Peremennye Zvezdy (Variable Stars) 39, No. 2, 2019

Received 19 August; accepted 16 September.

BVIc Observations of 64 Classical Cepheids

L. N. Berdnikov¹, A. Yu. Kniazev^{1,2,3}, A. K. Dambis¹, V. V. Kravtsov¹

 1 Sternberg Astronomical Institute, Moscow State University, Universitetskij pr. 13, Moscow 119234, Russia; berdnik@sai.msu.ru

 2 South Africa Astronomical Observatory, Cape Town, South Africa

³ Southern African Large Telescope, Cape Town, South Africa

A total of 9128 B-, V-, and I_c -band photometric measurements were acquired for 64 classical Cepheids in 1982–2014. For these stars, 1384 times of maximum light are determined and O–C diagrams constructed based on available photoelectric and CCD observations. The data are used to compute the current ephemerides and the normalized Fourier coefficients (cosine expansion), whose analysis confirmed that all the 64 variables were correctly classified as classical Cepheids.

1 Introduction

High luminosities and reliable absolute-magnitude calibration make classical Cepheids highly important distance indicators. As rather young objects (no older than $2 \cdot 10^8$ years), they concentrate toward the Galactic plane and therefore serve as ideal tracers of the Galactic disk structure.

We showed in our recent paper (Berdnikov et al., 2014) CCD observations to be preferred over photoelectric photometry for determining Cepheid distances, because the former allow systematic observation errors to be reduced substantially. It therefore appears obvious that CCD observations should be performed for all Cepheids (or, at least, for the faint ones). In this paper, we report the results of such B-, V-, and I_c -band observations for 64 classical Cepheids and also present the results of our yet unpublished photoelectric observations of these Cepheids.

2 Observations

We carried out our CCD observations during 11 observing seasons in 2005–2014 (JD 2453483–56791) with the 76-cm telescope of the South African Astronomical Observatory (SAAO) in South Africa and with the 40-cm telescope of Observatorio Cerro Armazones of Universidad Catolica del Norte (OCA, Chile). We used a SBIG CCD ST-10XME camera equipped with Kron–Cousins BVI_c filters (Cousins, 1976).

Photoelectric observations were carried out using a single-channel photometer mounted on the 60-cm telescope of Mount Maidanak Observatory in 1982 and 76-cm SAAO telescope in 1998–2008. A description of the technique of the reductions of photoelectric observations can be found in Berdnikov and Turner (2004).

When reducing CCD data, we first reduced the observations obtained using "all-sky" technique during photometric nights exclusively to obtain a catalog of positions and PSF magnitudes of all objects found on the best CCD frames. We then selected, from this

catalog, the constant stars, which we used for differential photometry of all stars in all CCD frames including those acquired during non-photometric nights. For a complete description of the observation and reduction technique employed, see Berdnikov et al. (2011).

3 Results and Discussion

We acquired a total of 8225 CCD frames and 903 photoelectric measurements for 64 Cepheids. The results of our reductions are presented in Table 1 (its complete version is available in the file attached to the html version of this paper) and shown graphically in Figs. 1–4, where open and filled circles denote photoelectric and CCD observations, respectively. The scatter of data points in the plots shows that observational errors are close to 0.01^m .

Small changes of Cepheid periods, which have practically no effect on their computed distances, are often conspicuous even on short time scales of several years (Berdnikov, 1994; Berdnikov & Pastukhova, 1994ab,1995); as a result, for most of the Cepheids the times of maximum light deviate appreciably from the zero-phase times given by published light elements (ephemerides) of most of the Cepheids including those reported in recent catalogs. That is why, for plots in Figs. 1–4, we used the current light elements from Table 2, which we determined based on the times of maximum light computed using the Hertzsprung (1919) method whose computer implementation is described in Berdnikov (1982). We determined the current light elements from an analysis of B- and V-band observations from this paper combined with published photoelectric and CCD observations including the data acquired in Hipparcos (ESA, 1997), ASAS-3 (Pojmanski, 2002), ASAS-SN (Yayasinghe et al., 2018), and INTEGRAL-OMC (Alfonso-Garcon et al., 2012). All light elements in Table 2 refer to the V-band filter.

Figures 5–7 show the O–C diagrams for all the 64 Cepheids. These diagrams can be used to determine the corrections to the ephemerides from Table 2 and, in particular, compute the phases of spectroscopic observations of Cepheids or when determining the γ velocity from a single velocity measurement.

Table 3 lists the normalized Fourier coefficients (cosine expansion) (Petersen 1986) for Cepheid light curves, and in Fig. 8, we plot ϕ_{31} as a function of period for the 547 Cepheids that we observed; the circles show the data from Table 3.

4 Conclusions

(1) A total of 9128 magnitude measurements were made for 64 Cepheids in 1982–2014 in the B-, V-, and I_c -band filters.

(2) We analyzed our data combined with all published photoelectric and CCD observations of these Cepheids using the Hertzsprung method and constructed the O–C diagrams based on 1384 times of maximum light. These diagrams can be used to compute the corrections to ephemerides in Table 2, e.g., in order to determine the phases of spectroscopic observations of Cepheids or when determining the γ velocity from a single radial-velocity measurement for a Cepheid.

