
This article was downloaded by:[Bochkarev, N.]
On: 20 December 2007
Access Details: [subscription number 788631019]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Astronomical & Astrophysical
Transactions
The Journal of the Eurasian Astronomical
Society
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453505

The formation of chemical peculiarities in stellar
atmospheres
A. Sapar a; A. Aret a
a Tartu Astrophysical Observatory, Toravere, Estonia

Online Publication Date: 01 April 1995
To cite this Article: Sapar, A. and Aret, A. (1995) 'The formation of chemical
peculiarities in stellar atmospheres', Astronomical & Astrophysical Transactions, 7:1,

1 - 27
To link to this article: DOI: 10.1080/10556799508203251
URL: http://dx.doi.org/10.1080/10556799508203251

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453505
http://dx.doi.org/10.1080/10556799508203251
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
08

:1
6 

20
 D

ec
em

be
r 2

00
7 

Astroromlcrl amd Antrophy&rl Tsa.*reUoms. 1996. 
VOI. 1. pp. 1-ai 
R.prlmls aTdirbl. directly trom the publisher. 
Photocopylm~ perdated by Uc.ms. omly 

@lW. OPA (0v.n.u Publ i shn Aasocirti-m) 
Amstwdam B.V. Published uuder licem. by 

Oordom amd Breach Sciemc. P.bl&h.n SA 
Primled i m  Malaysia 

THE FORMATION OF CHEMICAL 
PECULIARITIES IN STELLAR ATMOSPHERES 
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Generalieed equations of dynamics for plasma components describing the formation of chemical 
peculiarities in stellar atmospheres due to gravitationd, electmstatic, magnetcmtatic and radiation 
fields acting on colliding plasma particles have been derived. The equstiolu describing both 
diliusion and drift phuromena can be treated intacoupled equations of the Fokker-Plan& type. 
It has been shown that in stellar atmospheres there will be generated the electrostatic field which 
is important for the separation of light elements and their isotopes. A highly anisotropic diffurrion 
in upper atmospheric layers of magnetic stars has been demonstrated. For the interaction of 
the plasma components with the radiation field, besidea a usual upward directed radiation flux 
generated acceleration, a more complicated light-induced drift due to the selective reaonance-like 
absorption of radiation by thermally moving placrma particles with definite momentum vduea is 
shown to be present. The light induced drift can be directed both upwards or downwards and can 
be a dominant mechanism in the chemical element separation. 

KEY WORDS Stellar atmosphere, chemical peculiarities, dif€usion, drift, theory 

1 INTRODUCTION 

One of essential problems in physics of stars is to explain, in qualitative and quanti- 
tative aspects, the formation of chemical peculiarities in stellar atmospheres. As it 
has been explained from observations and by theory, the chemically peculiar (CP) 
stars are the stars where 110 mixing of stellar matter takes place, i.e., the stars 
without (or with very weak) stellar wind, turbulence and meridional circulation. 

Chemical peculiarities of stellar atmospheres have been considered to form in 
thin upper layers. Two processes of the formation of such anomalies have been dis- 
cussed. The first one is the accretion of interplanetary dust or of nuclear processed 
material from supernovae by CP-stars (Havnes and Conti, 1971; Krishna Kumar 
e2 al., 1989; Proffitt and Michaud, 1989). However, the concept is insufficiently 
elaborated and motivated. The second one is a segregation due to diffusion, first 
proposed by Michaud (1970). In this case, due to different masses, charges and 
interaction cross-sections of different particles they get different acceleration giving 
finally the abundance stratification. 

1 
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2 A. SAPAR AND A. ARET 

The main efforts up to now have been made to explain the observed chemical 
anomalies of CP-stars as generated mainly by gravity and gradient of radiation 
pressure (Michaud e i  al., 1976; Michaud, 1980; Vauclair and Vauclair, 1982; Alecian 
and Grappin, 1984). In addition, for magnetic Apstars, the action of magnetic field 
on diffusion processes has been taken into account (Alecian, 1986; Michaud e i  al., 
1981). 

It  seems to us that for further progress we need possibly general, self-consistent 
and complex theoretical treatment of the processes of element separation in stellar 
atmospheres. An atteinpt to elaborate original equations for such an approach 
has been made in the present paper. A new phenomenon, the light-induced drift 
of chemical elements, has  been incorporated. The theory of this process was first 
elaborated by Gelmukhanov and Shalagin (1980). The estimates made thereafter 
by Atutov and Shalagin (1988) and by Nasyrov and Shalagin (1993) showed its 
importance for the problems of element diffusion in the atmospheres of chemically 
peculiar stars. We hope t.hat these equations will be of use both for us in further 
studies and for other investigators working or interested in the problems of formation 
of chemical peculiarities in stellar atmospheres. 

I t  is clear that chemical peculiarities can also be of nuclear evolutionary charac- 
ter, say, in stars of spherical population, in eruptive and mass-losing stars. A gen- 
eral picture of CP-stars can be obtained from review papers by Khokhlova (1993), 
Ryabchikova (1993) and Bisnovatyi-Kogan (1993). 

2 COLLISIONAL DIFFUSION OF PLASMA COMPONENTS 
IN EXTERNAL FIELDS 

Let us study the interaction between plasma components i and j. Let the elasti- 
cally colliding particles to have, after the impact, an isotopic thermalizgd Maxwell's 
velocity distribution. Thus, we assume that the indicatrice of scattering is indepen- 
dent of direction. We consider the momentum transfer in such a transition with the 
cross-section aij when particle have number densities ni and nj (as a special case, 
i = j). Let the relative particle velocity be V i j ,  the velocity distribution f i  and f j ,  
masses mi and mj , velocities 0'i and $, undisturbed moments 5 = mjc ,  p7i = mj vj 
and densities pi = mini, p j  = mj nj . 

