables are the Riemann 
metric components gap with signature (+, -, .. . , -) and a scalar field 4 specified 
on the n-manifold S, and its conjugate momenta nap = f i ( K a a  - g"") and 
IIb,  where Q = 1,. . . , n and K a p  is the extrinsic curvature of S. For the sake of 
simplicity we shall consider S to  be compact, i.e., 8s = 0. The action has the 
following form in Planck's units: 

. . a g . .  a4 (n') 1) + n,- - NHO - NaHa)d"z  dt ,  z = J a  s at 

where 
(2.2) 

1 1 1 H0 = -{n;n! - - ( n y  + 2n; + g(W(4) - R)} ,  fi n-1 

We consider the following representation for metric components and their con- 
jugate momenta [3] 

gap = c exp { q a ) c $ l  (2.5) 
a 

n; = CpaL:I;j (2.6) 
a 

where L:l: = 6: (a, b = 0,. . . , (n - l)), and the vectors 1; contain only n(n - 1) 
arbitrary functions of spatial coordinates. Further parametrization may be taken 
in the following form: 
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1; = UtS;, Ut E SO(n), S: = b: + R t ,  (2 .7)  
where RZ denotes a triangular matrix (RZ = 0 as a < a). Substituting (2.5)-(2.7) 
into (2.1) one gets the following expression for the action functional: 

where T," = 2CpbLrU,b  and the Hamiltonian constraint takes the form 
b 

In the case of n = 3 the functions RZ are connected purely with transformations 
of a coordinate system and may be removed by solving momentum constraints 
Ha = 0 [ 3 ] .  In the multidimensional case the functions RZ contain dynamical 
functions as well. 

3 AN ASYMPTOTIC MODEL IN THE VICINITY OF A COSMOLOGICAL 
SINGULARITY 

In order to  investigate inhomogeneities in the vicinity of a singularity, it is more 
convenient to use an asymptotic expression for the potential [3] .  For this purpose 
we represent the potential in the following form: 

k 

where XA is a set of functions of all dynamical variables and the) derivatives and 
ua are linear functions of the anisotropy parameters Qa = (UA = UA(Q) ) .  

Assuming the finiteness of the functions XA and considering the limit g -+ 0 we find. 
that the potential V may be modeled by potential walls 

5 

Thus, putting N Q  = 0, we can remove the passive dynamical function T,", RZ from 
the action (2.8) and get the reduced dynamical system 
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where A is expressed via the lapse function as A = E .  In harmonic variables, the 
action (3.3) takes the form formally coinciding with the action for a relativistic 
particle 

fi 

z = J Y  {Pr- - A'(P," + u - P ; ) } s z d t ,  (3.4) 
s 

where r = 0,. . . , n ,  i = 1 ,..., n, qa = A;zJ+zo ( j  = 1 ,  ..., n-1),  z" = 
A' = & and the constant matrix A: obeys the following conditions: 

a a 

and can be expressed in the following form: 

(3.5) 

Since the timelike variable zo varies during the evolution as zo - In g ,  position 
of the potential walls turn out to be moving. I t  is more convenient to fix positions 
of the walls. This may be done by using the so-called variables of the Misner-Chitre 
type [3,51 (Y'= $1, 

Using these variables one can find the following expressions for the anisotropy pa- 
rameters: 

which are now independent of the timelike variable T .  In the vacuum case, expres- 
sions (3.7) give, under the restriction Iyl = 1,  a parametrization of the standard 
Kasner exponents [l], [2]. From (3.7) one can find the range of the anisotropy 
functions -+ 5 Q a  5 1. 

Choosing as a time variable the quantity r(i.e., in the gauge N = wfi 
exp (-27)/P0) we put the action (3.4) into the ADM form 

a z = {P--y'+ P " - P  - PO(P, y)}dnXdr, J s -aar 87. 

where the quantity 

plays the role of the ADM Hamiltonian density and 

1 
4 

€2 = -(1 - y2)2F? 

