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VORTICES IN THE STELLAR GALACTIC DISK: 
KINETIC APPROACH 

A. D. RYABTSEV 

Rostov State University, 344104 Rostov+n-Don, Stachki 194, Russia 

(20 March 1992) 

The possibility of the existence of stationary vortex-line waves in the stellar galactic disk is considered 
within the framework of collisionless Boltzmann equation. A family of vortex-like solutions is 
constructed for the case of a rigidly rotating disk. It is shown that the existence of stationary 
vortex-like perturbations is impossible in differentially rotating disk with a linear rotation law. In 
particular, this is the case for flat rotation curves. 

KEY WORDS Galaxy, stellar disk, vortices. 

1. INTRODUCTION 

Recently, it has been recognized that vortex-like wave perturbations can exist in 
gaseous subsystems of disk galaxies (Korchagin and Petviashvili, 1985; Korchagin 
et al., 1988; Fridman, 1988). These vortices are similar to those in planetary 
atomospheres and in rotating shallow water (Nezlin, 1984). There is some 
observational data confirming the existence of such vortices (Zasov and Kyazu- 
mov, 1981; Afanas’ev and Rassokhin, 1982; Afanas’ev et al., 1990). These 
observations are also related to gaseous components of the disks. By analogy with 
spiral-like wave perturbations existing in both gaseous and stellar subsystems of 
galactic disks, it is natural to consider vortex perturbations in stellar subsystems 
as well. Korchagin and Ryabtsev (1991) demonstrated the possibility of existence 
of solitary vortices in stellar disks within the framework of collisionless fluid 
dynamics with isotropic pressure tensor (Marochnik, 1966). This approach is valid 
only for rigidly or weakly differentially rotating disks under a set of severe 
restrictions on the velocity and wavelength of perturbations. 

Here we consider localized perturbations in stellar disks in the framework of 
collisionless Boltzmann equation. It is shown that stationary solitary vortices can 
exist in uniformly rotating stellar disks, thus confirming the result of Korchagin 
and Ryabtsev (1991). The existence of such perturbations is shown to be 
forbidden in differentially rotating disks in important case of a linear rotation law. 
Thus, the “no-go” theorem proved by Antonov and Zheleznyak (1989) is 
generalized for stellar disks. 
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2. KINETIC EQUATION FOR LOCATIZED PERTURBATIONS 

We start with the Boltzmann equation in cylindric coordinates: 

Let &(r)  be the angular velocity of disk rotation and ro the distance from the 
center. We introduce peculiar velocities as 

and use the reference frame rotating at angular velocity Ro = S2(ro). Taking into 
account that the unperturbed gravity potential is given by 

U, = -rR2(r) ,  (3) 
we obtain 

1 df df 1 df df+ Vo(r) -- + cr- + c+ -- 
at r d @  dr r d @  

where Vo(r) = ( R ( r )  - Ro)r is the residual velocity in the rotating frame and 
U' = U - Uo is the perturbation of the gravity potential. 

In what follows we shall consider localized perturbations in the vicinity of a 
point 0', at the distance ro from the galactic center. Therefore, we introduce a 
local Cartesian frame centered at 0' with the x-axis directed along the radius and 
the y-axis in the direction of galactic rotation. We shall consider perturbations 
neglecting selfgravity, i.e., U' = 0. Indeed, though selfgravity can be important in 
the dynamics of vortices, it cannot dominate in the formation of their structure 
because the vortices are waves in stellar disks rather than gravitationally bounded 
groups of stars, i.e., stellar clusters. The latter cannot be described in terms of 
one-particle kinetic equation (l), where the phase density f refers to the galactic 
disk. Finally, equation for localized perturbation in the local Cartesian frame 
reads 

( 5 )  
df+ VO(X) - af + c, - af + cy - af - c,(2Qo + VA) - af + 2Rc - af = 0. 
d t  ay ax ay 3CY dc, 

The terms of order l / ro  are neglected in Eq. (5) .  Equation (5) is our starting 
point for the investigations of vortex solutions in stellar disks. 

3. VORTEX SOLUTION FOR A UNIFORMLY ROTATING DISK 

In the uniformly rotating disk, we have Vo = 0. Let us search for stationary axially 
symmetric solutions of Eq. (5) in this case. It is convenient to introduce local 
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polar coordinates as 

x = p cos 8; y = p sin 8. 

In terms of this coordinates, stationary kinetic equation reads 

The stationary phase density f is a function of two independent integrals of the 
system 

The two integrals can be easily written out. These are the specific energy, 

E = $(cz  + ci), 

I = C O P  + Ap2. 

