This article was downloaded by:[Bochkarev, N.]
On: 19 December 2007
Access Details: [subscription number 788631019]
Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

To link to this article: DOI: 10.1080/10556799308230567
URL: http://dx.doi.org/10.1080/10556799308230567

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A NEW TYPE OF CATACLYSMIC VARIABILITY: FG SERPENTIS AND QW SAGITTAE

N. E. KUROCHKIN
Sternberg State Astronomical Institute 1 Universitetskij pr 13, Moscow 119899, Russia

(16 July 1992)

Abstract

FG Ser-a cataclysmic variable of a new type-has been studied using 250 plates obtained in 1949-1987 from Sternberg Astronomical Institute collection. The brightness increase by 3^{m} was observed in mid-1988 (Munari, 1988). Regular brightness variations in the range $B=13$. to an outburst can be represented by the following elements: Min $I==J D 2446590.9+630^{\mathrm{d}} \mathrm{E}$; Minimum II, with the magnitude $13^{\mathrm{m} .5}$, is observed at the phase 0 ? 45 . The light curve (Figure 1) is interpreted as resulting from reflection in the double system M 5 III + white dwarf at X-ray regime The period of 630 days is, probably the orbital one.

QW Sge is a similar system with a red giant; it was considered as a symbiotic one. The star was detected on 464 plates in the interval 1898-1990. The brightness variations (Figure 3) are characterized by nova-like outbursts lasting for more than 3000 days. The brightness increases during several tens of days, as for slow novae, and reaches the magnitude 11 m. At minimum, the brightness is nearly constant with weak variations in the range $12.9-13^{m} .2$. The periods of constant brightness are also about 3000 days long. At minimum, the giant star contributes mainly to the brightness of the system, and the brightness of the secondary component declines below the level of the primary state. This allows us to suggest that the outbursts are due to an accreting white dwarf.

We suggest to regard the symbiotic stars consisting of a red giant and a collapsed object, with the orbital periods of tens or hundreds days, with outbursts and other phenomena characteristic of cataclysmic variables, as representatives of a new type of cataclysmic variability. Observations are reported in Tables 1, 2.

KEY WORDS Cataclysmic variability, FG Ser, QW Sge.
The variability of FG Ser was discovered by Hoffmeister (1968). The star was poorly studied and was considered to be symbiotic. In June 1988 Munari (1988) has found it brightened to the magnitude $\sim 10^{\mathrm{m}}$, or about 3^{m} brighter than the usual level of $13.0-14.5$. Changes in the emission spectrum and enhanced ultraviolet emission have been observed, which was connected with an increase of the temperature of the white dwarf (or of a spot on its surface) from $100,000^{\circ}$ to $150,000^{\circ}$. The spectrum of the secondary component M 5 III did not change considerably (Munari et al., 1989; Gutierrez et al., 1990). The observations were not regular and the behavior of the star during the outburst was poorly studied.

We examined 240 plates from the Sternberg Institute archive obtained in 1976-1987 and 11 separate plates dating to 1949-1973 to recover the photometric history of FG Ser.

Light variations in the quiescent state (before the outburst) were periodic in the range $13^{m} 0-14^{\mathrm{m}} .6 \mathrm{~B}$ (with the mean values $13.2-14^{\mathrm{m}} 4$) with possible fluctuations. The cyclic oscillations are represented by the following elements: Min I $=$ JD $2446590.9+630^{\circ}(\pm 3)$ E. The secondary minimum has the depth of 0 m (up to

