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We report the development of algorithms for searching for possible correlations between the data from gravitational-
wave and gamma-ray detectors due to common astrophysical sources. We account for the time delay between the two
signals and also use information on the detailed time structure of individual gamma-ray bursts (GRBs). Three
possible algorithms of data processing are suggested with different degrees of noise smoothing. The algorithms
have been tested using real Burst and Transient Search Experiment (BATSE) GRB data and records of the
cryogenic resonant bar detector Explorer. The expected filtering properties of the algorithms are confirmed by the
tests. The use of more extended data records is required to detect any correlations or to establish upper limits. A
possible generalization for non-Gaussian noises is discussed.

Keywords: Gamma burst; Gravitational wave

1 INTRODUCTION

The modern understanding of the nature of two astrophysical phenomena, namely gravita-

tional wave (GW) bursts and gamma-ray bursts (GRBs), suggests that both phenomena may

have common progenitors: superdense relativistic stars at the moment of some catastrophic

events in their evolution, such as binary coalescence, stellar core collapse and fragmentation

(for a recent GW review, see Grishchuk et al. (2000); for GRB models see Piran (1999) and

references therein). There are several more or less elaborate scenarios of such events with

associated GW and GRB phenomena, which can be briefly described as follows.

The GRB phenomenon is thought to result from expansion of a hypothetical relativistic

photon–lepton fireball with small baryonic load in the surrounding medium (Rees and

Meszaros, 1992). The energy of the fireball must be about 1051–1054 erg to be consistent

with the observed gamma-ray (GR) fluxes of GRBs with measured red shifts (see for example

Postnov (2000) and references therein). The fireball itself can be generated by the known

astrophysical catastrophic events mentioned above, although quite unexpected ‘new physics’

are not excluded as well (see the review by Blinnikov (2000)).
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A rather definite GW–GRB correlation is expected from relativistic binary coalescence

(BC). In this scenario, first a GW burst is generated (e.g. during the binary inspiral stage),

and then a GRB appears during the relativistic fireball expansion in the subsequent hydro-

dynamic stage of merging (Blinnikov et al., 1984; Piran, 1999). Theoretical estimates of

the time delay between the GW and GRB have a large uncertainty; according to some

estimates (Thorne, 1995), this delay lasts up to 10 s. See also Lipunova and Lipunov (1998)

for more estimates and further discussion.

There is increasing observational evidence that at least some long cosmic GRBs, which

include more than half of all known GRBs, are associated with star-forming regions in

remote galaxies (see Postnov (2000) and references therein), which implies that plausible

GRB sources are collapses of very massive stars (for the collapsar models, see Woosley

(1993) and Paczynski (1998)). Thp GW–GRB delay in this model can be determined

by two characteristic times. The first is the hydrodynamic time of the collapse, which is

of the order of thd / (Gr)�1=2 for the typical ‘precollapse’ density of about 109–1010

g cm�3; this gives the delay estimate as 1 s. Another time scale refers to the neutrino

diffusion from the opaque neutrino sphere of a hot protoneutron star which must

precede the ‘fireball’ stage; in this case the delay should be of the order of 10 s

(Nadyozhin, 1978).

According to one particular model of this class (MacFadyen and Woosley, 1999), the

energy for the fireball stage comes from the accretion of matter on the newborn compact

object. Since GRBs are expected to form during the collapse itself, the GW–GRB delay

time in this case can in principle be less than the neutronization time (accretion can start

on the protoneutron star), that is of the order of several seconds.

Some collapsar models invoke a ‘multistage collapse’ scenario, when the compact rem-

nant is formed after some intermediate stages. This occurs in a much more complex (and

less definite) way. For example, in the model discussed by Imshennik (1992), an initially

rapidly rotating stellar core disrupts into two neutron stars forming a close binary system,

which coalesces according to the BC scenario. In such models, several relatively

compact groups of neutrino bursts, GRBs and GW bursts separated by hours and even

longer time intervals can be expected. Clearly, there is not any firm restriction on the

time position of the GW burst relative to the GRB in this case. For example, it is possible

that first a GW burst can appear during the core collapse and then the second GW chirp

signal appears during the binary neutron star coalescence which can initiate a GRB

in the end.

A particular case of the multistage scenario is the ‘supernova’ model (Vietri and Stella,

1999). In this model, first a neutron star with a very strong magnetic field is formed and

then it expels the envelope by the magnetorotational mechanism. A GW burst can be

produced during this process. Then the neutron star collapses into a final black hole

(e.g. as a result of fall-back accretion), which can be accompanied by both GR and GW

radiation pulses. It is very difficult to forecast definitely the delay time between these two

stages; it might be hours or even years.