-0 

The particle j collides with particles i with frequency vji given by 
r r  

The total frequency of collisions for particles j is thus 

vj = c vji 
i 

and the mean time of free motion 
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STELLAR ATMOSPHERES 3 

The momentum transferred from particles i to particles j in collisions during 
unit time can be expressed as the force density 

Similarly, we get expression for p'ij l  exchanging indexes i and j .  The mean 
momentum of colliding particles can be expressed in the form 

-0 

$i = rni(i7i + &ti  + Q ) ,  ( 5 )  

where the acceleration of particles generated by external forces is denoted by & and 
the total velocity of particles due to diffusion and drift, by G. The external accel- 
eration cii can be generated by gravity, radiation, electrostatic and magnetostatic 
fields and therefore the resulting process of separation and stratification of chemical 
elements in stellar atmospheres is due to all of them in different roles. 

Taking into account, that. the mean d u e  of the undisturbed momentum equals 
to zero, we obtain 

where the relative impact frequency of particle i with particles j is given by 

-0 

(6) $ji = A . .  I J P I  .a'. t + v.. tJPt  .v. 1 1  

vi  j 

v i  
x i j  = -, 

and thus CAij = 1. 

+ 
Similarly, 

&, = Aj ip j i i j  + v j i p j v i .  (7) 
The total contribution of source terms to plasma component j due to its interac- 

tion with plasma components i and caused by external forces can be thus expressed 

The total contribution of absorption terms having the similar meaning for momen- 
tum loss by particles j in their interaction with other particles can be expressed as 
the sum where the indices i and j are interchanged, i.e. the roles of donors and 
acceptors of momentum are int,erchanged: 

i i 

Taking into account the momentum transfer in interaction with other kinds 
of particles, we can express the momentum conservation law in gas dynamics for 
particles j in the form 
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4 A. SAPAR AND A. ARET 

where the partial pressure due to plasma component j is given by 

Pi = njkT. 

Substituting the expressions found for the interaction terms into Eq. (lo), we obtain 
the final form of the momentum conservation and transfer for plasma components 
j in external accelerating field in the form 

Let us consider now the procedure of finding the diffusion and drift velocity 
in the time independent (stationary) approximation, i.e. omitting the term of 

time derivative. In this case the linear system of differential equations reduces to a 
system of linear algebraic in the form 

i 

or as the condition of equilibrium 

where the force dei1sit.y fi  denotes expression 

2j = -dP j  + c x i j p i i i i .  
i 

The quantity fi  equals to zero in the case of lacking motion of drift and diffusion. 
Then this constraint means the condition of hydrostatic equilibrium. 

The system of linear equations (12) can be expressed in the form 

vjpj fi = C rkjFk, (12') 
k 

where the matrix I 'k j  can be obtained by the use of the Kramer formulae and it 
does not depend on velocities fi . It can also be solved in the recurrent way, starting 
from Eqs. (12) in the form 

i 

The quantities A i j ,  as relative impact frequencies, are smaller than 1. Thus, we can 
write a recursive equation for subsequent approximations n and n + 1 in the form 

i 

where 
-. 4 

(v jp j l$) . )o  = Fj. 
Such a procedure means a series expansion with respect to thz impact multiplicity, 
redistributing the momenta originating froin external forces Fj. 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
08

:1
6 

20
 D

ec
em

be
r 2

00
7 

STELLAR ATMOSPHERES 5 

3 THE ELECTROSTATIC FIELD IN PLASMA 

Plasma medium in stars must be almost neutral by charge and in the most cases also 
electric current can be taken equal to zero. In the case of hydrostatic equilibrium, for 
each plasma component external gravity field and thermal motion of particles yield 
a smaller density gradient for lighter particles. This circumstance is the primary 
cause for the separating diffusion and drift of atoms and ions of different chemical 
elements. Electrons are drastically lighter than the rest of particles and this initiates 
their diffusion in the direction opposite to the gravity field. However, the smallest 
relative shift of them generates an electrostatic field, which blocks their escape from 
the stellar atmosphere, and, speaking figuratively, deforming their stratification due 
to the external gravity field to correspond to the stratification of ions. 

Let us now find the electrostatic field generated in stellar atmosphere. 
The condition for the absence of electric current in macromotions can be written 

in the form 
CniziG = 0, (15) 

I 

where Z, is the ion charge number. In order to use this constraint for finding the 
electrostatic field l?, we multiply both sides of Eq. (12) by $$-, and thereafter 
we sum over all kinds of particles. In such a way we obtain, instead of equations 
describing momentum transfer, the equation from which we can specify the electro- 
static field strength. The equation can be written in the form 

The electric field strength I? appears explicitly in the equation when we separate, 
in the total acceleration i&, the contribution due to the electric field, i.;. we take 
into account that 

where the quantity zi includes all external fields excluding electric field. Thus, 

Substituting the above expression for the external force 4 into Eq. (16) and making 
use of the notation 
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6 A. SAPAR AND A. ARET 

where 

we get 

and thus the electric field intensity has the form 

d + G E +  fi = 0, 

Substituting E' into Eq. (18), we obtain for G ,  instead of system of equations (14), 
a new system from which electric field strength has been eliminated: 

vjpj q = q + c (20) 
a 

where 

The system of equations is of the same form as (14) and only the quantities 
and A,, are to be merely replace by 
written in the form 

and Xij .  The corresponding solution can be 

v j p j C  = ErijF';. (23) 
k 

The new matrix rij in  this equation can be found in the same way as matrix r k j  

in (12). 
Eliminating the velocities 6 found by (23) from Eq. (19)1 we have completed 

the procedure of finding an expression for the electrostatic field strength. The term 
depending on drift and diffusion velocities in this expression means that also 
the forces generated by particles flows give a small contribution to  the formation of 
electrostatic field. 

4 THE DIFFUSION EQUATION FOR THE PLASMA COMPONENTS 

The diffusion equation will be derived from the equation of particle conservation 
for chemical elements. The generalized equation of continuity for particles j in the 
case of particle transformation can be written in the form 

apj - - - + v(pj 1.5 ) = p j  , 
at 
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STELLAR ATMOSPHERES 7 

where the additional term p j  violating the conservation takes into account the gen- 
eration and annihilation of particles j in the processes of interaction. Index j can, 
for instance, specify particlesin a given quantum state or as an ion species. 

