Lecture 3. Helium burning (3a-
process). Degeneracy of matter in
stellar interiors. Evolution of stars

with M<8 M. Red giants. AGB stars.

Formation of planetary nebulae.
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Off the main sequence.Core He burning

After core hydrogen exhaustion: core contracts, central density and
temperature rise. Star goes off the main sequence toward red giant
branch as conditions for H burning in shell layers appear

helium burning (~10% of t;): starts at T~2-3x108K, p~103-104g/ccm
No stable nuclei with A=5 and A=8 = first stable reaction 3 He=> 12C

. “He +“He <~ %Be - 92 keV
Il. 2Be + 4He <> 12C"- 0.29 MeV
lll. 1/2500 cases: 2C™> 12C + 7.65 MeV (e*e’)

Problem: (3m -mc,,)c?=7.28 MeV. If 12C" has no appropriate energy
level, the reaction proceeds extremely slow and no other element after
Helium would form in the Universe :(((.Fortunately, it has (predicted by
F. Hoyle and found by W. Fowler) = resonance exists!

Energy generation per gram € ~ p?(3 particles must meet)
Immediately followed by: ‘He+ '2C - 160 + 7.16 MeV
Result: M<10 M, - (degenerate) Carbon cores with admixture €O
10<M<30 M, - CO-cores
M>30 M, - Oxygen cores
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Off the main sequence: qualitative
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Off the main sequence: more
quantitative

Central density increases = degeneracy of matter becomes
important (especially in low mass stars as on the main
sequence p~1/M?). Indeed, from virial theorem for '=5/3

Q=3/2 R<T> M =-1/2 U ~ GM33p'13 E=Q+U ~ -GM>3p1/3
Star emits radiation so AE<0 - density must increase
Principal consequence of increasing density — Coulomb
corrections + degeneracy effects to Maxwell-Boltzmann ideal
gas EOS. It is the physical reason for divergence of evolution
of stellar cores with different mass after the main sequence.
If M, .< M¢,~1.4 M, (i.e. M<8-10 M), degeneracy wins;

If M_,,.> M, (i.e. M>8-10 M,,), nuclear evolution
proceeds under non-degenerate conditions up to the
formation of mostly bound iron group nuclei
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Intermezzo 1: Degenerate Fermi gases

Pauli exclusion principle (1925): 2 electrons in atom
cannot have identical quantum numbers — explains
Periodic Table of elements! More generally: for any
2 fermions (half-integer spin: e, n, v...). Follows from
(i) particles identity in quantum mechanics and

(i) odd parity of wave functions of fermions

! 1

Degeneracy of fermions in matter at
high densities or low temperatures:

W.Pauli
(1900-1958)

Only 2 electrons with opposite spins
can occupy one phase space cell

3 3 PE 3 1/3
2d pd ;(: dN | dN ] _n:87z o N szzh(an |
(27h)®  dvdp’ ¢ dvdp 3 (27h)

gr = \/pﬁcz +m?“c*

5 2/3 E.Fermi
Degeneracy in ideal gas: & ~kT <&, T, ~1eV X(103(g /cm"’)j (1901-1954)
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Intermezzo 2: Chandrasekhar limit (1930)
(Nobel Prize in physics 1983, with W .Fowler)
AXAp > (Heisenberg uncert., 1927)
forelectrons: p, = p. ~ i/ Ax=hn.">

e ]

n, =£Ye, Y, z&:(l for H, 0.5 for He, % for Fe)

m, n,

2
Energy: e, ~ ¢ = ZF:; (non—rel.)...= p.c(ultrarel.)

e

hZ
Non—rel. pressure :P, ~neg, =——n>"° oc p°°

Ultrarelativistic gas: S.Chandrasekhar

P~ peen, =hien® =K p*°, K =—=Y*"° (1910-1995)

rel 4/3 ‘e

Chandrasekhar mass:

G m4/3 G

p

3/2 43 \3/2
MChz(Kfe'j :( ne Y, J = Ng,m, Y. ~5.85M Y ~1.4M_ (He,CO..

3
o = Mo | 2107 My = /@ ~10"”GeV - Plankian mass
m, G
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Why evolution of massive stars is different from
evolution of low mass star and which mass determines

the boundary

EOS : ideal +Fermi non—rel. P~ pRT +K_p°° T |

Hydrostaticeq.: P,/ p, ~GM /R=GM?*"°p"°
Central temperature: RT. =GM?*"° p'® —K_ p?"
= at high densities T, starts to decrease

and T —> 0 (white dwarfs!) asI"—>4/3

for any M <M.

Fermi ultrarelativistic: P ~ pRT + K, p*"°
1/3

SRTc =GM o IOC1/3 o Krelpc —
if M>M,=(K_/G)*”* temperature always
increases T oc pi'° (case for massive stars)
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Physical diagram of stellar evolution: p-T plane
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Astronomical diagram for stellar

evolution: HR diagram
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Red giants

Giant Star
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HR diagram for stellar clusters
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Hydrogen burning time ~1/M2 = Turn-off point as
a measure of the cluster age (Sandage)
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AGB stars and planetary nebula
formation

Thermal instability of H burning shell leads to pulsations (Mira!) and subsequent
planetary nebula formation
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Zoo of planetary nebulae
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