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The possibility to resolve a double source with point-like components having considerable a priori 
information has been studied by numerical simulations. The strict form of the Point Spread 
Function (PSF) was assumed to be known, and the awe of equal brightnesses of components was 
considered. Quite reliabk restoration is possible down to separation values smaller by the factor 
of (Signal-teNoise)lj2 than Rayleigh’s boundary. The drop of the estimates accuracy near the 
theoretical resolution limit has been found to be rather steep. 

The use of detector pixels much smaller than the PSF width does not increase essentially the 
reliability of the object’s identification, whereas the use of too co818e image pixels (in the sense 
of the sampling theorem) strongly reduces the quality of restoration. At  the same time, the pixel 
size in the object space has to be approximately (Signal-teNoise)’/2 times smaller than the PSF 
width. 

KEY WORDS Inverse problems, image restoration 

1 INTRODUCTION 

The Raylegh’s problem (see Rayleigh, 1964, p. 420) of limiting resolution of a dou- 
ble source with the point-like components considered below has been studied many 
times from various points of view. Early investigations were discussed very clearly 
by Rautian (1958); among further investigations, those by Schelkunoff (1943), 
T. di Francia (1955), Wolter (1961), Kozlov (1964), Harris (1964a, b), F’rieden 
(1967), Helstrom (1973), Snyder (see Snyder and Miller, 1991, p. 170), and Lucy 
(1992a, b) have the most immediate relation to the following considerations. 

The aim of the numerical simulations discussed here is to check the expression 
for theoretical resolution limit in the presence of considerable a priori information 
presented earlier (Terebizh 1990, 1993), and to study reliability of objects’ restora- 
tion near the limit. 

The following information was supposed to be known a priori: 1) the observed 
blurred and noised image was generated by an object consisting of two incoherent 
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point-like components of equal brightness; 2) the total brightness of the object 
F (counts) and the mean intensity of random background (7,) (counts/pixel) are 
known;.3) count fluctuations are subjected to the Poisson distribution; 4) the Point 
Spread Function (PSF) h(z-2‘) is exactly known. On the basis of this information 
and the observed image pattern one has to find the most accurate estimates of 
unknown components’ positions and of the distance between them. 

Contrary to the approach relating the formulation of the problem to some in- 
tegral equation, a purely statistical way is considered below, which allows us, in 
particular, to take into account the photon noise (Helstrom, 1969; 1970; Terebizh, 
1991). The term “estimate” is considered here in its strict statistical meaning, that 
is, an estimate of an unknown parameter is some random variable that depends on 
the observed pattern. The first and forth suggestions from those enumerated above 
are more essential, whereas the others have little effect on the results. 

It should be expected on the ground of the above-mentioned investigations that 
even very close sources with the distance between components smaller than the 
Rayleigh’s limit could be resolved under so considerable a priori information. In- 
deed, it follows from the solution for objects of any shape (Terebizh, 1990; 1993) that 
with a point source as the only alternative to a double one with point components, 
the limiting resolution pmin is equal approximately to 

where A is some properly defined PSF width, a and p are the error probabilities of 
the first and the second kind for binary decision rule, zg is the Gaussian quantile of 
the order I - el, and 11, is the Signal-to-Noise ratio: 

11, = F / ( F  + 2Ay)’I2. 

1 s i n ( r z / ~ )  
A r z / A  

however, equation (1) maintains its validity also for two-dimensional images under 
corresponding correction of the Signal-bNoise ratio definition. 

Let us take, for example, F = lo4 counts, y = 10 counts/pixel, A = 100 pixels 
(the distance from the PSF maximum to the nearest zero), and a N p N 0.10. Then 
it follows from (1) and (2) that the Signal-teNoise ratio is 11, N 91, and the limiting 
relative resolution is ‘R N 0.1. A higher resolving power can be attained when less 
reliable identification is allowed (say, ‘R N 0.05 for a N 

The high resolution is conditioned, first of all, by availability of essential a priori 
information. When this information includes only non-negativity of the unknown 
object and the PSF form, the limiting resolution for double objects with point 
components is defined by the formula 

(2) 

We consider here for the sake of simplicity the one-dimensional case with the diffrac- 
tional PSF: 

(3) h(z)  = - .  [ ] ; 

N 1/3). 

RN(?) 114 , 
(4) 
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which follows from the general solution (Terebizh, 1990). A similar result in the 
form 72 a F-'/' was obtained independently by Lucy (1992a, b), who considered 
the case of zero background (that is J, = F1/2), and used clear approach, based on 
the image moments, instead of the most powerful test of pattern recognition. The 
change of the power index fiom -5/8 to -2/8 when paseing from (1) to (4) shows an 
appreciable deterioration of the limiting resolution (so, R 1: 0.5 in the conditions 
of the above-discussed example). 