Table 1 FG Ser

JD $24 \ldots$ (n)		JD $2443 \ldots$. (n)		JD $2443 \ldots(\mathrm{n})$		JD $2445 \ldots$. n)	
33129.0	$13^{\text {m }} 15$	036.25(2)	13.14	694.40	$13^{m} .66$	114.46	13.55
35362.30	13.60	039.25	13 m .06	696.32	13.57	137.43	$13^{\mathrm{m}} .60$
36836.34	13.08	046.27	13.08	699.34	13.3::	144.41	13.40
838.27	13.28	190.60	13 m .24	700.32	$13^{\text {m }} 65$	167.36	13.52
862.19	13.10	195.61(2)	13.16	702.39	$13^{\text {m. }} 53$	171.39	13.67
37112.44	14.55	196.58	13.30	717.30	13.100	203.30	13.66
848.45	13.78	197.62	13.22	718.35	$13^{m} .50$	228.24	13.87
853.45	13.80	198.58(2)	13.14	726.32	13.60	230.24	13.88
41914.33	13.68	199.60(2)	13.20	728.30	13.40	232.24	14.05
915.30	13.18:	243.44	$13^{\text {m }} \cdot 48$	729.30	$13^{\text {m }}$. 45	842.39	$13^{\text {m }} 73$
920.32	13 m .22 :	249.55	13.50	731.33	13.7.	875.44	13.88
42812.65	14.25	253.52	13.50	757.26	13.30	915.33	$14^{\text {m. }} 28$
867.54	$14^{\text {m }} .30$	254.52	13.52	759.26	13. 15	941.31	$14^{m} .63$!
868.54(3)	14.24	258.52	$13^{\text {m }} .60$	804.20	13 m .40	2446 .	
869.54(2)	$14^{\mathrm{m}} .18$	261.51(2)	$13^{\text {m }} 71$	933.61	$13{ }^{\text {m }} 70$	344.24	13.08
870.51(3)	$14^{\mathrm{m}} 13$	262.53	$13^{\text {m. }} 62$	938.57(2)	13.83	591.46	14.32
871.54(4)	$14^{\text {m }} \cdot 24$	272.40(2)	13.74	987.55	13.90	596.48	14.32
872.52(3)	14.21	277.52	13.78	2444.		612.42	$14^{\text {m }} 29$
873.57	14.25	279.47(2)	13.75	012.48	$14^{m} \cdot 20$	613.43	14.26
874.55(2)	$14^{\mathrm{m}} 12$	282.47(2)	13.75	021.43	$14^{\mathrm{m}} \cdot 28$	616.40	$14^{\text {m }} 34$
875.55(2)	$14^{\mathrm{m}} 02$	283.33(2)	13.79	023.46	$14^{\mathrm{m}} \cdot 28$	617.34	$14^{\mathrm{m}} 27$
876.53(3)	$14^{\mathrm{m}} .01$	284.47(2)	13 m 74	025.43	$14^{\mathrm{m}} 32$	618.46	14.30
890.51	13.85	285.49	$13^{\text {m }} .80$	027.45	14.27	619.41	14.28
891.53	13.9:	287.43	$13^{\text {m. }} 82$	040.36	$14^{\text {m }} 29$	623.46	14.45
892.54	14.0:	289.38(2)	13.73	043.43	14. ${ }^{\text {m }} 68$:	624.43	14.28
894.52	13.75	304.49	13.72	050.41	$14^{\text {m. }} 27$	646.40	$14^{\mathrm{m}} 10$