(3) We fitted the light curves of 64 Cepheids by Fourier series (cosine expansion) and computed the corresponding normalized Fourier coefficients R_{21} , R_{31} , R_{41} , ϕ_{21} , ϕ_{31} , and ϕ_{41} . The plot of ϕ_{31} vs. period is used to validate the classification of a variable as a classical Cepheid. Figure 8 shows such a plot for the 547 Cepheids that we observed earlier. Here the positions of the circles, which correspond to the data from Table 3, corroborate the correctness of the classification of the 64 Cepheids.

We will use our new data to study the structure and kinematics of the Galactic disk and the properties of the Cepheids, in particular, to search for evolutionary changes of their periods.

Acknowledgements: This work was supported by the Russian Foundation for Basic Research (projects Nos. 18-02-00890 and 19-02-00611).

Table 1: Photometric observations of Cepheids									
HJD	Filter	Magnitude	HJD	Filter	Magnitude	HJD	Filter	Magnitude	
2400000+			2400000+			2400000+			
T Ant									
51248.4724		10.487	51248.4724		9.638	51248.4724	I_c	8.732	
51249.3539		9.383	51249.3539		8.894	51249.3539	I_c	8.287	
51249.4128		9.360	51249.4128		8.867	51249.4128	I_c	8.261	
51250.3115		9.705	51250.3115		9.084	51250.3115	I_c	8.353	
51251.3119		10.085	51251.3119		9.320	51251.3119	I_c	8.475	
51251.4307	B	10.115	51251.4307		9.340	51251.4307	I_c	8.495	
51252.3111	B	10.320	51252.3111		9.491	51252.3111	I_c	8.577	
51252.4725		10.379	51252.4725		9.526	51252.4725	I_c	8.612	
51253.3039		10.581	51253.3039		9.680	51253.3039	I_c	8.734	
51253.4425	B	10.604	51253.4425	V	9.694	51253.4425	I_c	8.745	
51254.3556	B	10.467	51254.3556	V	9.649	51254.3556	Ic	8.756	
51254.4321	B	10.404	51254.4321	V	9.599	51254.4321	I _c	8.721	
51255.2894	B	9.368	51255.2894		8.876	51255.2894	I_c	8.272	
51255.3876	B	9.363	51255.3876	V	8.872	51255.3876	I_c	8.272	
51256.2955	B	9.715	51256.2955	V	9.075	51256.2955	Ic	8.343	
51256.4213	B	9.768	51256.4213	V	9.119	51256.4213	I I C	8.356	
51258.3243	B	10.324	51258.3243	V	9.498	51258.3243		8.591	
51258.3704	B	10.381	51258.3704	V	9.536	51258.3704	I	8.620	
51259.3288	B	10.588	51259.3288	V	9.686	51259.3288		8.725	
51260.2600	B	10.474	51260.2600	V	9.651	51260.2600		8.751	
51260.3590	B	10.383	51260.3590	V	9.591	51260.3590		8.724	
51275.2864	B	10.174	51275.2864	V	9.391	51275.2864		8.502	
51276.3338	B	10.461	51276.3338	V	9.583	51276.3338		8.643	
51276.3688	B	10.489	51276.3688	V	9.591	51276.3688		8.657	
51279.2395	B	9.448	51279.2395	V	8,920	51279.2395		8.283	
51279.3080		9,503	51279.3080	V	8.969	51279.3080	I I a	8.309	
51279.3458		9.523	51279.3458	V	8.979	51279.3458		8.315	
51280.2397		9.862	51280.2397	V	9.169	51280.2397		8.390	
51280 2962	B	9.895	51280 2962	V	9.198	51280 2962		8.404	
51280.3493		9.910	51280.3493	V	9.200	51280.3493	I I a	8.405	
51281 2456	B	10,150	51281.2456	· V	9.361	51281.2456		8,494	
51281.2706	B	10.164	51281.2706	· V	9.373	51281.2706		8,490	
51281 3119	B	10 175	51281 3119	, V	9 385	51281 3119		8 514	
51281 3484		10.170	51281 3484	V	9.395	51281 3484		8.510	
51282 2617		10.101	51282 2617		9.604	51282 2617		8 683	
51282.2017		10.475	51282 3621		9.603	51282 3621		8 663	
51262.3021		0.010	51262.3021		9.003	51284 2644		8 504	
51286 2524		9.919	51264.2044		9.219	51286 2524		8 /11	
51260.2024		9.900	51260.2024		9.410	51286 3255		0.411 8 /16	
01200.0200	D	9.940	01200.0200	V	9.232	01200.0200	1 _c	0.410	