Eliminating quantities p j  4 using (23) one obtains 

3 at + d (T ;rij9) = p j .  (25) 

Taking into account Eqs. (20) and (21), we see that the equation obtained is an 
equation of the Fokker-Planck type describing diffusion and drift motions in gas 
mixtures for the case when, in addition to buffer gases H and He, there are different 
interacting admixture gases which can also be transformed between themselves, say, 
in processes of ionization and excitation, describ.ed by the interaction term p j .  If 
we wish to consider the total diffusion of a given element, the summation over all 
ions of the given element E must be carried out, i.e. we formulate element densities 
by sums 

~c = C P j .  (26) 
j € c  

An important result of such suinmation is that we get rid of p j  terms, taking into 
account that, due to the element conservation law, 

j € c  

We do not need explicitly also quantities p,, because for each element t, making 
use of degrees of ionization and excitation X j  , we can write 

where 

j € c  

From the equation of continuity (24) summing up over plasma ingredients j E E 

and taking into account the element conservation law (27), we obtain 

where 

From Eq. (23) we see, that the momentum of diffusion and drift motion can be 
written in the form 
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8 A. SAPAR AND A. ARET 

where regrouping the terms we can form tlie total contribution terms I'ilc and the 
corresponding force vectors fil, describing interaction between chemical elements. 
Thus we give to Eq. (31) a new form 

where the matrix I':lc and the force vectors 2: can be found from the following 
equations: 

v, = c vj. 

j € c  

Thus, the equation of continuity can finally be written in the form 

Wishing to emphasize the Fokker-Planck nature of the equation obtained, we 
reformulate it starting from Eq. (20): 

Let us consider now the first. term on t.he right-hand side of this expression, i.e. the 

Taking into account t.liat 

and 
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STELLAR ATMOSPHERES 9 

and denoting 

Now we define a new matrix A,', by 

and the effective acceleratioii vector by 

Thus, we can write an expression for the effective force p:, which affects the element 
E ,  in the form 

Consider the second term in expression (34), i.e. the sum 

Now, by the use of new coefficients A:, defined by 
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10 A.  SAPAR AND A. ARET 

we can write expression (38) in the form 

Denoting 

we find finally 

Making use of expressions (34), (36) and (41) in the equation of continuity (30), 
we obtain 

or 

where 

Substituting Eq. (37) into Eq. (43), we obtain the equation of continuity in the 
form from which we see that the equation can be treated as a generalized Fokker- 
Planck type diffusion equation, or more exactly as a generalized Fokker-Planck type 
system of equations for plasma components. 

Electrons were treated in the systems of equations (14), (20) and (24) as a 
particular element which can be created and annihilated in ionization and recom- 
bination processes, respectively. Thus, in contrast to the condition bc = 0 holding 
for chemical elements, for electrons we have pc # 0. However, we do not need to  
specify the number density of electrons from the equation of continuity, but it can 
be found from the condition of electroneutrality for the plasma: 

c zjnj = 0, 

or 

C 

where Z, is the mean degree of ionization for element E .  The effective charge number 
for electrons is 2, = - 1 .  



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
08

:1
6 

20
 D

ec
em

be
r 2

00
7 

STELLAR ATMOSPHERES 11 

Similarly, from constraint (15), meaning the absence of electric currents on a 
macroscale, we can specify the electron drift velocity fe. 

In Eq. (24), the quantity b j  is responsible for the transformations of particles 
of type j in their interaction with other particles. As typical representatives of 
such processes of transformation, ark excitation, ionization and recombination due 
to inelastic particle impacts and their interaction with photons. The processes of 
transformation specify the thermodynamical state of plasma and, ignoring very slow 
motion and temporal changes, the generalized equation of continuity (25) reduces 
to the equations of statistical equilibrium (the equation of stationarity) 

p j  = 0, 

which means that the interaction processes populating and depopulating a parti- 
cle state j are balances. In the equations of statistical equilibrium, the detailed 
thermodynamical equilibrium in stellar atmospheres is violated by a non-Planckian 
radiation field, giving rise to deviation from LTE in the populations of atomic states. 

5 PLASMA INTERACTION WITH THE PHOTON FIELD IN 
BOUND-BOUND ELECTRON TRANSITIONS 

Up to now we have studied the impacts between particles neglecting their interaction 
with photons, i.e. with radiation field. 

Let an energetically lower state of atomic particle be 1 and the higher (upper) 
state u. In photon adsorption by particles in state I ,  the energy and momentum 
of the photon will be transferred t,o particle in st,ate u. The opposite momentum 
transfer from state u to state 1 happens in spontaneous radiative transitions. 

In the result of the photon absorption, the radiation flux acts on particles in 
state u in unit volume with force 

In this expression, TF,, is the monochromatic flux (erg/cm2 s Hz), nl is the number 
density of particles in the state 1 and uul(u) is the cross-section of the photon 
absorption at frequency v in the t,ransition 1 + u, which can be expressed in the 
form 

w ( v )  = ~: ,w(% a), (45) 
where u:, denotes the photon absorption cross-section in the transition 1 + u, which 
can be expressed by the use of the corresponding oscillator strength fuI in the form 

where AUD is the Doppler width of the spectral line. 
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12 A. SAPAR AND A. ARE" 

The normalized frequency distribution (J W (  u,, , a)du, = 1) or the profile func- 
tion in a spectral line has the form 