897.53	13 m .80	332.36	13.90	072.39	$14^{\text {m }} .53$	653.41	13.95
901.52	13.74	346.32	13.84	077.36	14.53	672.3:	14.0:
902.51	$13^{\text {m }} 72$	348.49	13 m .90	087.41	$14^{\text {m. }} 50$	677.28	$13^{\text {m }} .80$
921.52	14.0::	349.37	$13^{\text {ma }} .86$	102.27	$14^{\text {m }} 26$	934.42	13.10
922.49	13.78	370.31	14.25	105.28	14.33	971.39(2)	13.08
924.50	13.78	374.30	$14^{\text {m }}$ 22	106.32	$14^{\text {m. }} 30$	972.40(2)	13 m 2 :
925.42(4)	$13^{\text {m }} 76$	390.26	$14^{\text {m }} 23$	107.29	14.25	973.39(2)	$13^{\text {m }} 15$:
926.50	13.85	391.28	$14^{\text {m }} .15$	110.30	14.25	974.41(2)	$13^{\text {m }} 14$
927.41	13.75	394.29	14.42	111.30	$14^{12} 27$	975.32	12.96 !
928.48	13. 66	395.26	14.28	112.30	14.28	975.48	$13 \mathrm{~m} \cdot 12$
929.44	13.82	399.26	$14^{\text {m }}$. 25	113.30	14.28	976.40	13.4 :
930.45(2)	$13^{\text {m. }} 80$	400.25	14.36	131.30	14.20	977.46	13.08
933.45	13.75	417.21	14.27	397.42	$13^{\text {m }} 60$	978.31	13.28
934.38	13 m .80	418.21	14.30	410.36	13.64	979.40	$13^{\text {m }} 20$
949.33	$13^{m} .70$	420.25	$14^{\text {m }} .53$	428.35	13. ${ }^{\text {m }}$ 45:	979.46	13 m .35 :
951.36	13 m .60	422.20	$14^{\text {m }}$. 40	455.30	$13^{\text {m }} 26$		
954.32	13.75	423.22	$14^{\text {m }} 36$	489.27	13.25		
954.50(2)	13 m 73	424.22	14.33	491.26	13. 50		
957.37(3)	13.67	425.24	$14^{\text {m }}$, 45	494.25	13.57		
957.47(3)	13.64	426.23	14.40	732.52	$14^{\text {m }}$. 40		
961.41(2)	13 m .61	427.28	14.35	758.49	14.28		
963.42(2)	13.62	428.21	$14^{\text {m }} 50$:	761.48	14.19		
983.34	13.58	429.21	$14^{\mathrm{m}} 5:$	782.33	14.25		
984.47	13.60	659.47	13'm: ${ }^{\text {m }}$	789.39	$14^{\text {m }} 25$		
$989.36(2)$	13 m 42	663.41	13. ${ }^{\text {m }}$:	811.41	14.15		
992.36	13.40	668.48	13.40	815.38	$14^{\mathrm{m}} .20$		
43015.39	13.28	672.36	$13^{\text {m. }} 65$	839.27	13.90		
016.34	13.20	685.34	13.25 :	847.28	$14^{\text {m }}$. 00		
034.23	13 m 30	687.41	$13^{\mathrm{m}} .40$	850.28	14.10		
035.24	$13^{\mathrm{m}} 18$	692.39	$13^{\text {m. }} 67$				