Table 1: Photometric observations of Cepheids

Cepheid	Right ascension Declination		Initial epoch	Period		
	h m s	0 / //	HJD	days		
T Ant	09 33 50.86	$-36 \ 36 \ 56.7$	2454157.3370 ± 0.0020	$5.89836670 \pm 0.00000796$		
V733 Aql	$19\ 57\ 33.02$	$+11 \ 02 \ 37.2$	2454812.6897 ± 0.0060	$6.17876776 \pm 0.00003047$		
V1803 Aql	$19\ 20\ 06.94$	$+12 \ 47 \ 42.9$	2454467.0241 ± 0.0071	$8.62834987 \pm 0.00005543$		
V922 Ara	$16 \ 41 \ 20.04$	$-47 \ 39 \ 38.8$	2454433.6164 ± 0.0171	$13.01791882 \pm 0.00015462$		
V384 CMa	$07 \ 03 \ 55.07$	-17 52 47.7	2454160.4594 ± 0.0069	$4.20597866 \pm 0.00002373$		
V434 CMa	$07\ 13\ 42.42$	$-17 \ 37 \ 13.0$	2454261.7573 ± 0.0078	$7.51172944 \pm 0.00004879$		
II Car	$10\ 48\ 49.12$	-60 03 47.2	2455758.9580 ± 0.0519	$64.65113243 \pm 0.00386174$		
V656 Car	$10\ 36\ 27.07$	-62 11 33.0	2454383.2567 ± 0.0229	$24.22633478 \pm 0.00045283$		
V690 Car	$09 \ 48 \ 26.80$	-58 01 05.5	2454237.3035 ± 0.0040	$4.15056019 \pm 0.00001637$		
V708 Car	$10\ 15\ 37.88$	-59 33 04.6	2455529.2793 ± 0.0432	$51.37631049 \pm 0.00249981$		
V850 Car	$09 \ 48 \ 19.86$	$-57 \ 48 \ 37.7$	2454367.7668 ± 0.0055	$5.21712047 \pm 0.00002542$		
V854 Car	$10\ 10\ 36.82$	$-58 \ 17 \ 46.8$	2454273.0349 ± 0.0049	$5.07068718 \pm 0.00002331$		
V1253 Cen	$12 \ 38 \ 03.82$	$-38 \ 31 \ 24.6$	2454758.5718 ± 0.0048	$4.32098155 \pm 0.00002190$		
V1372 Cen	$11\ 20\ 39.12$	$-61 \ 49 \ 52.5$	2454553.7016 ± 0.0100	$13.36877922 \pm 0.00009933$		
V1384 Cen	$13\ 14\ 00.18$	$-62 \ 29 \ 54.4$	2454335.5631 ± 0.0228	$6.37904808 \pm 0.00013139$		
EV Cir	$15 \ 05 \ 46.47$	$-58 \ 22 \ 55.1$	2454090.0874 ± 0.0141	$16.70159336 \pm 0.00021275$		
FL Cir	$15\ 20\ 21.31$	$-58 \ 07 \ 20.1$	2454399.2584 ± 0.0164	$10.51851030 \pm 0.00012643$		
FQ Cru	$12 \ 22 \ 40.16$	-62 09 35.8	2454300.9987 ± 0.0110	$13.77676524 \pm 0.00015479$		
V508 Mon	$06\ 47\ 09.40$	+03 58 01.6	2449999.3585 ± 0.0039	$4.13363963 \pm 0.00000301$		
V510 Mon	$06\ 47\ 26.90$	$+02 \ 31 \ 00.8$	2454739.0842 ± 0.0474	$7.45748754 \pm 0.00025720$		
V911 Mon	$06 \ 40 \ 37.56$	$+11 \ 43 \ 38.9$	2454484.9367 ± 0.0135	$4.97820496 \pm 0.00005795$		
V981 Mon	$06 \ 48 \ 29.18$	$-10 \ 14 \ 17.6$	2454369.2157 ± 0.0047	$4.51439309 \pm 0.00001809$		
V397 Nor	$16 \ 15 \ 55.55$	$-51 \ 07 \ 14.7$	2454205.4750 ± 0.0054	$6.81274252 \pm 0.00002788$		
V539 Nor	$16\ 20\ 54.23$	-53 33 16.5	2455311.9580 ± 0.0038	$2.64360940 \pm 0.00001248$		
V620 Pup	$07 \ 57 \ 49.89$	-29 23 02.6	2454702.2680 ± 0.0055	$2.58609332 \pm 0.00001343$		
V622 Pup	$07 \ 59 \ 12.20$	$-26 \ 41 \ 56.0$	2454986.5635 ± 0.0047	$3.71650952 \pm 0.00001856$		
V729 Pup	$08 \ 05 \ 11.03$	$-34 \ 21 \ 36.9$	2454586.1485 ± 0.0043	$4.08870325 \pm 0.00001781$		
V730 Pup	$08 \ 10 \ 24.78$	$-38 \ 28 \ 25.4$	2454162.6137 ± 0.0047	$3.57897053 \pm 0.00001414$		
V731 Pup	$08 \ 10 \ 25.88$	$-32 \ 31 \ 16.9$	2454884.7901 ± 0.0081	$5.46478167 \pm 0.00004784$		
DX Pyx	$08 \ 34 \ 26.07$	-35 59 06.6	2454127.8063 ± 0.0031	$3.73723995 \pm 0.00000962$		
V367 Sge	$19 \ 19 \ 53.15$	$+17 \ 14 \ 25.6$	2454567.5289 ± 0.0079	$4.84260751 \pm 0.00003589$		
$V5567 \ Sgr$	$18 \ 21 \ 05.53$	$-18 \ 27 \ 19.6$	2454730.6752 ± 0.0073	$9.76281790 \pm 0.00008112$		
$V5738 \ Sgr$	18 03 41.74	-22 10 58.5	2454449.1257 ± 0.0994	$42.61937034 \pm 0.00265430$		
V636 Sco	$17 \ 22 \ 46.48$	$-45 \ 36 \ 51.4$	2451402.7145 ± 0.0036	$6.79699218 \pm 0.00001440$		
V1622 Sco	$17 \ 32 \ 53.11$	-35 54 41.1	2454104.4122 ± 0.0061	$8.44676116 \pm 0.00004669$		
V412 Ser	$18 \ 14 \ 15.82$	$-09 \ 20 \ 20.7$	2455145.7686 ± 0.0029	$5.12173266 \pm 0.00002188$		
V1256 Tau	$05 \ 27 \ 06.50$	$+16\ 56\ 11.1$	2454665.1351 ± 0.0050	$4.43855466 \pm 0.00001889$		
V520 Vel	08 36 11.36	-39 03 42.5	2455197.0944 ± 0.0060	$12.95873402 \pm 0.00009012$		
V527 Vel	$09 \ 04 \ 35.72$	$-46 \ 33 \ 13.1$	2454349.9543 ± 0.0168	$6.62826288 \pm 0.00008789$		
V530 Vel	09 09 32.02	-53 59 15.8	2454288.0318 ± 0.0026	$3.59055812 \pm 0.00000908$		
V532 Vel	09 22 49.81	$-51 \ 51 \ 38.7$	2454340.9247 ± 0.0231	$11.20753666 \pm 0.00022781$		
V536 Vel	$09 \ 27 \ 57.81$	-52 18 58.4	2453485.8813 ± 0.0160	$7.64343628 \pm 0.00014805$		
V537 Vel	$09 \ 30 \ 05.09$	$-51 \ 37 \ 25.1$	2454332.0850 ± 0.0022	$3.36803616 \pm 0.00000526$		