- W  -W 

called the Voigt function. The parameter a in the Voigt function is the ratio of the 
characteristic widths of the Lorentz and Doppler profiles: 

the dimensionless frequency parameter u,, in  the Voigt function is defined by 

v - vo 
u, = - 

AVD ' 

and the dimensionless momentum as integration argument is given by the expression 

where M is the mass of the absorbing particle. 
In the electron transition I -, u, the momentum of the atomic particle is trans- 

ferred from the particle in the state 1 to the particle in the state u. The momentum 
transferred in this way i n  unit volume during unit time interval has the same form 
as in the case of impact of two atomic particles (Eq. (4))' being proportional to the 
volume densities of inelastically colliding particles nl and n, and with absorption 
cross-section while particles must have resonance velocity, determined by values of 
parameter y in the Voigt profile function. Namely, considering the momentum of 
atomic particles transferred from the state I to the state u, the velocity component 
of the atomic particle in  the flight direction of the photon to  be absorbed given by 
Eq. (49) must fit to the photon frequency, specified by values of parameters u,,. The 
absorption cross-section in the case of a fixed value of u, is u~,W(u, , ,a ,y)  and the 
momentum will be transferred just proportionally to this cross-section values and 
in the direction of the photon flight. According to these explications, we can write 

where ?is the unit vectsor in  the direct,ion of the photon flight and Q is the solid angle. 
The expression obtained describes the t.ransfer of momenta of the atomic particles 
in the lower quantum state to the atomic particles in the upper quantum state in 
the photon absorption process. The momentum transfer in the manner described 
above is an additional effect t,o the momentum transfer of photons themselves, 
which manifests itself as t.he force generated by the radiation flux TF,. As i t  has 
been demonstrated by Nasyrov and Shalagin (1993), this additional effect, called by 
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STELLAR ATMOSPHERES 13 

them the light-induced drift, can be very important in the formation of separation 
of chemical elements in stellar atmospheres. As an indirect testimony of that matter 
serves the fact that in photon absorption it holds = h9 or 5 = &Mu. This 
shows that the photon momenta are essentially smaller than the momenta of atomic 
particles. 

Photon number density for unit volume in a given direction is connected with 
its monochromatic intensity I,, by 

I,, nu = - hv’  
and thus 

TP,, - = 1 c&,,dR. 
h v  

Now we shall give a more convenient form to Eq. (50). Therefore we introduce a 
new variable 

z y  = uy - y. 

Replacing variable y by variable z,, we get the Voigt function in the form 
(52) 

From here we see that 

-CG 

Taking into account that y = u,, - z,,, we can write 

Integrating by parts and taking into account that the boundary values of the Voigt 
function at infinity tend to zero, we obtain 

00 fz = 2 ~ / n & W ( u , , , a ) - - d v .  r OF,, 
chv au, 

0 

This interesting result shows that the directed momentum transfer in spectral lines 
depends on the distribution of the spectral gradient of the radiation flux in the 
spectral line frequencies. Thus, accounting for the interaction with photons, we 
obtain additional terms for momentum transfer to the quantum state u in the form 

au = c (El + f3 - AulF%nu) 1 (57) 
1CU 
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14 A. SAPAR AND A. ARET 

where 
p7, = MQU. 

The last term i n  expression (57) takes into account spontaneous transitions u -+ I ,  
accompanied by the corresponding decrease of the momentum pu. 

The two last terms work upon at the quantum state 1 in opposite diyction than 
upon the state u in Eq. (57), and the term of photon pressure force fZl does not 
affect it. Thus we can write 

u > l  

The quantities A,[ and ~7:~ are interrelated by 

According to  above iiot,ation, 

nucu = P U L  

n1G = P l # ,  

Introducing for momentum transfer the expressions free from transition probabilities 
to  be found by 

the additional terms descriling the interact,ion of the photon field with atomic 
particles in the case of bound-bound electron transitions can be expressed in the 
form 

u > l  

Now we can add the terms ( G l )  and (62) into the main equations of the momentum 
transfer. The additional terms, which take into account the interaction of the state 
j with lower bound states 1 and with higher bound states u ,  can be written in the 
form 

where by s is marked the ion type. 
Thus, we have specified the additional terms, which describe momentum transfer 

to  plasma components in  their interaction with photons in bound-bound electron 
transitions. 
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STELLAR ATMOSPHERES 15 

6 PLASMA INTERACTION WITH THE PHOTON FIELD IN ELECTRON 
BOUND-FREE AND FREE-FREE INTERACTIONS 

It is clear that, in electron bound-free and free-free transitions, the energy and 
momentum will be transferred partially-to created ion in the ground state and 
partially to electron getting free or getting additional momentum. 

Let us study now how much of momentum will be transferred to forming ion 
and how much to electron. The conservation laws of momentum and energy can be 
expressed here in the form 

hZ+ A 4 6  + me$ = MGA + (64) 

where E, is the binding energy absorbed by the ion, is the photon wave number, 
M and V A  are respectively the niass and velocity of the atomic particles, me and 
v’, are respectively the electron mass and velocity. 

By index zero are marked the pre-impact values of corresponding quantities. A 
part of photon energy, namely 

hAv = h v  - E,, (66) 

will be transformed into the kinetic energy. 
Let us consider now the bound-free transitions. For them we have a constrain 
= $ and E, is the ionization energy froin the initial state. Making use of a 

coordinate system cemoving with the ion prior to impact, i.e. taking .”A = 0, we 
obtain 

M v i  mev,2 h A v  = -+- 
2 2 ,  

where 

Introducing a new parameter p by 

hk: = M V A  + pmeve, P E [-1,+1], (69) 

taking into account that M V A  2 0 and m,ve 2 0, and substituting the expression 
for electron kinetic energy from Eq. (67) into Eq. (69), we obtain 
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16 A. SAPAR AND A. ARET 

where 
P2me a = l + -  M -  

Taking into account that m/p < 1/1840 and lpl 5 1, we shall use further only the 
approximate value a = 1. In this approximation, 

and thus, based on Eq. (69) and taking into account that meue 2 0, we obtain 

meue = J-, (72) 

or 

1 .  
- l J t e U i  = hAv. 
2 

This means that, in the bound-free t.ransitions, practically whole additional energy 
is transferred to electrons. 

Solving Eq. (68) for M U A ,  we find 

MvA = -pineve f JhZk2 - mfu,2(1- p2) .  (73) 

Substituting MUA from Eq. (69) into this expression and solving it for p, we obtain 

where the right solution of the quadratic equation is found from limiting cases (if 
p = 1, then /3 = 1 and if p = -1 ,  then p = -1). This expression shows connection 
between parameters /3 and p .  