(3.9) 

(3.10) 
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Figure 1 

The part of the configuration space connected with the variables ais a realization 
of the ( n  - 1)-dimensional Lobachevsky space and the potential V cuts a part of it. 
Thus, the action (3.9) describes locally (at a particular point of S) a billiard in the 
Lobachevsky space. Positions of the walls that form the boundary of the billiard 
are determined, due to (3.1) by the inequalities (see also [l], [2]) 

(3.11) 

and the total number of the walls is &. Using the matrix (3.5), one can find 
that walls are formed by spheres determined by the equations 

uabc = 1 Qa - Qb - Qe 2 0, a # b # C, 

(P - A’b - .@), 1 
n - 1  gabc = - 
3n-  1 
n - 1  

B2 = -. (3.12) 
+ - 

In a general case n points of the billiard having the coordinat,es Pa = &A“ lie on 
the absolute (at infinity of the Lobachevsky space). The trajectories which end with 
these points correspond to the set of Kasner exponents (0,. . . O ,  1). I t  was shown 
in Refs [l] that if n 2 10, there appear open accessible domains on the absolute in 
addition to the points Pa and the volume of the billiard turns out to be infinite. If 
on contrary n < 10 the volume of the billiard is finite and the billiard turns out to 
be a mixing one. In order to illustrate the billiard we give two simplest examples in 
Figure 1. The case n = 3 in Figure la coincides with the well-known “mkmaster” 
model and in Figure l b  we illustrate the case n = 4. 

4 DYNAMICS OF INHOMOGENEITIES 

The system (3.8) has the form of a direct product of “homogeneous” local systems. 
Each local system in (3.8) has two variables c and P” as integrals of motion. A 
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solution of this local system for the remaining functions represents a geodesic flow 
on a manifold with negative curvature. It is well known that the geodesic flow on 
a manifold with negative curvature is characterized by exponential instability [6]. 
This means that, during the motion along a geodesic, the normal deviations grow 
no slower than the exponential of the traversed path (< 21 t o e a ,  where the traversed 
path is determined by the expression 

This instability leads to  the stochastic nature of the corresponding geodesic flow. 
The system possesses the mixing property [7] and an invariant measure induced by 
the Liouviulle one 

dp(y, P) = const 6 ( E  - c)d"-'yd"-'P, (4.2) 

where E is a constant. Integrating this expression over 6 we find 

d"-'yd"-2m 

(1 - Y2)" ' 
dp(y, m) = const (4.3) 

? where d = 7 and Iml= 1. 
Since the inhomogeneous system (3.8) is the direct product of "homogeneous" 

systems, one can simply describe its behavior as in ref [3]. In particular, the scale 
of the inhomogeneity decreases as 

(4.4) 

and after a sufficiently large time ( s ( r )  + 00) the dynamical functions C(z) and 
$(z) become random functions of spatial coordinates. Their statistics is described 
by the invariant distribution (4.3) and asymptotic expressions for averages and 
correlating functions have the form 

(Y(.')) = ( P ( 3 )  = 0, ( Y P ( l ) ,  YdZ')) = ( Y k ,  Yl)6(+, z'), (4.5) 

for Iz - 2'1 >> A: exp (-s). 
Here it is necessary to point out the role of the scalar field in dynamics and 

statistical properties of inhomogeneities. As can be easily seen from (4.1) that in 
the absence of a scalar field (i.e., P" = 0) the transversed path coincides with the 
duration of motion (we have s = AT = T - TO instead of (4.1)). Thus, the effect of 
scalar fields is displayed in a modification of the dependence of the transversed path 
on time variable and, therefore, affects the growth rate of the inhomogeneities. This 
modification does not change qualitatively the evolution of the universe in the case 
of cosmological expansion. But in the case of a contracting universe the situation 
changes drastically. Indeed, in the limit T -+ -00 we find from (4.1) that the 
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transversed path s takes a limited value SO and therefore growth of inhomogeneities 
turns out to be finite. One of consequences of such a behaviour is the fact that 
the functions y' and P' take constant values at  the singularity. In other words, a 
cosmological collapse ends with a stable Kasner-like regime (2.6) in the presence of 
scalar fields. This can be obtained in the other way. Indeed, in the limit r + --oo 
the scalar field gives the leading contribution to the ADM Hamiltonian (3.9) and 
Po does not depend on gravitational variables at all. 