Table 2: Ephemerides of Cepheid light variations

Table 2. (Continued)								
Cepheid	Right ascension	Declination	Initial epoch	Period				
	h m s	0 / //	HJD	days				
ASAS052610+1151.3	$05 \ 26 \ 09.63$	$+11\ 51\ 13.2$	2454537.9037 ± 0.0030	$4.23199632 \pm 0.00001068$				
ASAS062939–1840.5	$06 \ 29 \ 39.22$	$-18 \ 40 \ 26.7$	2455034.3158 ± 0.0258	$16.94052234 \pm 0.00060080$				
ASAS064001-0754.8	$06 \ 40 \ 01.19$	-07 54 51.0	2454297.0457 ± 0.0036	$1.60386979 \pm 0.00000444$				
ASAS071705-2849.4	$07 \ 17 \ 04.69$	$-28 \ 49 \ 24.7$	2454222.4823 ± 0.0093	$3.96997244 \pm 0.00003094$				
ASAS071850-3238.7	$07 \ 18 \ 50.62$	-32 38 38.4	2455005.9658 ± 0.0038	$1.16324185 \pm 0.00000544$				
ASAS073113-2811.0	$07 \ 31 \ 12.11$	-28 10 58.5	2455505.0251 ± 0.0081	$4.71128567 \pm 0.00005391$				
ASAS073453-2651.3	$07 \ 34 \ 53.40$	-26 51 20.9	2454292.7123 ± 0.0073	$3.55246978 \pm 0.00001866$				
ASAS073502-3554.9	$07 \ 35 \ 02.07$	-35 54 46.8	2454805.9108 ± 0.0034	$4.24359673 \pm 0.00001533$				
ASAS074925-3814.4	$07 \ 49 \ 25.25$	$-38 \ 14 \ 21.7$	2454210.0353 ± 0.0033	$10.50339556 \pm 0.00002713$				
ASAS075840-3330.2	$07 \ 58 \ 39.87$	-33 30 14.6	2454161.1972 ± 0.0052	$4.40296963 \pm 0.00001853$				
ASAS082117-3845.3	$08 \ 21 \ 16.82$	$-38 \ 45 \ 15.7$	2454874.2838 ± 0.0063	$5.03039779 \pm 0.00003488$				
ASAS082127-3825.3	$08 \ 21 \ 26.61$	$-38 \ 25 \ 18.2$	2454122.3090 ± 0.0050	$3.96115588 \pm 0.00001652$				
ASAS083130-4429.3	$08 \ 31 \ 30.22$	$-44 \ 29 \ 17.7$	2455257.6189 ± 0.0068	$4.21817714 \pm 0.00003716$				
ASAS084127-4353.6	$08 \ 41 \ 26.86$	-43 53 34.5	2455311.5259 ± 0.0216	$25.36450082 \pm 0.00085200$				
ASAS091933–5137.4	$09 \ 19 \ 32.18$	$-51 \ 37 \ 13.6$	2455139.1434 ± 0.0034	$3.35494562 \pm 0.00001418$				
ASAS094809+0000.1	$09 \ 48 \ 09.43$	$+00\ 00\ 08.2$	2454471.1556 ± 0.0011	$0.83391125 \pm 0.00000083$				
ASAS115701–6218.7	$11 \ 57 \ 00.51$	$-62 \ 18 \ 42.5$	2454793.8982 ± 0.0179	$26.52275125 \pm 0.00098763$				
ASAS140742–6315.4	$14\ 07\ 42.01$	$-63 \ 15 \ 15.6$	2454426.1237 ± 0.0101	$7.79738700 \pm 0.00006029$				
ASAS165857-4312.3	$16\ 58\ 57.07$	$-43 \ 12 \ 19.2$	2455085.8650 ± 0.0120	$10.99158402 \pm 0.00010540$				
ASAS182714–1507.1	$18\ 27\ 13.44$	$-15 \ 07 \ 04.5$	2454125.6351 ± 0.0080	$5.54569029 \pm 0.00003579$				
ASAS193206 + 1132.9	$19 \ 32 \ 04.73$	$+11 \ 32 \ 59.2$	2455792.4759 ± 0.0072	$6.69752564 \pm 0.00005874$				