Table 2 QW Sge

14578.26	12.70	2438		2439		2440	
909.375	$12^{\text {m }} 65$	669.22	12.03	706.41	12.33	502.26	$12^{\text {m }}$ 62
15250.32	13.25:	673.30	$12 \mathrm{~m} \cdot 2$	707.30	12.28	509.24	12 m .30
614.34	$12^{\text {m }} 25$	673.34	$12 \mathrm{~m} \cdot 25$	707.34	12.24:	510.28	$12^{\text {2 }}$. 40
18566.30	$13{ }^{\text {m }} 1:$:	697.22	12 m 05	708.35	$12^{\text {m }} 35$	511.26	$12^{\text {m }}$ 4 4
597.22	13.04:	698.22	11 m 90	711.38	12.28	512.31	12.23
888.44	12.95:	699.25	$12^{\text {m }} 06$	712.34	12.25	744.49	12.56
946.26	13 m. 05	703.22	11.98	714.34	$12^{\text {m }} 25$	744.51	$12^{\text {m }} 52$
19251.40	$12^{\text {m }}$. 96	880.52	$122^{\text {m }} 37$	716.43	12.30	747.51	$12^{\text {m }}$. 66
21484.33	$13^{\text {m }}$ 4:	886.50	$12^{\text {m }} 27$	730.31	12.30	775.46	12.74
28045.375	$12^{\text {m }} 84$	905.46	$11^{\text {m }}$. 95	743.43	12 m 28	779.37	$12^{\text {m }}$. 65
751.40	13.05	909.43	$12^{\text {m }}$. 08	745.40	12.33	783.48	12.9
757.33	$12^{\text {m }} 94$	910.40	$11^{1 \times 93}$	746.41	$12^{\text {ma }}$. 07	799.50	$12^{\text {m }} 70$
759.43	13.3:	913.48	$12^{\text {m }} 30$	764.35	$12^{\text {m }} 27$	800.52	$12{ }^{\text {m }} 69$
776.34	13m.05:	916.42	$12^{\text {m }} 26$	765.26	$12^{\text {m }} 28$	801.42	12 m .64
779.31	13m:	942.42	$12^{m} .15$	765.35	12.31	802.46	12 m 76
786.31	$13{ }^{\text {m }} 10$	946.40	$12^{\text {m }} 15$	767.26	$12^{\text {m }} 32$	806.42	$12^{\text {m }} 70$
789.33	13m. $2:$:	951.50	11 m .80	767.30	12.37	808.33	12 m 70
29188.19	$13^{\text {m }} 05$	964.44	$12^{\text {m }} 18$	767.35	12.25	809.54	$12^{\text {m }} 71$
962.145	$13^{\text {m }} 12$:	968.46	$12^{\text {m }} 16$	769.30	12.29	810.38	$12^{\text {m }}$. 66
30607.25	$13 \cdot 15$	970.52	$12^{\text {m }} 26$	770.24	$12^{\text {m }} 10$	812.54	$12^{\text {m }}$. 68
617.26	13.40	972.46	$12^{\text {m }} 20$	770.28	11 m'98	819.27	12 m 70
34281.27	13.07	974.48	12.06	770.33	12.30	822.34	12.6
623.33	$13^{\text {m }} 10$	977.47	12.25	770.37	$12^{\text {m }} \cdot 4$	823.44	12.74
628.31	$13^{m} 2:$:	979.50	$12^{\text {ma }} 06$	772.29	12.25:	827.41	12.78
683.18	$13^{\text {m }} 10$	980.49	$12 \mathrm{~m} \cdot 25$	968.53	12.17:	828.46	12.72
37136.50	$12^{\text {m }} 94$	999.43	$12^{\text {m }} 30$	968.55	$12^{\text {m }} 35$	2441	
159.30	$12^{\text {m. }} 97$	2439		974.54	$12^{\text {m }} 40$	161.54	12.3:
160.36	13.00	236.54	12.26	999.41	12. 30	177.45	12.70
163.36	13.04	237.55	12.20	2440		417.55	13.04
