
Lecture 3. Helium burning (3α-
process). Degeneracy of matter in 
stellar interiors. Evolution of stars 

with M<8 M . Red giants. AGB stars. 
Formation of planetary nebulae.
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Off the main sequence.Core He burning
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• After core hydrogen exhaustion: core contracts, central density and 
temperature rise. Star goes off the main sequence toward red giant 
branch as conditions for H burning in shell layers appear

• helium burning (~10% of tH): starts at T~2-3x108K, ρ~103-104g/ccm
• No stable nuclei with A=5 and A=8 first stable reaction 3 4He 12C

I.    4He + 4He 8Be - 92 keV
II.    8Be + 4He 12C* - 0.29 MeV
III. 1/2500 cases: 12C* 12C + 7.65 MeV (e+e-)

• Problem:   (3mα-mC12)c2=7.28 MeV. If  12C* has no appropriate energy 
level, the reaction proceeds extremely slow and no other element after 
Helium would form in the Universe :(((.Fortunately, it has (predicted by 
F. Hoyle and found by W. Fowler)  resonance exists!

• Energy generation per gram  ε ~ ρ2 (3 particles must meet)
• Immediately followed by: 4He+ 12C 16O + 7.16 MeV

Result: M<10 M - (degenerate) Carbon cores with admixture 16O
10<M<30 M - CO-cores

M>30 M - Oxygen cores



Off the main sequence: qualitative
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Off the main sequence: more 
quantitative

• Central density increases degeneracy of matter becomes 
important (especially in low mass stars as on the main 
sequence ρ~1/M2 ).  Indeed, from virial theorem for Γ=5/3

Q=3/2 R <T> M = - 1/2 U ~ GM5/3ρ1/3, E=Q+U ~ -GM5/3ρ1/3

Star emits radiation so ∆E<0 density must increase
• Principal consequence of increasing density – Coulomb 

corrections  + degeneracy effects to Maxwell-Boltzmann ideal 
gas EOS. It is the physical reason for divergence of  evolution 
of stellar cores with different mass after the main sequence. 

• If Mcore< MCh~1.4 M (i.e. M<8-10 M ), degeneracy wins;
• If Mcore> MCh (i.e. M>8-10 M ), nuclear evolution 

proceeds under non-degenerate conditions up to the 
formation of mostly bound iron group nuclei
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Intermezzo 1: Degenerate Fermi gases
Pauli exclusion principle (1925): 2 electrons in atom
cannot have identical quantum numbers – explains
Periodic Table of elements! More generally: for any 
2 fermions (half-integer spin: e, n, ν…). Follows from 
(i) particles identity in quantum mechanics and 
(ii) odd parity of wave functions of fermions

Degeneracy of fermions in matter at 
high densities or low temperatures:
Only 2 electrons with opposite spins 
can occupy one phase space cell

W.Pauli
(1900-1958)

E.Fermi
(1901-1954)
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Intermezzo 2: Chandrasekhar limit (1930)
(Nobel Prize in physics 1983, with W.Fowler)
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S.Chandrasekhar
(1910-1995)
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Why evolution of massive stars is different from 
evolution of low mass star and which mass determines 

the boundary
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Physical diagram of stellar evolution: ρ-T  plane
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Astronomical diagram for stellar 
evolution: HR diagram

Sun
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Red giants

Bethelgeise
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HR diagram for stellar clusters
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Hydrogen burning time ~1/M2 Turn-off point as 
a measure of the cluster age (Sandage)
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AGB stars and planetary nebula 
formation

Thermal instability of H burning shell leads to pulsations (Mira!) and subsequent 
planetary nebula formation
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Zoo of planetary nebulae
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