Table 2: (Continued)

References:

- Alfonso-Garzon, J., Domingo, A., Mas-Hesse, J.M., Gimenez, A., 2012, Astron & Astrophys., 548, A79
- Berdnikov, L.N., 1992, Pisma Astron. Zh., 18, 519
- Berdnikov, L.N., 1994, Astron. Lett., 20, 232
- Berdnikov, L.N., Kniazev, A.Yu., Kravtsov, V.V., Pastukhova, E.N., Turner, D.G. 2009, Astron. Lett., **35**, 39
- Berdnikov, L.N., Kniazev, A.Yu., Sefako, R., Kravtsov, V.V., Pastukhova, E.N., Zhuiko, S.V., 2011, Astron. Rep., 55, 816
- Berdnikov, L.N., Kniazev, A.Yu., Sefako, R. , Kravtsov, V.V., Zhuiko, S.V., 2014, Astron. Lett., 40, 125
- Berdnikov, L.N., Pastukhova, E.N., 1994a, Astron. Lett, 20, 479
- Berdnikov, L.N., Pastukhova, E.N., 1994b, Astron. Lett, 20, 829
- Berdnikov, L.N., Pastukhova, E.N., 1995, Astron. Lett, 21, 369
- Berdnikov, L.N., Turner, D.G., 2004, Astron. Astrophys. Trans., 23, 252
- Hertzsprung, E., 1919, Astron. Nachr., 210, 17
- ESA, The Hipparcos and Tycho catalogues, ESA SP-1200 (Noordwijk: ESA, 1997)
- Cousins, A.W.J., 1976, Mem. RAS, 81, 25
- Petersen, J.O., 1986, Astron. Astrophys., 170, 59
- Pojmanski, G., 2002, Acta Astron., 52, 397
- Jayasinghe, T., Stanek, K.Z., Kochanek, C.S., et al., 2018, 2018arXiv180907329