164.38	13.07	269.51	$12^{\text {m }} 16$	007.42	12 m 28	427.55	13.00
165.41	13.06	292.48	12 m 28	033.48	$12^{\text {m }} 05$	452.52	13.05:
166.36	12.98	294.41	12.26	036.46	$12^{\text {m }} 23$	454.50	12.97
168.42	13.07	301.44	12.26	037.43	12 m 23	475.47	13.07
175.37	13.12	323.50	$12^{\mathrm{m}} 2$:	071.40	12. 10	482.51	13.28
176.38	$13^{\text {m }} .07$	329.50	$12^{\text {² }} 30$	072.46	$12^{\text {m }} 20$	486.48	$13{ }^{\text {m }} 04$
194.36	13.05	334.51	$12^{\text {m }} 18$	086.30	12 m 10	492.54	13 m. 08
196.30	13 m .10	344.30	$12^{\text {m }} 25$	093.46	12 m. 05	508.35	$13^{\frac{m}{2}} 14$
220.22	13.06	346.30	$12^{\text {m }} 26$	094.42	12.17	510.49	13.00
223.21	13.05	379.32	$12^{\text {m }} 25$	095.32	12 m 20	513.49	13 m .09
527.54	13.0 :	382.30	$12^{\text {m }} 30$	097.50	12.15	514.50	$13^{m} \cdot 12$
546.40	12 m .91	383.45	12.30	098.36	12.08	518.50	$13^{m} 14$
576.32	$12^{\text {m }} 94$	384.31	$12^{\text {m }} 40$	117.42	$12^{\text {m }} 43$	522.52	$13^{\text {¹/ }} 12$
578.31	$12^{\text {m }}$. 98	385.29	12.30	118.27	12.15	530.29	$13^{\text {T. }} 09$
843.49	$13^{\text {ma }} 17$	385.38	12.30	119.27	$12^{\text {m }} 15$	532.28	$13^{\text {m }} 06$:
876.52	12 m 30	387.35	12.30	122.29	12.50	536.52	$13^{\text {m }} 10$
877.46	12. 30	387.40	$12^{\text {m }} 35$	123.28	$12^{\text {m }} 38$	546.43	13 m 08
885.47	$12^{\text {m }}$. 07	391.38	12.32	125.31	12.40	548.42	$13^{\text {m }} 15$
887.48	$11^{1.97}$	406.30	$12^{\text {m }}$. 43	153.20	12.38	564.32	$13^{\text {m }} 10$
902.34	$11^{\text {m. }} 95$	646.50	$12^{\text {m }} 20$	157.36	12.36	565.33	$13^{\text {T. }} 08$
38144.50	11^{11960}	647.48	$12^{\text {m }} 30$	386.51	$12^{\text {m. }} 46$	566.32	$13^{\text {m }} 10$
227.40	$12^{\text {m }} 16$	652.47	12.16	387.50	12 m 3	567.34	13. 17
261.46	$11^{\text {m }}$. 5	655.49	12.26	420.52	$12^{\text {m }}$. 38	568.31	$13^{\text {m }} 15$
268.43	$11^{1.52}$	677.48	12 m 30	421.52	$12^{\text {m }}$ 4:	569.31	$13^{\text {m }} 15$
281.31	11.80	678.46	12.05	425.46	12 m 30	570.31	13.08
282.27	$11^{\text {T. }} 60$	681.47	$12^{\text {m }}$. 28	426.40	12.48	571.34	13.14:
554.49	$11^{\text {m. }} 95$	684.50	$12^{\text {m }} 15$	427.48	$12^{\text {m }} 35$	573.32	13?.08
561.41	$12^{\text {m }} 17$	686.47	12.33	428.46	$12{ }^{\text {m }} 44$	575.35	$13^{m} .08$
623.46	$11^{\text {m }}$ 87 7	689.47	12.28	473.34	$12{ }^{\text {m }}$. 40	576.28	$13^{m} \cdot 10$
668.35	$12^{\text {m }}$. 06	704.33	12 m 30	475.32	12.37	577.39	$13^{m} \cdot 12$