The limits like (1) and (4) can be used both for setting of experiments and for 
interpretation of observational data, but their real practical significance depends 
also on a number of indirect circumstances. First of all, it is interesting to ascertain 
bow steep is the transition to complete indistinguishability of dternative objects. 
Just this question in relation to the limit (1) has been studied by Monte Car10 
simulations. 

2 MODEL OF IMAGE FORMATION 

In conformity with the a priori information described above, the model of image for- 
mation assumes that the positions (21~22) of point components of a double object, 
each of brightness F/2, are unknown ppameters. The components were blurred 
randomly and independently from one another, photon by photon, according to the 
distribution density h ( z ) ,  and then the random Poisson background of mean inten- 
sity yj y was added to the stochastically smoothed image. The relation between 
multinomial statistics under random blurring and Poisson distribution was discussed 
earlier (Terebizh, 1991)) and we shall not return to this item. The brightness distri- 
butions are given as sets of integer, non-negative counts at the pixel grid. The pixel 
sizes in the object space and in the image space are, in general, different (Snyder, 
1990). The resulting probability to obtain some count set N (N1, N2,. . . , A',) 
at the detector pixels is equal to 

where mean intensity counts are 

and the PSF is defined by (3). Some estimates P1 and 42 of the parameters 21 and 
2 2  are to be found on the basis of the model (5)-(6) and of the observed set of image 
counts. More exactly, we are now interested not directly in the pair of estimates 
(51, 52) ,  but rather in the single estimate of the distance between components as 
expressed in the units of PSF width: 

e = pl - P ~ ~ / A ,  (7) 

true separation of the components 0 = 1.1 - tal/A being unknown. 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
10

:5
0 

20
 D

ec
em

be
r 2

00
7 

162 V. Yu. TEREBIZH AND 0. K.  CHERBUNINA 

Rather tiny pixellation in the object space should be provided in order to reveal 
the high-frequency structure of the object (to avoid the so-called undersampling 
problem). Contrary, it is not reasonable to take the image pixels pi much smaller 
than the PSF width A (see details in Section 4). The particular choice of both scales 
depends on the observational conditions. Usually one may take A/2 < pj < A/3 for 
the image pixels, whereas the object pixel size po is determined mainly by the Signal- 
teNoise ratio. Indeed, since (1) predicts the size of the restored object’s details to 
be by the factor of the order of JJ; smaller than the PSF width, po should be 
accepted smaller than A at least by the same factor. The main requirement here.is 
to provide the theoretically attainable resolving power in the object space. 

The estimates of components’ positions are found by means of the Maximum 
Likelihood (ML) method. This method is known to be unstable with respect of 
multi-dimensional estimation (Snyder and Miller, 1985; Veklerov and Llacer , 1987; 
Llacer and Veklerov, 1989; Terebizh and Biryukov, 1993); however, estimates of 
only two parameters are needed this time, so there are good reasons to use this way 
now. It means, more exactly, that values ( i l l  i2) are found by maximization of (5) 
relative to variables (21, z2), and then the ratio (7) is calculated. 

The .considered model is more general compared to the model of decisions on 
binarity discussed in Section 1, where one of only two objects types has to be chosen. 
We should choose one object from many alternatives this time (as it is known, 
the problem of hypothesis testing can be treated as the problem of parameters 
estimation as well). The present model seems to be more close to the practice, 
because the true components’ separation is almost always unknown to an observer, 
and he must find its estimate, but not to compare the given object with a single 
alternative. 

3 DISTRIBUTION OF ESTIMATES 

The pixel size in the object space was accepted as a linear measure unit in the 
following consideration (po = 1). The Monte Carlo simulations were carried out 
with two values of the total flux: F = lo4 and lo6 counts, with the PSF width is 
A = 100 pixels, and the mean background is y = 10 counts/pixel. So large width of 
the PSF has been adopted because of the above-mentioned undersampling problem. 
The results described in this section have been obtained for pixellation in the image 
space corresponding to pj/A = po/A = 1/100. The check calculations with pi/A = 
po/A = 1/200 do not change our conclusions. The results of calculations with more 
coarse pixels will be discussed in the next section. 

The large number 9l -  lo4 of random image simulations was performed for every 
value of true components’ separation 8, and each of them was used to calculate the 
ML- estimates of components’ positions and the corresponding separation estimate 
(7). Since image patterns are random, the estimates i are different for various 
patterns. In Figure 1, the sample distribution densities p(tl8) of the random variable 
6 are shown for F = lo4 and a number of true component separation values 8. 
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0.2 -f 

8 = 0.08 

0.IQ 1 

1 0.12 

0 0.1 0.2 0.3 0.4 9.S 0 o*\ 0.2 03 0.4 0.5 
t t 

Figure 1 
source of total brightness F = 10' counts for various values of true separation 19. 