All these scenarios assume that the sources are at cosmological distances, They require

high-mass stars and a sizeable fraction of the energy converted into GRs to provide a

huge intensity of GRBs.

Although the galactic origin of cosmic GRBs is almost ruled out by the present observa-

tions (especially for long GRBs), it is worthwhile briefly discussing possible Galactic GW

sources which in principle could be potential progenitors for short GRBs. Conventional

collapses associated with supernova explosions in the Galaxy and its close environment

(30 Mpc) can also produce expanding envelopes encountering the interstellar medium

(i.e. usual supernovae) and can form superdense central unstable cores with shock waves

558 P. BONIFAZI et al.
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and fragmentation. So in principle they also can be considered as sources of combined

GRB–GW radiation. However, for close core collapses it is difficult to obtain the required

rate of events (about 1000 GRBs per year), since on average the collapse of a massive star

occurs once per 30–60 years per galaxy, and the local density of galaxies is about 0.01 Mpc�3.

The same restriction applies to models involving accretion of the relativistic star of

(102–103)M� on the Galactic central black hole with (105–106)M� (Thorne, 1995) and star-

quakes of the pulsars with strong magnetic field (Bisnovatyi-Kogan, 1995; Komberg and

Kompaneets, 1997), which also could produce combined GW–GRB signals.

In any case, in both cosmological or Galactic scenarios, the expected amplitude of

GW bursts is estimated to be very small, h� 10�21–10�23, which means that detection

(if possible) can be realized only by the accumulation of many individual burst reactions

(say 1000 or 10,000 events) on the detector’s output. The effectiveness of the accumulation

directly depends on a priori knowledge of the time position of the GW bursts with respect

to the GR pulses. As we already noted, there is a large uncertainty in just this point.

Nevertheless, in the framework of the above scenarios, some algorithms for ‘accumulative

detection’ has been proposed (Modestino et al., 2000), taking into account the signal

processing typical for cryogenic bar detectors that are operating at present.

2 SPECIFICS OF THE GRAVITATIONAL WAVE DETECTOR’S OUTPUT

The output signal of a resonant bar detector equipped with a displacement transducer can be

described by a two-mode narrow-band process (Astone et al., 1997):

x(t) ¼
X2

i¼1

ri(t) cos [oit þ Wi(t)] ¼ r(t) cos [o0t þ W(t)]:

The slow variable r2(t) is proportional to the total energy of the system:

r2(t) ¼ r2
1(t) þ r2

2(t) þ 2r1(t)r2(t) cos [2Ot þ 2(W1(t) � W2(t))]:

oi ¼ o0 þ (�1)iO are the mode eigenfrequencies and o0 the central frequency of the

detector with O�o0; ri(t) and Wi(t) are the mode amplitudes and phases. The detector output

undergoes some optimal processing (Astone et al., 1993). For example, the quadrature

components of each mode pass through a Wiener–Kolmogorov filter after lock-in amplifiers

(Astone et al., 1997); then they are squared and summed resulting in the variable r2
i (t), which

is the mode energy innovation (i.e. the variation in the energy during the filter characteristic

time). The total energy innovation is proportional to the sum

E(t) ¼ r2
1(t) þ r2

2(t):

E(t) is the observable variable that we use for the signal detection problem. Alternative

variables could be r2(t) ¼ min [r2
1(t), r2

2(t)] (Bonifazi et al., 1978) or the average value

of r1(t) and r2(t) weighted with the corresponding effective mode temperatures

(Mauceli et al., 1996).

In our analysis we shall consider first the detection algorithms based on processing just the

variable E(t). We also report some results obtained using r2(t).

SEARCHING FOR GAMMA–GRAVITY CORRELATIONS 559
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3 MODEL OF THE SIGNAL AND LIKELIHOOD RATIO

According to the astrophysical prognosis it is reasonable to model the signal s(t) from the

GW detector as some non-coherent packet of rare pulses with stochastic amplitudes, random

initial phases and unknown arrival times ti, i ¼ 1, . . . , N . Then, in general,

x(t) ¼ ls(t) þ n(t), l ¼ (0, 1):

The problem of detecting this signal on a Gaussian noise background n(t) leads to the specific

form of the likelihood ratio (see details in the paper by Rudenko et al. (2000)) which is

factorized as follows:

L ¼
YN
i¼1

Li,

where L1 is the likelihood ratio of the individual pulse signal and the ‘sufficient statistics’

Z ¼ ln A reduce to the form

Z ¼ Z(t) ¼
1

N

XN

i¼1

zi(t), zi(t) ¼ E(ti � tþ dt): (1)

In Eq. (1) the following times are introduced: ti, times of observed astrophysical events, t,

some unknown time shift between the astrophysical event and possible GW signal; dt, a delay

time in the receiver channel. The meaning of the Z variable is clear; it is the selective

mean value of the gravitational detector energy innovations corresponding to the observed

astrophysical events.