Whereas the energy of a liberated electron equals to hAv, its momentum is 
given by 

where ;e is a unit vector in the direction of the electron motion. Let 7 be a unit 
vector directed along the photon nioiiieiituni vector. In these notations we can write 
the momentum conservation law in the forin 

From this expression we can find the momentum values transferred from photons 
to atoms and electrons. However, in  the context of the present study, we are not 
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STELLAR ATMOSPHERES 17 

interested in momentum transfer to atomic particles in an individual interaction 
process, but only in the total statistical. transfer rates. 

The total momentum transferred to electrons equals to re501 because integrating 
over electrons and taking into account that the unit vector i, is, relative to Gel an 
odd- power function while F(v’,) is an even-power function, we obtain 

m,Gef(Ce)dlf, = 2hAv ‘f(G,)di& = 0. (77) 1 I :, 
Therefore, it is clear that the total momentum of the photon field must be trans- 
ferred to atomic particles. The momentum transferred from photons to atomic 
particles per unit volume and unit time interval can be expressed in the form 

The quantity k( is the radiation absorption coefficient due to the bound-free tran- 
sitions s’ + s. This momentum, as we have seen, is transferred to generated ions s 
in the ground state G. 

Electrons in the free-free transitions can be considered as connected with ions 
and thus the photon absorption by them is accompanied by electron jump from one 
hyperbolic orbit to another. This circumstance makes us clear that we can use the 
same formulae as in the case of electron bound-free transitions. The only difference 
is that now the binding energy En = 0, and thus hAv = hv. Consequently, it 
follows that in electron free-free transition practically whole photon momentum is 
transferred to ions and the energy is transferred to electrons. Thus, for free-free 
transitions we can express the momentum transferred from photons to absorbing 
ions s per unit volume and unit time interval in the same form as in the case of 
bound-free transitions 

$’ = 11 / kif l s  Fv:,dyl 
C 

(79) 

with the only difference that here the absorption coefficient kLJi8 corresponds to 
free-free electron transitions of ion s. 

The expression 

(80) 
;ff $1 

finG =Ps +Pn 

describes the total continuous ab~orpt~ion, the final state of which is ion s in the 
ground state G, to which the whole momentum of the absorbed photons is trans- 
ferred. 

The free electrons are subject, to a force originat.ing from Thomson scattering of 
photons by electrons. The corresponding momentum transferred to plasma by the 
medium of electrons is given by 

where QO is the Thomson crosssection of photon scattering by free electrons. 
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18 A. SAPAR A N D  A. ARLT 

Summing up the results found for the interaction of photons with plasma par- 
ticles, we can write for the additional force fi an expression which must be added 
to the momentum transfer equation (20) for the plasma components 

The first term (Eq. (63)) i n  this formula gives the contribution to the excited states, 
the second (Eq. (78)-(80)) gives the contribution to the ground states and the last 
term (Eq. (S l ) ) ,  to free electrons. 

Thus, we have derived tlie final expression for the force acting on plasma com- 
ponents due to the radiative flux. 

In order to describe also the bynd-bound transitions by the use of system 
(12) of linear equations relative to 4, we must combine the terms of spontaneous 
transitions involving velocit.ies in Eq. (63) with the particle collision terms in 
Eq. (12). To do so, we should treat spontaneous transitions as additional impacts, 
meaning that collision frequencies u,, in  Eq. (12) are to be replaced by 

(83) v*. 11 = V" r j  + *4ji@ji, 

whereas Ajieji differs from zero oidy in the case of bound-bound transitions and 

Thus, further routine in derivation of geiieralized equations which contain quantities 
vj:. will conserve the same steps as in the discussion above. The only modification 
following from (83) is that the impact frequencies v, should be replaced by 

U* 1 = ~j + A j ,  

where 
. l j  = C Aji. 

i €  s . i < j  

In the calculation of the accelerations of different origins treated above, the most 
complicated problem is to specify the radiative acceleration, especially the one due 
to bound-bound electron transitions. As  a new effect, there appear the momentum 
transfer from particles of a given bound state to particles in another bound state due 
to the photon absorption, the so-called light-induced drift of particles, embodied by 
quantities ;$ in Eq. (63). This phenomenon was  studied theoretically and exper- 
imentally by Gelmukhanov and Shalagin (1980), Atutov and Shalagin (1988) and 
by Nasyrov and Shalagin (1993). The nat,ure of this phenomenon can be illustrated 
by a simple example. 

Consider a particle with two bound states, one of which is the ground state G and 
another is the excited state E. The probability (frequency) of electron transition 
E ---+ G denoted by A ~ E G .  Further, we assume that there are no external force except 
one due to the radiation transfer in  tlie spectral line. Let the pressure of particles 
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STELLAR ATMOSPHERES 19 

both in the ground state and in the excited state have non-zero gradients. In this 
case our system of equations (12) generalized by (83) reduces to  a very simple form: 

?PE = - A E G ~ E ? . E  - UEPEVE + AEG?&, 

~ P G  = A E G P E V E  - W P G V G  - AEGL 
from where we find 

Thus, in such a case the light-induced drift of particles is non-zero, namely 

This example shows that the additional light-induced forces A E G ~ &  play the 
same role for the ground state as the gas pressure gradient but they act in the 
opposite direction for the excited state. Calculations show that the light-induced 
drift can by some decimal orders exceed the diffusion terms, containing gradients 
'?PG and ?PE (Nasyrov and Shalagin, 1993). 

With this example we accomplish the treatment of the interaction between pho- 
tons and plasma components. To get realistic drift velocity values for chemical 
elements is a complicated task because the value and direction of the light-induced 
drift depend on mutual blending of spectral lines of a given element, its isotopes 
and spectral lines of different eleinents. In addition to such a complication, the 
spectral lines shift in magnetic fields due to the Zeeman effect and thus the role of 
bound-bound electron transitions can essentially depend upon the stellar magnetic 
field. The magnetic field also has a direct influence 011 the dynamics of plasma 
components. The next section is devoted to this problem. 