Table 2 (continued)

$\begin{aligned} & 2441 \ldots \\ & 594.26 \end{aligned}$		2442		2444		2445 . .	
	$13^{m} \cdot 12$	661.33	13.09	000.46	13m. 40	492.48	12.09
595.27	$13^{\mathrm{m}} .08$	662.30	13.06	020.50	13 m .38	496.50	$12^{\mathrm{m}} 20$
596.26	13.10	665.28	13.08	028.50	$13^{\text {m }}$. 27	504.51	$12^{\text {m }} .26$
597.29	13.16	667.29	13.06	040.40	13.10	522.50	$12^{\text {m. }} 08$
598.30	13.13	668.37	13.08	046.43	13.20	523.47	$12^{\text {m }} .06$
803.54	13.14	684.32	13.07	072.42	13.13	524.40	12.10
813.52	13.12	744.17	13.09	076.51	13 m .20	524.42	12 m 18
837.46	13.07	747.16	13.08	099.35	$13^{\mathrm{m}} 1$ 1:	524.44	$12 \mathrm{~m} \cdot 22$
838.52	13.12	749.17	13.07	104.36	13.10	525.44	$12^{\text {m }} 14$
839.50	13.14	869.58	13.08	111.38	13 m .08	526.37	12 m .28
842.50	13.07	930.43	13.08	117.43	13 m .08	526.44	$12 \mathrm{~m} \cdot 20$
860.47	13.13	960.45	13.06	130.34	13 m .05	526.45	$12^{\mathrm{m}} 10$
864.49	13.08	961.39	13.05	134.31	13.09	526.45	$12^{\mathrm{m}} 15$
865.52	$13^{\text {m }} 12$	965.48	13.08	136.38	$12^{\mathrm{m}} 12$	526.52	12 m .08
869.49	$13^{\mathrm{m}} 08$	2443		159.31	$13^{\mathrm{m}} 1:$:	528.51	12.07
873.51	$13^{\text {m. }} 07$	039.28	13.07	164.20	$13^{\mathrm{m}} 12$	535.44	12.06
875.52	$13^{\mathrm{m}} 10$	945.36	13 m .12	186.26	$13^{\text {m }} 08$	535.46	12 m .08
887.41	13.08	047.33	13.09	194.27	13.07	535.47	$12^{\mathrm{m}} 10$
892.45	13.05	063.22	13 m .07	399.45	13.10	535.49	$12 \mathrm{~m} \cdot 25$
901.46	13.02	064.23	13.09	408.45	13.10	558.42	12 m .23
902.52	13.05	069.25	13 m .07	413.46	13 m .08	846.52	12 m 32
916.38	13.08	072.23	13.08	433.46	13 m .11	859.44	12 m .35
918.44	13.06	198.62	13.08	442.35	$13^{m} \cdot 10$	2446 . .	
922.45	13.08	232.54	13.1:	457.38	$13^{\text {m }} 13$	707.27	$12^{\text {m }} 80$
924.42	13.07	303.44	13.1:	483.33	$13{ }^{\text {m }} 07$	937.52	12 m 50
928.40	13.05 :	312.51	13.08	489.36	13 m .25	943.52	12 m 60
931.45	13.11	321.45	13 m .08	493.34	13 m .07	971.45	12 m 35
974.31	13.08	344.36	13 m 10	494.32	13 m .08	973.35	12 m 38
2442 .		347.32	$13^{\text {m }} 08$	521.25	13.05	973.49	12.50
211.42	13.08	350.51	13.1:	705.54	$13^{\mathrm{m}} .12$	974.39	$12^{\text {m }} \cdot 40$
216.50	13.06	365.32	13.10	759.50	13 m .08	975.47	$12^{\text {m }} \cdot 40$
218.50	13.09	369.30	13.05	763.49	13.04	975.36	12 m 30
221.41	13.11	389.27	13.07	764.46	13 m .05	977.50	12.35
252.53	13. ${ }^{\text {m }} 0$:	390.30	13.04	765.44	13.03	978.50	$12^{\text {m }} 40$
254.48	13.00	393.28	13.12	785.45	13.07	979.44	12 m .42
257.50	13.17	399.30	13.08	795.46	13.07	979.49	12 m .50
300.37	13.3:	418.24	13.05	811.45	$13^{\text {m }} \cdot 10$	2447.	
507.57	13.08	423.26	13. 04	819.40	$13^{\mathrm{m}} 12$	013.35	12 m 07
539.54	13.12	430.31	13.06	824.51	13 m .08	026.48	12 m .30
542.51	13 m .17	667.50	13.27	838.39	13 m .12	027.36	12.05:
546.50	13.10	672.40	13 m .08	845.27	13 m .08	035.39	12 m .45
551.49	$13{ }^{\text {m }} 12$	687.45	13.09	848.30	13.10	042.44	$12^{\mathrm{m}} 30$
567.42	13.07	693.43	13.12	851.27	13 m .08	055.35	$12^{\text {m }} .42$
577.52	13.11	700.42	13 m .10	873.32	$13^{\text {m }} 10$	061.32	12 m 45
579.49	13.08	722.40	12.9::	899.20	13 m .02	310.51	12 m 90
597.45	13.10	729.43	13m:	905.26	13 m .07	324.51	13.00
599.48	13.06	745.33	$13^{m} .20$	906.24	13.06	358.51	12m9:
601.44	$13^{\text {m }} 11$	747.39	13. 28	2445...		367.47	12 m 76
605.42	13.08	751.39	13m. 10	057.56	12 m .91	379.42	12 m .84
607.46	$13^{\mathrm{m}} .12$	779.32	13 m .07	116.47	13.06	383.51	12 m .73
625.40	13 m .03	784.30	13.12	144.48	12.97	407.33	13.06
626.52	13.07	785.32	13 m .08	164.40	13 m .00	420.27	12 m .94
630.53	$13^{\text {m }} 10$	800.18	$13^{\text {ma }} 08$	169.47	12 m 98	681.50	12 m 90
637.35	13.03	815.26	13. 12	173.46	$13^{\text {m }} 03$	818.23	13.00
642.49	13.03	866.16	13. 16	192.34	$13^{\text {m }} .07$	825.19	12 m .91
654.27	13.06	938.61	13.16	199.41	13.04	2448 ..	
658.39	13.08			227.25	13.08	091.48	$13^{m} \cdot 10$
659.34	13.23			256.31	13.10		