7

Table 3: Normalized Fourier coefficients (cosine expansion)									
Cepheid	Period	R_{21}	R_{31}	R_{41}	ϕ_{21}	ϕ_{31}	ϕ_{41}		
	X 0000	Error	Error	Error	Error	Error	Error		
T Ant	5.89837	0.43466	0.17856	0.09721	3.02859	5.93388	2.67123		
		0.00256	0.00256	0.00256	0.00779	0.01624	0.02820		
V733 Aql	6.17877	0.28866	0.05211	0.02262	3.00693	5.08899	5.69551		
	0.000.00	0.00170	0.00170	0.00170	0.00681	0.03307	0.07558		
V1803 Aql	8.62840	0.18317	0.06604	0.04292	4.24798	1.07380	2.66997		
10000	10.01000	0.00331	0.00331	0.00331	0.01923	0.05107	0.07821		
V922 Ara	13.01802	0.15045	0.10984	0.09845	2.52184	3.98195	0.39758		
MOOA CIM	4.00500	0.00612	0.00612	0.00612	0.04101	0.05869	0.06684		
V384 CMa	4.20598	0.35630	0.13407	0.03284	2.83002	5.05080	3.08131		
VADA CM-	7 51170	0.00002	0.00002	0.00002	0.00000	0.00014	0.00055		
V434 UMa	1.31170	0.27270	0.10845	0.08889	3.33704	0.33793	2.02948		
II Com	64 65119	0.00250	0.00250 0.14702	0.00250	0.01040	0.02420	0.02980 2 50021		
II Car	04.00110	0.39070	0.14702 0.00022	0.00007	0.02109 0.00106	0.20029	0.00901		
V656 Cor	94 99676	0.00000000000000000000000000000000000	0.00000	0.000000	0.00100	0.00242 5 58062	0.00021 0.17002		
V050 Car	24.22070	0.00927 0.01196	0.19303	0.13962 0.01196	2.99559	0.06725	2.17902 0.00227		
V600 Car	4 15057	0.01120 0.33/33	0.01120 0.12346	0.01120 0.01305	0.04011 2.70648	5 40845	0.09221 2.73730		
V090 Cai	4.10007	0.00400	0.12340 0.00082	0.01393	2.70048	0.49040 0.00719	2.75750		
V708 Car	51 37631	0.00082 0.31801	0.00082	0.00082 0.04070	0.00297 3.27005	0.00712 0.30554	0.00910 3 60158		
V100 Cai	01.01001	0.01091 0.00196	0.11200	0.04079	0.00469	0.03004	0.0313/		
V850 Car	5 21710	0.00120 0.26549	0.00120	0.00120	2.76531	5 88181	4.45445		
V050 Car	0.21710	0.20040	0.05504	0.00450	0.00007	0.000101	0.00316		
V854 Car	5 07068	0.00002 0.36302	0.00002 0.11271	0.00002 0.04136	273992	5 69162	2.00010 2.04094		
V004 Car	0.01000	0.00002 0.00179	0.00179	0.04100	0.00610	0.03102 0.01677	0.04388		
V1253 Cen	4 32099	0.00115 0.40937	0.00115 0.17705	0.00175	2.77162	5 48196	2.19516		
V1200 CCII	1.02000	0.10001	0.00095	0.00100	0.00301	0.00611	0.01111		
V1372 Cen	13 36880	0.12488	0.12718	0.12751	2.41633	3 81192	0.51562		
11012 0011	10100000	0.00806	0.00806	0.00806	0.06653	0.06784	0.07097		
V1384 Cen	6.37921	0.21906	0.01352	0.00002	2.83492	5.48606	5.02852		
, 1001 001	0.010=1	0.00002	0.00002	0.00002	0.00009	0.00129	0.91299		
EV Cir	16.70155	0.30223	0.19015	0.13056	2.69490	5.21295	1.62879		
		0.00889	0.00889	0.00889	0.03435	0.05380	0.07678		
FL Cir	10.51847	0.05036	0.06198	0.03101	0.88861	2.71348	0.24531		
		0.00023	0.00023	0.00023	0.00465	0.00383	0.00758		
FQ Cru	13.77710	0.22282	0.12695	0.13161	2.88705	4.50576	0.77853		
·		0.01115	0.01115	0.01115	0.05479	0.09400	0.09576		
V508 Mon	4.13364	0.33862	0.12438	0.02167	2.70730	5.46179	1.77991		
		0.00061	0.00061	0.00061	0.00219	0.00527	0.02845		
V510 Mon	7.45749	0.26443	0.04804	0.06271	3.52735	5.32972	1.22577		
		0.00057	0.00057	0.00057	0.00243	0.01193	0.00933		
V911 Mon	4.97819	0.35405	0.09303	0.00002	2.83242	5.65007	1.12892		
		0.00002	0.00002	0.00002	0.00006	0.00020	1.11889		
V981 Mon	4.51439	0.46651	0.24670	0.11577	2.80891	5.75995	2.37802		
		0.00362	0.00362	0.00362	0.01062	0.01826	0.03447		
V397 Nor	6.81267	0.25535	0.07101	0.01170	3.15503	5.38820	6.25672		
		0.00051	0.00051	0.00051	0.00226	0.00739	0.04391		
V539 Nor	2.64342	0.27244	0.10450	0.02401	3.09057	5.97416	2.35483		
		0.00001	0.00001	0.00001	0.00006	0.00014	0.00060		
V620 Pup	2.58611	0.37153	0.12382	0.03992	2.52797	5.34839	1.21653		

0.00183

0.00183

0.00183

0.00615

0.01579

0.04649

 Table 3: Normalized Fourier coefficients (cosine expansion)