7 MAGNETIC FIELD ACTION ON THE D R I F T  AND DIFFUSION OF 
PLASMA COMPONENTS 

Many chemically peculiar stars have strong magnetic fields reaching 103-104 G. In 
such a magnetic field, the charged particles, electrons and ions, are subject to force 
which exceed gravitational and electrostatic forces by many orders of magnitude. 
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20 A. SAPAR AND A. ARET 

Thus, the proton acceleration in magnetic field lo3 G, in its motion perpendicular 
to g ,  at temperature 10‘ I<, with the mean energy $hT is 

and the acceleration of electrons under such conditions dueto their small masses is 
even 10l6 cm/s2. These quantities exceed drastically a typical gravity lo4 cm/s2. 

Averaged motion of particles is not at all governed by magnetic field alone. 
Strong magnetic field generates large centripetal force but time-averaged acceler- 
ation of charged particles is generated only by magnetic field changes in strength 
and direction. 

Let us consider how magnetic field acts on the motion of plasma particles. First 
of all we shall discuss the motion of isolated impact-free charged plasma particle in 
the magnetic field. The equat.ion of motion for such a particle can be expressed by 

where E’ is the electric fields strength and fi is the magnetic field strength. In 
approximation E = 0 we obtain 

- 

and from Maxwell’s equations it follows that, in  this approximation, 

ai - = 0. at 
Further, we suppose that within the circle drawn by the Larmor radius the magnetic 
field can be considered as constant. In order to formulate this condition mathemat- 
ically, we define the characteristic length L by 

where q and h are the coordiiiate indices. Denoting the Larmor period of the particle 
bv 

2n 2nin 
W L  Z e H ’  

T = - = -  

we can write the condition of a slow change of the magnetic field strength in the 
form 

L >> VT. (89) 
Further, we shall restrict ourselves to the first order approximation in v r / L .  The 
error of such approximation does not exceed essentially ( v r / L ) 2 .  Such an approxi- 
mation is well-known as AlfvPn’s approximation ( AlfvCn and Falthammar, 1963). 
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STELLAR ATMOSPHERES 21 

Particle motion is described much simpler using the concept of the leading centre, 
defined as the interaction point G of the momentary axis of revolution with the plane 
perpendicular to Z? on which the revolving particle is situated. The distance of the 
point G from the revolving particle is given by the Larmor radius 

mu sin a RL = - 

where a is the angle betweeii the particles velocity 2; and the magnetic field strength 

In the case of uniform time-independent magnetic field, we can consider particle 
motion as a superposition of a rotation in the plane perpendicular to the magnetic 
field and a uniform rectilinear motion along magnetic field lines. If the components 
of the magnetic field strength gradient satisfy condition (89), then magnetic field 
acting on the particle equals to its value at  the leading centre. Thus, also in the case 
of a small gradient of the magnetic field strength, we can use the concept of the local 
leading centre which gives essential simplification of the problem, because instead 
of a spiral-like motion we can consider a simpler motion of the leading centre, 
characterized by quantities averaged over the Larmor period. As such averaged 
quantities, we use the drift velocit,y perpendicular to the magnetic field line v'l 
expressed by (Rossi and Olbert, 1974) 

Z e H  ' 

z. 

and the acceleration parallel to the magnetic field line, 

where ZH is the unit vector in t,he direction of d and p~ is the magnetic moment, 
generated by a revolving charged part.icle 

in.$ sin2 a W' - 
2H = - i H ,  

2 H  PL = 

where WL is the component of kinetic energy W perpendicular to the magnetic 
field strength, i.e. W' = Wsin' a, where W = +mu2. 

Further, we restrict ourselves to a dipole magnetic field with magnetic momen- 
tum ji localized a t  the stellar centre, thus taking 

Making use of the magnetic spherical coordinates I-, t9, p (Figure 1) and of the cor- 
responding unit basis vectors i, , i b ,  i,, we can express the dipole magnetic field 
strength in the form 

4 - 0 -  

-# 

(94) H - = -(2cos79ir 1' + siiit9Tb). 
1'3 
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22 A. SAPAR AND A. ARET 

Figure 1 Magnetic spheriral c-o-ordinates. 

From here it follows that 
H = Ed-, 

)'3 
(95) 

and thus the unit vector :11 in the directioii of the magnetic field can be written as 

(96) 
c7 2cosd,. +sin&' 
H 

111 = - = 
J3 cos2 d + 1 

In order to  find the drift velocity of the leading centre v'l and the force along the 
magnetic lines Fll = ~ 1 1 %  for the dipole magnetic field, we start  by making some 
auxiliary calculations. 

4 

In spherical coordinates, the operat.or ? has the form 

Thus, for the operator ( r ~  . ?) we find 

(98) 
- -  2c0s3 a sin r9 a 

rJ3cos2d + 1 a19. J3 cos2 21 + 1 al. ( i H V )  = -+  
By the direct calculations we obtain 

Forming the product of Eq. ( 1 0 0 )  with unit vector ;H expressed by Eq. (96), we get 
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STELLAR ATMOSPHERES 23 

Further we find 
f 3psin6 cos26+ 1 

r4 3cos2Q+ 1 '  
Using these expressions, we obtain from (92) for the averaged force acting on a 

charged particle: 

For the perpendicular drift velocity, using Eqs. (101) and (102), we obtain 

3r2cW sin 6(cos2 6 + 1 )  p = - {sin2 a + 2 cos2 ct>& 
Zep ( 3  cos2 6 + 1 ) 2  

or taking into account that Wsin'a = W' 

3r2c sin 6(cos2 6 + 1 )  
Z e p  ( 3  cos? 6 + 51 = - {2W - W'}&. 

As we see from Eqs. (103) and (105) both the drift velocity and the force acting 
on particles of a thermal ensemble in magnetic field do not depend on the particle 
mass. Unlike the other forces, the niagnetic force lias also a meridional component 
and this can generate the non-liomogenrous clicinical composition on the stellar 
surface correlating with the magnetic field. 