Figure 1 The composite light curve of FG Ser with the period of 630 days according to photographic observations of 1949-1987.
13.5) and occurs at the phase of 0 P 45 . The light curve (Figure 1) has a symmetric shape at the minima, but the location of the minima is asymmetric. There are the signs of eclipses at the minima. The shape of the light curve is similar to that of HZ Her, with the reflection effect, but with a deeper secondary minimum.

Unlike HZ Her, which consists of a normal star and a neutron one, FG Ser consists of the giant star M 5 III and a white dwarf. Assuming mean parameters for the M star (the mass $6 \mathrm{~m}_{\odot}$ and $T \sim 3000^{\circ} \mathrm{K}$) and for the white dwarf ($0.6 \mathrm{~m}_{\odot}$ and $\left.T_{e} \sim 100000^{\circ}\right)^{e}$ we obtain a crude model of the system with $P=630$ days, the major semiaxis of the circular orbit $A=405 \cdot 10^{6} \mathrm{~km}$, the radius of the M star $134 \cdot 10^{6} \mathrm{~km}$ (basing the data for the duration of the eclipses at the minima). The model of the system is shown in Figure 2. The position of the Roche lobe is indicated. The M star is close to the Roche lobe and probably fills it, as the accepted parameters for the stars are approximate. The temperature of the cold

Figure 2 A model of FG Ser. For the comparative sizes of the giant M 5 III and the Roche lobe with $q=10$, see tables of Plavec and Kratochvil (1964).
and hot sides of the M giant should be 3000° and 4100° (for the amplitude of 1 m .5), but the spot can be smaller if the temperature is higher. We suggest that the heating of the one side of the giant is due to the X-ray emission of the white dwarf in accreting stage, with the luminosity of about $10^{37} \mathrm{erg} / \mathrm{s}$. However, the X-ray emission has not been detected, probably because the emission is confined to some direction. The suggested interpretation for the light curve of FG Ser should be considered as preliminary. But, undoubtedly, FG Ser can be regarded as an unusual variable of cataclysmic type, with a reflection effect and eclipses in the quiescent state.