		Table 5. (C	Jonninueu)				
Cepheid	Period	R_{21}	R ₃₁	R ₄₁	ϕ_{21}	ϕ_{31}	ϕ_{41}
		Error	Error	Error	Error	Error	Error
V622 Pup	3.71652	0.34098	0.14672	0.05206	2.59010	5.05446	1.23582
	4	0.00001	0.00001	0.00001	0.00005	0.00011	0.00028
V729 Pup	4.08867	0.34464	0.12141	0.04024	2.82168	5.64332	2.93519
		0.00030	0.00030	0.00030	0.00107	0.00266	0.00765
V730 Pup	3.57896	0.35507	0.15501	0.07422	2.73734	5.49882	1.77879
	F 40401	0.00262	0.00262	0.00262	0.00906	0.01867	0.03688
V731 Pup	5.46481	0.32944	0.09914	0.05335	2.85359	0.00515	2.43213
	0 70704	0.00104	0.00104	0.00104	0.00379	0.01098	0.02000
DX Pyx	3.73724	0.38182	0.15831	0.00815	2.62392	5.40340	1.92246
$V2C7$ C_{max}	4.04969	0.00252	0.00252	0.00252	0.00829	0.01759	0.03825 1.01627
V 307 Sge	4.84202	0.41307	0.10115	0.03030	2.92912	0.00007	1.91037
VEEG7 Com	0 76979	0.00001	0.00001	0.00001	0.00003	0.00007	0.00054 0.51650
v 5507 Sgr	9.10218	0.10000	0.10800	0.07985	4.05010 0.02070	0.07040	2.31030
V5728 Scr	49 61240	0.00505 0.25614	0.00505 0.14451	0.00505 0.06720	0.02070	5 40527	0.04000
190.0010	42.01349	0.00014	0.14401	0.00729	2.09000	0.49027	2.00308 0.04194
V636 See	6 70600	0.00208	0.00208	0.00208	0.00924 3 10870	572060	6 08230
V 000 DC0	0.19099	0.00404	0.0000	0.01093	0.00476	0.12909 0.02327	0.06239 0.07320
V1699 Seo	8 44680	0.00124 0.23312	0.00124 0.1/013	0.00124 0.00002	3 71060	0.02337 0.77804	0.07520 2.32352
V 1022 DC0	0.44000	0.20012	0.14013	0.03002	0.01827	0.11094	0.04558
V412 Ser	5 12172	0.00500 0.32632	0.00000	0.00500	2.85167	5.76317	1.04550 1.93589
	0.12112	0.02002	0.100001	0.00001	0.00003	0.00007	0.00022
V1256 Tau	4 43857	0.36412	0.00001	0.00001	2,73907	5 68386	1 96398
1200 144	1.10001	0.00265	0.00265	0.00265	0.00900	0.01790	0.03577
V520 Vel	12 95930	0.17481	0.09862	0.07629	2.50316	3 33784	4 98075
	12.00000	0.00314	0.00314	0.00314	0.01901	0.03317	0.04299
V527 Vel	6.62817	0.35218	0.10226	0.02575	3.30419	6.20784	5.00996
		0.00063	0.00063	0.00063	0.00219	0.00645	0.02460
V530 Vel	3.59059	0.36468	0.08753	0.01715	2.76352	5.52861	0.46646
		0.00269	0.00269	0.00269	0.00912	0.03175	0.15708
V532 Vel	11.20749	0.19003	0.06026	0.02692	2.56248	4.06213	5.44797
		0.00080	0.00080	0.00080	0.00449	0.01344	0.02977
V536 Vel	7.64343	0.33728	0.13042	0.06836	3.60475	6.23821	0.97791
		0.00150	0.00150	0.00150	0.00535	0.01233	0.02270
V537 Vel	3.36803	0.35853	0.14937	0.09061	2.64673	5.32839	1.66540
		0.00352	0.00352	0.00352	0.01208	0.02583	0.04133
ASAS 052610+1151.3	4.23200	0.38097	0.14721	0.05489	2.81627	5.73339	2.26705
		0.00090	0.00090	0.00090	0.00297	0.00668	0.01678
ASAS 062939–1840.5	16.94061	0.17584	0.12666	0.14309	2.90862	4.57736	1.17694
		0.00978	0.00978	0.00978	0.05897	0.08262	0.07877
ASAS 064001–0754.8	1.60386	0.18954	0.00001	0.00002	2.60592	3.92781	0.28421
		0.00002	0.00002	0.00002	0.00009	1.40503	0.78809
ASAS 071705–2849.4	3.96998	0.26442	0.07491	0.02350	2.77116	5.42853	3.70762
	1 1000 1	0.00085	0.00085				0.03617
ASAS 071850–3238.7	1.16324	0.26378	0.07441	0.02905	2.34076		0.40225
	1 51100	0.00086	0.00086	0.00086	0.00368	0.01181	0.02971
ASAS 073113–2811.0	4.71130	0.34164	0.11486	0.05832	2.67541	5.41323	1.55280
		0.00100	0.00100	0.00100	0.00355	0.00922	0.01762

Table 3: (Continued)