Due to fact that, in stellar atmospheres, the frequency of particle impacts is 
high, the thermal particle velocity distribution can be taken as isotopic. Taking 
into account that W = $mi? = $kT, we can write 

The equations obtained make evident one of the most peculiar features of mag- 
netic field action on the particles - it depends on particle energies, being essential 
for high energy particles thus being effective for stellar coronae. 

On the polar axis, the magnetic force acting on a particle is 

The radius of the main sequence A0 stars is R M 10" cm and temperature in 
atmosphere is T M lo4 K. Thus, magnetic force in polar areas is Fll M 4 - dyn. 
The corresponding effective acceleration Fll/m for photons equals to 10 cm/s2 and 
for electrons it exceeds this value by about. 2000 times. For the solar corona, these 
quantities are two orders of iiiag~iit~ude greater. 
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24 A. SAPAR AND A. ARET 

The radial component of the stellar magnetic field gives only a small contribu- 
tion to gravity but the nieridional component gives rise to a process of meridional 
separation of chemical elements. 

The drift in the magnetic dipole field does not generate chemical inhomogeneities 
on the stellar surface because all values of p are equivalent. The drift motion can 
be important only i n  the case of more complicated magnetic field configurations, 
invoking a change of tlie clieiiiical eleiiient concentrations. 

Let us study now modifications which are to be done in the equations of plasma 
dynamics to describe the drift and diffusion processes for plasma components in the 
magnetic field. For an  adequate formulation of the equations of dynamics for plasma 
components in the presence of magnetic field, three modifications should be done. 
First, there appears an additional effective force FII directed along the magnetic 
field lines. Second, the particles drift perpendicularly to the magnetic field. The 
third and the most important effect is that the effective impact frequency increases 
essentially in the direction perpendicular to the magnetic field, namely by the factor 
( Y ~ ,  which can be written (Artsimovich, 19i8) 

QL = 1 + (27rVLe lea )2 ,  (108) 

where V L ~  is the larmor frequency for electrons, 

VLe = - e H  
27r1nec ' 

and t,, is the mean time interval between electron and ion impacts. Expression 
(108) has been obtained as a fit formula from two extreme cases of weak and strong 
magnetic fields. Namely, in the latter case the diffusion coefficient diminishes in the 
directions perpendicular to magnetic field by (2rv~~t,,)~ times. 

In addition, the magnetic field gives rise to  the Zeeman effect, i.e. to the split- 
ting and shift of energy levels, thus invoking an additional radiative acceleration of 
particles. Simultaneously, splitting a i d  shift. of energy levels lead to different over- 
lap effects of spectral lines. accompanied by t.he formation of asymmetric spectral 
line profiles and thus it can result in  stronger light-induced drift effects which are 
essential in atmospheres of line-rich stars. 

Now we study modifications which should be made in the original equation 
(12) in the presence of magnetic field. Taking into account the contributions of 
gravitation, electrostatic, niagnetostatic and radiation fields, we can write generally - 

p,iij = p i $  + e ~ ~ r l ~ ~ + p , a l i ( & + f l .  (109) 

We emphasize once more that all the force fields have different roles for the element 
separation processes in stellar atmospheres. 

The effective impact frequency i n  the presence of magnetic field depends on 
direction. In order to  take adequately into account this fact, we should make a 
substitotion in the interaction terms of the diffusion and drift equations (12), namely 

f - 7  6 * 5" + c)jT = (8HVj)ZH + ( Y j ( 6  - ( z H 6 ) z H )  
-+ 4 4  

= a j c  + (1  - c Y j ) ( i H q i H ,  (110) 
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STELLAR ATMOSPHERES 25 

And finally, we should add to the resulting particle velocities fl their drift velocity 
in the magnetic field - 

l$H = ++. (111) 

If I? = 0, then all three components of the velocity vector are independent and 
are to _be Jound from independent equations. In the presence of magnetic field the 
term ( i ~ q )  connects all velocity components with each other. Such a generalized 
system of equation conserves, however, its linearity and can be solved by the same 
methods as in the case without magnetic field. 

In addition to the diamagnetic moment jir. due to the Larmor motion given 
by (92), we should also take into account the paramagnetic moment of atomic 
particles. For ions, the substitution j i ~  + c~ - j i ~  is needed. Taking into account 
(92) we find 

When p~ H << kT, the atomic paramagnetic moment can be neglected for ions. 
The situation with neutral atoms is opposite - they have only the paramagnetic 

moment CA. The force acting on atoms can be obtained from (103) by the substi- 
tution p~ = WL/H -+ -PA,  i.e. W l  + - H ~ A .  Explicit expressions for are 
beyond the scope of the present paper. 

Since the diamagnetic moment of ions and the paramagnetic moment of neutral 
atoms give forces acting in opposite directions, it is clear that the direction of 
diffusion depends on the ionization degree in the atmosphere, being directed to the 
magnetic poles for neutral atoms and to the magnetic equator for ions. 

8 COMMENTS AND ESTIMATES ON FORMATION OF CHEMICAL 
STRATIFICATION IN STELLAR ATMOSPHERES 

In the previous sections we restricted ourselves to the chemical element separation 
with elastic impacts of particles. The approximation is justified when the cro8s- 
sections of the elastic collisions of ions exceed considerably those of the inelastic 
impacts. Typical averaged values of cross-sections for inelastic impacts of singly 
ionized atoms in stellar atmosphere are + cm2 while for neutral atoms 
they are of the order of cni?, and of the same order are the cross-sections of 
inelastic impacts. Differences of values of inelastic impacts rule the character of light 
induced drift. The values of elastic collisions for stellar atmospheres range from lo7 
s-l in uppermost layers of stellar atmospheres to lo9 s-l deep in the atmosphere. If 
the magnetic field strength is about lo3 G in the upper atmosphere, then according 
to formula (108) the coefficient of diffusion in perpendicular directions relative to 
I? diminishes about lo6 times, but it is not considerable in deep layers of stellar 
atmospheres. This factor in connection with meridional circulation directed to the 
rotation equator of stars leads to an overabundances of highly ionized elements 
there, i.e. elements with low ionization potentials. 
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36 A. SAPAR A N D  A. ARET 

The system of equation obtained can be first solved for dominant buffer gases, i.e. 
for hydrogen, helium and electrons given by them, obtaining for them separation 
velocities E. Therefore the corresponding dominating interaction terms can be 
used for finding the separation velocities for weak admixture components, ignoring 
interactions between the admixture components. 