Sample distribution densities of separation estimatea 6 between components of a double 

One can see that the calculated estimates are tightly distributed near the true 
values when the components are rather far from one another, say, for 6 = 0.30 
or 0 = 0.15. The variance of estimates increases and the single point-like object 
( 8  = 0) is preferred more frequently when the components are drawn together. Af- 
ter reaching some separation value 0 cz 0.06-0.08, the sample distribution density 
of estimates does not change practically, so it is completely impossible to recover 
the parent object on the basis of the observed image. Therefore, the above sep- 
aration values are to be considered as limiting ones for given conditions. They 
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e 

0. 
0.01 
0.03 
0.05 
0.06 
0.08 
0.10 
0.12 
0.15 
0.20 
0.30 

4 5 m  
loo00 
geoo 
loo00 
lo800 
loo00 
23389 
loo00 
8550 
25580 
loo00 

4.51f0.02 
4.50 0.04 
5.01 0.05 
5.67 0.05 
6.26 0.05 
7.84 0.05 
9.26 0.03 
11.63 0.04 
14.93 0.04 
20.08 0.02 
30.10 0.02 

~ 

18.6f0.1 
18.8 0.3 
19.8 0.3 
20.9 0.3 
23.9 0.3 
22.8 0.3 
21.6 0.2 
17.5 0.3 
10.8 0.2 
5.82 0.05 
2.90 0.04 

38.9f0.4 
31.1 0.4 
23.8 0.3 
21.3 0.3 
23.9 0.3 
22.9 0.3 
22.1 0.2 
17.6 0.3 
10.8 0.2 
5.83 0.05 
2.91 0.04 

are in satisfactory agreement with the resolution limit (1) for the model of binary 
decision. 

The peak of estimates’ distribution for close components observed at 8 = 0 (that 
is the primary choice of a single object as an alternative to a double one) can be 
understood qualitatively if we take into account random image fluctuations. Really, 
the image patterns with larger width compared to the average one are treated by 
the algorithm as various double objects, whereas the whole set of patterns more 
compact than average are treated as a single point-like object. The asymmetrical 
image fluctuations cause, evidently, only shifts of positional estimates. 

It should be noted that some tiny details of sample distributions repeat in more 
extent calculations, and also after changing the random number generator. There- 
fore, they cannot be considered as statistical fluctuations. On the other hand, 
since these details disappear when changing the PSF, they are caused, probably, by 
particular circumstances of the experiment. 

Some numerical data related to the considered case are given in Table 1. Its 
columns contain: the true components’ separation 8; the number of simulations 9t; 
the mean value E(Pl8) and variance uar(8le) of the separation estimates, and also 
the scattering of the estimate: 

n(ele) = var(Ble) + b2(816), (8) 

where b(Bl6) E(@) - 8 is the estimate’s bias. The role of the scattering function 
in the image restoration problem was discussed by Terebizh (1991), where grounds 
are given also to believe that two-dimensional MGestimates reach the scattering 
which is close to the least value attainable theoretically (because of the information 
inequality). 

The relation between mean E(@) and true 0 values shown in Figure 2 confirms 
the conclusions inferred from the sample distributions. The mean value of 6 not 
only differs strongly from 0 for B < 0.07, but also poorly depends on it in that 
range. 
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Figure 2 
separation O for the object's brightness F = lo* counts. 

Relation between the mean value of the separation eathates E(ê lO) and the true 

In order to show the bias of estimates with approaching components and the 
influence of bias on the scattering value more clearly, we give functions b(Pl0) and 
s2(&9) in Figure 3a, b. It is interesting that the bias is not a monotonous function 
but changes its sign before deviating from zero. The variance of estimates achieves 
its maximum value for the critical separation region, and it even decreases for 
closer separations, like for pulse counters with a non-zero dead time. At last, the 
relative accuracy of estimates in the region of critical separation values is shown in 
Figure 3c. 

Higher resolving power is expected for brighter objects, of course. Specifically, 
relation (1) predicts 'R cv 0.02 for F = lo6 counts, and the sample distribution 
of 6 (solid line in Figure 4) is in agreement with this prediction. The correspond- 
ing numerical data are given in Table 2. Note that the components are definitely 
separated when 0 = 0.10. 
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0.04 

0.02 

0 

-0 .02  

t 

t 
0.10 

0.0s 

0 

0.0s o.\o o.\s 0820 0. ZS 0.30 F e 

t 1 1 I I 
I , 

0 .os o.\o os\s 0.20 0.2s O m 3 0  

e 1.6 

C 
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0.0s O.\O 0,\5 0.20 0,zs 0.30 

0 

Figure 3 
the object's brightness F = 10' counts. 