(8) 

(9) 

and the specific angular momentum, 

Let u be the velocity dispersion of stars. The localized solution must approach 
asymptotically the Shwartzshild law when p increases. Therefore, it must have the 
form 

where 6f(E, I ) + O  for I - w .  In Eq. (lo), N stands for the unperturbed number 
density of stars. The shape of the perturbations remains indetermined in the 
stationary theory, similarly to the case of the fluid dynamical approach (Kor- 
chagin and Ryabtsev 1991). A soliton-like, exponentially decreasing vortex 
solution can be written as follows: 

f =- N exp(- $)[ 1 + ho exp( - &)I 
2n02 

In Eq. ( l l ) ,  the dimensionless parameter h0 determines the magnitude of the 
perturbation; L determines its spatial scale. The corresponding perturbation of 
the stellar number density has the form 

6 N =  d2c6f =dONexp  I 
Rotational velocity in the vortex is given by  

As can be seen from Eq. (13), the rotation velocity is nonvanishing due to the 
dependence of the distribution function on the angular momentum integral I .  The 
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solution is localized if 

The half-width of the vortex is 
02 -1/2 

L " = L  2 1-- [ ( 2nZLJ1 

For L = o / Q ,  the vortex is most compact. In this cae L V = u / Q  and the 
maximum rotational velocity is asoe-'/2. Thus, for typical values of the dispersion 
and velocity, say, 0 = 50 km/s and 52 = 50 km/s kpc, the vortex size can be a few 
kiloparsecs and the rotational velocity is large as several tens of kilometers per 
second. 

4. PROOF OF THE ABSENCE OF VORTEX SOLUTIONS IN 
DIFFERENTIALLY ROTATING DISK WITH A LINEAR 
ROTATION LAW 

The linear law of differential rotation is a good approximation for extended parts 
of rotation curves in many galaxies. In particular, rotation curves are flat in outer 
parts of galactic disks. Therefore, it is important to examine whether solitary 
vortices can occur for such rotation curves. 

In the case of a linear rotation law, V,(x) = V'x and V'=const. Consider 
stationary solutions of Eq. ( 5 )  with allowance for a possible drift along the y-axis, 
i.e., a /a t=u(d/dy) ,  where u is the drift velocity. In general, the solution is a 
function of three integrals of the system 

(16) 
dy =-- dx dc, _ -  - dCY 

u + v, + cy c, 2Q,CY (2Qo + V&, . 
- 

Linking the second and the fourth terms of the proportion (16), we obtain the 
following: 

J = cy + V,(X) + 2QOX. (17) 

Another integral is obtained from linking the third and the fourth terms in Eq. 
(16). It reads 

One more integral can be written out explicitly in the case of a linear rotation 
law. It has the form 

K=Y--c " +- Sign(cx) arcsin( "-) [ u + (1 - $) ( cy + x &)] . (19) 
K 2  K (2E)l" 

However, the phase density f should be independent of K, because K is a 
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STELLAR GALACTIC DISK 341 

multi-valued function (Ogorodnikov, 1958). Hence, f depends only on J and E. It 
is obvious that such dependence rules out vortex-like solutions because it implies 
that the velocity component along the x-axis is zero. Indeed, 

I d’cc, f ( J ,  E )  = 0 (20) 

because J is independent of c, and E is an even function of c,. 
Note that K becomes single-valued in a uniformly rotating disk if u = 0: 

In this case the angular momentum integral I, which leads to the existence of a 
vortex solution, can be obtained from J ,  E and K as 

J 2  + (29K)’ - 2E 
4 9  

I =  

Thus, we have rederived the result of Section 3. 

5. CONCLUDING REMARKS 

We have demonstrated the existence of stationary solitary vortices in a uniformly 
rotating stellar disk and the absence of such perturbations in the disks with a 
linear rotation law. The existence of stationary vortices is closely related to the 
existence of a sufficiently rich set of single-valued integrals of the kinetic 
equation. The set of integrals must be sufficient for the construction of the 
stationary phase density with nonzero mean circular flow. This is the case for the 
axially symmetric kinetic equation for a uniformly rotating disk. Differential 
rotation breaks down this symmetry and reduces the number of single-valued 
integrals. This fact has been demonstrated by explicit calculations for a linear 
rotation law. 

Thus, we have confirmed the hypothesis (Korchagin and Ryabtsev, 1991) that 
rotation laws close to the uniform one are most favorable for the existence of 
solitary vortices. 
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