For the light-induced drift, the most important factor is the overlap or blending 
of spectral lines due to which we can obtain for each element an additional drift 
motion directed in a stellar atmosphere upwards or downwards depending on the 
details of the overlap. Mostly, however, lighter isotopes drift upwards. For the over- 
lap of isotope spectral lines, there are definite rules - for light elements the spectral 
lines of higher isotope are shifted bluewards, but for heavy elements beginning from 
lanthanides the shift is redwards. 

The usual radiative flux generated upward acceleration is important for line-rich 
elements, thus in particular for iron group metals. Due to spectral line shifts and 
splitting in magnetic fields there appear essential contributions to both the usual 
radiative acceleration and to the light-induced drift. 

The electrostatic field in stellar atmospheres for a pure ionized hydrogen atmo- 
sphere is given by e E  = $ h f H g  and for a pure doubly ionized helium star it is given 
by eE = $M,ycg = 2MHg. Thus we can see that in helium-rich atmospheres the 
hydrogen will be expelled, and the drift of light element isotopes, in particular of 
hydrogen a i d  helium, are strongly infiurnced by the electrostatic field. 

The phenomena which liinit the chemical element separation are stellar wind 
for B stars, convection for F stars and meridional circulation for rapidly rotating 
stars. In the case if these limiting fact.ors can only partially compensate the element 
separation effects, we have an opportunity to obtain valuable additional information 
on drift velocities of different chemical elernents. Additional information about 
chemical element separation gives also evolutionary effects of CP stars. 

It seems that such a valuable information we have in the case of the Sun: in its 
corona the abundances of elements with the ionization potential less than 10 eV are 
depleted (4 times) compared with the solar atmosphere and thus there must work 
effectively a mechanism of element separation which, in the coolest layers of solar 
atmosphere where T = 4800 K, should esceed the velocity 4 .  cm/s due to the 
solar wind. In addition, we mention that the age particles in the solar corona is 
only about a week. 

9 SUMMARY 

The problem of the formation of chemical peculiarities in stellar atmosphere occu- 
pies essential place in stellar physics. From numerous paper devoted to  the problem, 
it has been concluded that the mechanism of separation of chemical elements in stel- 
lar atmospheres is unavoitlable due t.0 different forces acting on atoms and ions. 

In the present paper we have formulated generalized equations of dynamics for 
plasma components which can inore adequately elucidate and explain the formation 
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of chemical peculiarities in stellar atmospheres due to the diffusion and drift of 
chemical elements and their isotopes. 

The following results have been obtained: 

1. General equations have been derived which describe the generation of chemical 
peculiarities due to  the diffusion and drift of chemical elements in stellar 
gravitational, electrostatic, magnetic and radiative fields. 

2. A formula has been derived for finding electrostatic field that equalizes escape 
energies for electrons and main ions. 

3. It has been demonsrated that in bound-free and free-free transitions the ab- 
sorbed photons transfer their total momentum to generated ions. 

4. General expression for the light-induced drift of chemical elements due to  
asymmetry of the flux distribution in speitral lines has been found. 

5.  The equations of diffusion and drift phenomena have been generalized for the 
case of the presence df magnetic field. 

6. Estimations have been given about formation of chemical anomalies and about 
limiting phenomena - stellar wind and convective turbulence in stellar atmo- 
spheres. 

References 

Alecian, G .  (1986) In: Upper Main Sequence Stars WitA ..ltiuma/ous Abundances. Dordrecht: D. 

Alecian, G. and Grappin, R. (1984) Astron. Astrophys. 140, 159. . 
AlfvCn, G. and Fiilthammar, K .  G. (1967) Costnical Electrodynamics. Clarendon Press, Oxford, 

Atutov, S. N. and Shalagin, A. M. (1988) Pis’ma Astron. Zh. 14, 664 [Sou.  Astron.  14, L2871. 
Artsimovich, L. A. (1978) A Physicist’s A B C  on Plasma.  Mir Publishers, Moscow, p. 53. 
Bisnovatyi-Kogan, G. S. (1992) In Chemical Euoluiion of Siars and the Galazy,  Cosmosinform, 

Gelmukhanov, F. Kh. and Shalagin, A. M. (1980) Zh. Eksp. Teor. Fiz. 78,  1672 [Sou. Phys.  

Havnes, 0. and Conti, P. C. (1971) Asiron. Astrophys. 14, 1.  
Khokhlova, V.  L. (1983) N o g i  nauki i iekhniki. Asironomija 24, 233. 
Krishna Kumar, C., Davila, J. M., and Sundar Rajan, R. (1989) Asirophys. J .  337, 414. 
Michaud, G. (1970) Asiroph. J .  160, 641. 
Michaud, G. (1980) Astron.  J .  85, 589. 
Michaud, G., Charland, Y., Vauclair, S., and Vauclair, G.  (1976) Asirophys. J .  210, 447. 
Michaud, G. ,  Megessier, C., and Charland, Y. (1981) ./lstron. Asirophys. 103, 244. 
Nasyrov, I<. A. and Shalagin, A.  M. (1993) Asiron. Asirophys. 268, 201. 
Profitt, C. R. and Michaud, G. (1989) .4sfrophys. J .  345, 998. 
Rossi, B. S. and Olbert, S. (1974) Introduciion l o  the Physics of Space, Atomizdat, Moscow, 

Ryabchikoba, T. A.  (1992) In Chemical Evolution o/ Siars and the Galary,  Cosmosinform, 

Vauclair, S .  and Vauclair, G. (1982) Ann.  Rev. Asiron. Astrophya. 20, 37. 

Reidel Publ. Comp., 381-389. 

2nd ed. 

MOSCOW, 130-147. 

JETP 51, 8391. 

99-118. 

MOSCOW, 108-129. 