QW Sge $=$ AS $360=$ MH 80-5 is another symbiotic star with signs of cataclysmic variability. Brightness variations were discovered by Hoffmeister (1964): the star was bright (about 12^{m}) in September-October 1963. According to our data, at that time a long outburst up to B magnitude $11^{\mathrm{m}} 5$ was taking place. A symbiotic spectrum of a late M 6 e star with H emission was noticed by many observers (Esipov et al., 1986: during outburst in September 1982; Bidelman, 1954; Merrill et al., 1950).

QW Sge was detected on 464 plates from the Sternberg Institute collection, obtained during JD $2414578-48092$ (among them, 438 plates in the interval JD 2437 118-48929). The comparison stars are marked on the map shown in Figure 4.

The light curve of QW Sge (Figure 3-4) is characterized by two active nova-like outbursts. The rise and decline of brightness are slow and take about 3000 days. After these outbursts, the brightness of the star is relatively constant, with magnitude in the range $12.9-13.2$. However, we suppose that brightness of the flare component continued to decline at that time, being below the level of the primary. During the first observed flare at JD $2437876-41400$, the brightness increased from 13.17 to 11 m .95 in the period JD $2437843-37902$, as for a slow nova. The maximum magnitude of 11 m 5 was achieved about JD 2438 261-268 but, perhaps, the star was even brighter during the intervals not covered by observations. A slow light decline with strong fluctuations was observed during 3000 days, until JD 2441 400. Then, between JD 2441 417-45000, the brightness was nearly constant at $13.05-13.3$; but it declined by $0^{m} .1-0^{m} .2$ occasionally (during JD $2444000-44029$). The variable component at that time is apparently significantly fainter than the M giant.

The second active period was observed at JD 2445 492-47387, when the brightness reached 12.0 during local maxima at JD 2445 523-535 and 47 013-027.

Figure 3 The photographic light curve of QW Ser (1960-1990).

Figure 3-4 The map with comparison stars for QW Sge.

The light variations resemble the outbursts of GK Per-type cataclysmic stars. The star likely belongs to a new type of cataclysmic variables.

Red giants in double systems with a white dwarf or a neutron star probably represent a special group of cataclysmic stars. Their behavior is distinguished by considerable diversity, as for other cataclysmic variables, and this is due to the same reason, namely unsteady disk accretion on the collapsed object. Many nova-like and symbiotic stars can also be related to this type with, MWC 560 , HM Sge, V 1027 Cyg and others among them. Some of them, like MWC 560 and HM Sge, have stages of high and low brightness. The behavior of the stars discussed above is distinguished by nova-like outbursts. The behavior of symbiotic stars is complicated by the effects typical of cataclysmic variables which are connected with the ejection of the red giant envelope and temporary filling of Roche lobe with flow of matter into the accretion disk near the collapsed object. The stars of this type have a long orbital period of tens or hundreds of days, while for cataclysmic variables the periods are shorter than one day. Optical manifestations of the cataclysmic nature of these systems can be accompanied by reflection effects, physical variability and pulsation of the giant star or by a spot activity. These factors result in the observed variety of the types of variability for symbiotic stars, which should also be regarded as cataclysmic ones.

References

Bidelman, W. P. (1954). Ap. J. Suppl. 1, 7, 175.
Hoffmeister, C. (1964). AN 288, 49.
Hoffmeister, C. (1968). AN 290, 277.
Gutierrez, A. and Moreno, H. (1990). PASP, 102, 157.
Esipov, V. F., Ipatov, A. P. and Yudin, B. F. (1986). Astrofizika, 25, 2, 229.
Merrill, P. W. and Beerwell, C. G. (1950). Ap. J. 112, 72.
Munari, U. (1988). IAU Circ. No. 4622.
Munari, U. and Whitelock, P. A. (1989). MN 239, 273.
Plavec, M. and Kratochvil, P. (1964). Bull. Astron. Inst. Chech. 15, 5, 165.