Cepheid	Period	R_{21}	R_{31}	R_{41}	ϕ_{21}	ϕ_{31}	ϕ_{41}
		Error	Error	Error	Error	Error	Error
ASAS 073453–2651.3	3.55246	0.39797	0.15488	0.05604	2.73927	5.53746	2.09260
		0.00172	0.00172	0.00172	0.00552	0.01224	0.03143
ASAS 073502–3554.9	4.24359	0.31245	0.18085	0.05802	2.75262	5.81921	2.79011
		0.00089	0.00089	0.00089	0.00336	0.00560	0.01576
ASAS 074925–3814.4	10.50338	0.21831	0.11639	0.15787	3.15016	4.63562	1.12799
		0.01142	0.01142	0.01142	0.05709	0.10394	0.08556
ASAS 075840–3330.2	4.40295	0.37593	0.13292	0.05738	2.86139	5.47616	1.34509
		0.00001	0.00001	0.00001	0.00004	0.00009	0.00020
ASAS 082117–3845.3	5.03030	0.40140	0.15192	0.04111	2.92431	5.89859	2.81249
		0.00123	0.00123	0.00123	0.00392	0.00888	0.03026
ASAS 082127–3825.3	3.96115	0.34009	0.14422	0.06632	2.67464	5.45142	2.18184
		0.00208	0.00208	0.00208	0.00738	0.01569	0.03240
ASAS 083130–4429.3	4.21809	0.24829	0.06951	0.02369	2.63446	5.25950	4.46774
		0.00163	0.00163	0.00163	0.00733	0.02395	0.06909
ASAS 084127–4353.6	25.36446	0.36384	0.25604	0.19245	2.78559	5.43950	2.07293
		0.01060	0.01060	0.01060	0.03603	0.05221	0.06951
ASAS 091933–5137.4	3.35495	0.40927	0.20327	0.10319	2.62148	5.25363	1.53919
		0.00603	0.00603	0.00603	0.01906	0.03477	0.06327
ASAS 094809+0000.1	0.83391	0.37686	0.15392	0.06393	2.73443	5.79240	2.70284
		0.00105	0.00105	0.00105	0.00349	0.00751	0.01695
ASAS 115701–6218.7	26.52275	0.34927	0.20868	0.16297	2.86669	5.45840	1.97179
		0.01114	0.01114	0.01114	0.03891	0.06299	0.08160
ASAS 140742–6315.4	7.79737	0.25445	0.11804	0.06596	3.40520	6.07425	0.95556
		0.00217	0.00217	0.00217	0.00957	0.01951	0.03404
ASAS 165857–4312.3	10.99179	0.17804	0.12013	0.04372	4.44211	2.08225	4.83661
		0.00199	0.00199	0.00199	0.01187	0.01762	0.04625
ASAS 182714–1507.1	5.54570	0.32296	0.12180	0.03777	2.82010	5.61583	1.85331
		0.00001	0.00001	0.00001	0.00004	0.00009	0.00027
ASAS 193206+1132.9	6.69762	0.33599	0.03866	0.00003	3.08309	6.21039	3.14578
		0.00001	0.00001	0.00001	0.00004	0.00030	0.35783

Table 3: (End)

Figure 1. Light curves of the Cepheids T Ant, V733 Aql, V1803 Aql, V922 Ara, V384 CMa, V434 CMa, II Car, V656 Car, V690 Car, V708 Car, V850 Car, V854 Car, V1253 Cen, V1372 Cen, V1384 Cen, and EV Cir.

Figure 2. Light curves of the Cepheids FL Cir, FQ Cru, V508 Mon, V510 Mon, V911 Mon, V981 Mon, V397 Nor, V539 Nor, V620 Pup, V622 Pup, V729 Pup, V730 Pup, V731 Pup, DX Pyx, V367 Sge, V5567 Sgr, and V5738 Sgr.

Figure 3. Light curves of the Cepheids V636 Sco, V1622 Sco, V412 Ser, V1256 Tau, V520 Vel, V527 Vel, V530 Vel, V532 Vel, V536 Vel, V537 Vel, ASAS 052610+1151.3, ASAS 062939–1840.5, ASAS 064001–0754.8, ASAS 071705–2849.4, ASAS 071850–3238.7, and ASAS 073113–2811.0.

Figure 4. Light curves of the Cepheids ASAS 073453–2651.3, ASAS 073502–3554.9, ASAS 074925–3814.4, ASAS 075840–3330.2, ASAS 082117–3845.3, ASAS 082127–3825.3, ASAS 083130–4429.3, ASAS 084127–4353.6, ASAS 091933-5137.4, ASAS 094809+0000.1, ASAS 115701–6218.7, ASAS 140742–6315.4, ASAS 165857–4312.3, ASAS 182714–1507.1, and ASAS 193206+1132.9.

Figure 5. The O–C diagrams for T Ant, V733 Aql, V1803 Aql, V922 Ara, V384 CMa, V434 CMa, II Car, V656 Car, V690 Car, V708 Car, V850 Car, V854 Car, V1253 Cen, V1372 Cen, V1384 Cen, EV Cir, FL Cir, FQ Cru, V508 Mon, V510 Mon, V911 Mon, V981 Mon, V397 Nor, V539 Nor, V620 Pup, V622 Pup, and V729 Pup.

Figure 6. The O–C diagrams for V731 Pup, DX Pyx, V367 Sge, V5567 Sgr, V5738 Sgr, V636 Sco, V1622 Sco, V412 Ser, V1256 Tau, V520 Vel, V527 Vel, V530 Vel, V532 Vel, V536 Vel, V537 Vel, ASAS 052610+1151.3, ASAS 062939–1840.5, ASAS 064001–0754.8, ASAS 071705–2849.4, ASAS 071850–3238.7, ASAS 073113–2811.0, ASAS 073453–2651.3, ASAS 073502–3554.9, ASAS 074925–3814.4, ASAS 075840–3330.2, and ASAS 082117–3845.3.

HJD 2400000+

Figure 7. The O–C diagrams for ASAS 082127–3825.3, ASAS 083130–4429.3, ASAS 084127–4353.6, ASAS 091933-5137.4, ASAS 094809+0000.1, ASAS 115701–6218.7, ASAS 140742–6315.4, ASAS 165857–4312.3, ASAS 182714–1507.1, and ASAS 193206+1132.9.

Figure 8. The period- ϕ_{31} diagram for classical Cepheids. The open circles show the data from Table 3.