Bias (a), variance and scattering (b), and relative accuracy ( c )  of the estimate 0 for 
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0 0.02 0.04 0.06 

t 
Figure 4 Sample distribution densities of 8 for F = Id counts, true separation 0 = 0.02, and 
image pixel size p i  = 0.OlA (solid line) and pi = 0.50A (dotted line). 

4 RESTORATION WITH COARSE PIXELS 

In the preceding calculations, the image counts used a grid of pixels with the size of 
1/100 of the PSF width A. Evidently, so detailed information is not necessary un- 
der exact knowledge of the PSF. According to the sampling theorem by La Vallee 
Poussin, Kotel’nikov, and Shannon (see Kolmogorov and Tikhomirov, 1959; Ko- 
tel’nikov,. 1933; Shannon, 1948, 1949), it is sufficient to have sampling frequency 
equal to 2 fc in order to save completely the information about a deterministic pro- 
cess with maximum spectrum frequency fc. Since, according to (3), the Modulation 
Transfer Function is 

Table 2. (F = lo6) 

0.02 0.01 2706 1.58 f 0.02 0.788f0.02 

0.10 0.01 2143 10.00 0.00 0.00 
0.50 2706 1.56 0.03 1.70 0.05 0.3f38f 0.02 

0.50 2143 9.998 0.001 0.004 0.m1 1.00 0.00 
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Table 3. (F = lo4, 0 = 0.10) 

0.01 23389 1 .o 9.26f 0.03 21.6f0.2 
0.25 4216 0.92 f 0.003 8.93 0.07 23.2 0.5 

0.84 0.01 8.87 0.08 29.8 0.6 0.50 4765 
0.70 2129 0.65 0.01 8.93 0.13 33.6 1.0 
0.80 2315 0.25 0.02 9.70 0.20 70.1 2.1 

2.3 0.1 1 .oo 1601 0.10 0.02 0.67 0.04 

we have now the critical frequency fc = A-l, and one should put at least 2 samples 
at the PSF “radius” A to exhaust information about a non-random image. On 
the other hand, practically point-like samples are meant by the sampling theorem, 
whereas the size of image pixels is close to the separation between them. Another 
problem is that images have stochastic nature due both to inevitable photon noise 
and to random background. For these reasons, the question of detector structure for 
random image analysis needs special investigation. We had a good opportunity to 
perform some experiments with pixels of size pi - A in the course of the simulations 
described above. In particular, it was interesting to clear up, how quickly the quality 
of restoration drops when we are crossing the “sampling border” pc 

Figure 4 shows the sample density distributions of 6 two pixel sizes: pi = 0.01.A 
and pc = 0.50 A (the critical value). One can see that the reduction of pixel size 
below the critical value improves, to some extent, the reliability of restoration of 
bright sources, but does not change the quality in a radical way. The corresponding 
numerical data are given in Table 2. We denote by rp the sample correlation coef- 
ficient between estimates of 6 for simulations of the same image, but for different 
pixel size: 0.01 * A and the current value pi. 

More extensive simulations have been performed for the case when F = lo4, 0 = 
0.10 (Figure 5, Table 3). One may infer again that the accuracy of restoration is 
somewhat better for pd c pc ,  whereas it is much worse for pi/A > 0.8. 

A/2. 

CONCLUDING REMARKS 

The results described above show that the transition from quite reliable identifica- 
tion of double sources to their complete indistinguishability is comparatively steep; 
it usually takes less than 10% of the PSF width. The accuracy of the separation 
estimates also decreases quickly as the components draw together. So one may 
hope to obtain reasonable results studying double sources in the transition region 
between the Rayleigh’s limit and the boundary defined by Equation (1). 

More extensive calculations are needed to investigate all related items in detail. 
Unfortunately, this is not possible for us now because of too high demands to the 
computer speed for Monte Car10 simulations, which are followed by restoration 
work. 
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The problem of accurate measurements of stellar positions is worth mentioning 
among many possible applications of the considered problem. Let us assume (Nes- 
terov ef al., 1992) that we may acquire images of stars distant from one another 
with the same detector using some rigid optical system, and it is paesible to consider 
stars as point-like objects on the basis of indirect evidence. Then using the optimal 
restoration procedure allows us to estimate the relative pasitions of stars with the 
theoretical accuracy, even when images are significantly overlapped and the pixel 
grid is coarse. 

We are greatful to V. V. Biryukov and D. L. Snyder for valuable discussions. 
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