The finiteness of the transversed path ~ ( r )  leads, generally speaking, to the 
destruction of the mixing properties [7], since it is necessary to satisfy the condition 
SO -+ 00 for the establishment of the invariant measure. Evidently, this condition 
requires the smallness of the energy density for the scalar field as compared with 
the ADM energy of gravitational field (the last term i n  (3.9) in comparison with the 
first ones). Indeed, in this case SO is determined by SO = -In v, which follows 
from (4.1), and as P" + 0 one obtains SO 00 (i.e., s can have arbitrary large 
values). 

Thus, in the case of cosmological contraction one may speak of mixing and, 
therefore, of the establishment of the invariant statistical distribution just only for 
those spatial domains which have a sufficiently small energy density of the scalar 
field. 

5 ESTIMATES AND CONCLUDING REMARKS 

In this manner the large-scale structure of the space in the vicinity of the singularity 
acquires a quasi-isotropic nature. The distribution of inhomogeneities is determined 
by the set of functions of spatial coordinates E ( z ) ,  &(Z), Ri and T," which conserve 
during the evolution a primordial degree of inhomogeneity of the space. The scale 
of inhomogeneity of other functions grows as A = Xoe-8 (T ) .  In this section we give 
some estimates clarifying the behaviour of the inhomogeneities. For simplicity we 
consider the case when the scalar field is absent. 

To find an estimate for the growth of the inhomogeneity in the synchronous time 
t(dt  = N d r )  we put y = 0. Then for variation of the variable T one may find the 
following estimate fi - exp ( - 4 e - T )  - Pot (here the point t = 0 corresponds to 
the singularity). According to (4.4), the dependence of the coordinate scale of the 
inhomogeneity upon the time t takes the form 

= A0 In (1/90)/rn (l/g) 

in the case of contracting universe (g + 0) and 

= A0 In (l/g)/ln (l/go) 

in the case of expanding universe. 
A rapid generation of smaller and smaller scales leads to the formation for spatial 

chaos in metric functions and so the largescale structure acquires a quasi-isotropic 
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nature. The rates of expansion (Hubble constants) for different directions turn out 
to be equal after averaging over spatial domains having the size w XO. Indeed, using 
(3.7) one can find the expressions for the averages, (&a) = l /n .  

In spite of the isotropic nature of the spatial distribution of the field, a strong 
local anisotropy displays itself in the anomalous dependence of spatial lengths on 
time variable for vectors and curves. Indeed, the moment of the scale function 
(gMQa) (where M > 0) decreases in the asymptotic g + 0 as the Laplace integral 

gMQ0p(Qa) dQa, where p(Qa) is the distribution which followsfrom (4.3). The 
1 

Q m i r  w main contribution in this integral is given by the point Q = Qmin - 
and in the case n > 3 and in the limit (Q - Qnlin) --+ 0 one can find p(Q) k: 

C(Q - Qmin)n-l, where C is a constant and we obtain the estimate 

Thus, for n > 3 the lengths even increase when one approaches the singularity. The 
case n = 3 must be considered separately. For this case we have Qmin = 0 and the 
explicit form of the distribution function p(Qa) that follows from (4.3) is 

As Q << 1, one has p(Q,) x 
estimate [3] 

and, thus, in the limit g -, 0 we obtain the 

(gMQa ) w [M In (l/g)]-’/’. (5.3) 

Thus, in the case n = 3, average scales decrease in the asymptotic g + 0 but with 
a logarithmical behaviour. 

In conclusion, we briefly formulate the main results. The general inhomogeneous 
solution of D-dimensional Einstein equations ( D  = n + 1) with any matter sources 
satisfying the inequality 6 2 p near the cosmological singularity is constructed. 
I t  is shown that near the singularity a local behaviour of metric functions (at a 
particular point of the coordinate space) is described by a billiard in the (n - 1)- 
dimensional Lobachevsky space. In the case D < 11 the billiard has a finite volume 
and, consequently, is a mixing one. The rate of growth of metric inhomogeneities 
is obtained. Statistical properties of inhomogeneities are described by the invariant 
measure. It is shown that a minimally-coupled scalar field leads, in general, to the 
destruction of stochastic properties of inhomogeneous models as that of additional 
dimensions exceeding D = 10. 
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