4 STRUCTURE OF ‘GAMMA–GRAVITY CORRELATION’ ALGORITHMS

Our approach for searching for ‘astro–gravity correlations’ is based on the idea of examining

the data of the gravitational antenna (mostly noise background) in the vicinity of the time

marks of astrophysical events observed by other observation channels, that is using other

kinds of detector. Then, referring to some specific astrophysical scenario, one could introduce

a (common but unknown) time shift with respect to the event time marks, therefore checking

the GW detector data before (or later than) the astrophysical events.

Such a programme was realized for example in the case of the ‘neutrino–gravity correla-

tion effect’ reported at the time of SN1987A (Amaldi et al., 1987; Aglietta et al., 1989;

1991). In that case the neutrino marks were well defined. However, for the GRBs the situation

is much more difficult.

The problem is in the large diversity of the time structure and duration of GRBs so that it is

very difficult to define a certain ‘reference time mark’ for those events. The trigger times

provided in the BATSE GRB catalogue, as in any other catalogue, have only a very remote

relation to the phase of ‘real GR production’ by the GRB source. Thus the definition of the

event time marks requires special care in the development of the gamma–gravity correlation

algorithms.

Below we consider several possible approaches to this problem. The general idea of all these

attempts is to find in the complex time structure of GRB some specific time mark (let us say ‘an

effective mark of a gamma pulse’ or ‘an effective arrival time’), which provides the best

representation as the ‘reference time mark’ of the GRB astrophysical event. By ‘best’ we

mean that such marks should optimize the search for gamma–gravity correlations.

560 P. BONIFAZI et al.
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A more general approach consists in taking into account all the time moments of the GRB

event structure using proper weights; for example these weights might be proportional to

the corresponding fluency bins. Then each sample of the gravitational energy innovation

contributing to Eq. (1) is replaced by the integral

zi(t) ¼

ð1
�1

Wi(Z)E(Z� tþ dt) dZ, (2)

where Wi(Z) is the probability density for the arrival time of GRBs; in fact, Wi(Z) defines a

time window in which the integral (2) is not zero. This window corresponds approximately to

the duration of the GRB (supposed to be much less then the average interval between events).

Equations (1) and (2) show that to construct an optimal detection algorithm it is desirable

to have a priori information about the possible form of the probability density Wi(Z). One can

hope to obtain such information from additional astrophysical data or elsewhere. In this paper

we consider the simplest case when the time shift t between the gravitational and gamma

pulses is the same for all observed events (sources of the same type located approximately

at the same red shift), that is

ti ¼ ti � t, i ¼ 1, 2, . . . , N , (3)

where the delay time t is defined by the corresponding astrophysical scenario but in any case

it has an upper limit 04t4D. However, we are aware of other, less exacting (as only based

on the GRB trigger times) possibilities, such as those reported by Astone et al. (1999).

We consider in what follows three possible methods for determining the ‘effective arrival

time’ of a GRB using knowledge of its time structure Gi(t). The technique for extracting the

G(t) from the observations of the GRB developed by Mitrofanov et al. (1999) is presented in

Figure 1 (see some explanation in Section 6) while Figure 2 gives examples of wave shapes

for the GRBs which are used in our analysis later.

FIGURE 1

SEARCHING FOR GAMMA–GRAVITY CORRELATIONS 561
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4.1 Standard Method of Time Position Evaluation (Standard Method Algorithm)

In this method a conventional definition of the ‘mass centre’ t�i of the form function Gi(t)

according to

t�i ¼

Ð1
�1

tG2
i (t) dtÐ1

�1
G2

i (t) dt
: (4)

as well as of the effective duration Ti according to

Ti ¼

Ð1
�1

(t � t�i )2G2
i (t) dtÐ1

�1
G2

i (t) dt

 !1=2

(5)

FIGURE 2

562 P. BONIFAZI et al.
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are taken as the average value and the standard deviation of the random variable effective

arrival time ti. If one chooses a uniform distribution for the probability density Wi(tj) in

the interval t�i � Ti=2, then the algorithm (1) and (2) (in the ‘partly Bayesian approach’)

reduces to

Z(t) �
1

N

XN

i¼1

zi, zi(t) ¼
1

Ti

ðt�i þTi=2

t�
i
�Ti=2

E(Z� tþ dt) dZ: (6)

This standard method (SM) algorithm seems adequate for functions Gi(t) exhibiting a single

peak, but we consider it somewhat inappropriate for long multipeak GRB events.

4.2 Homogeneous Discrete Algorithm

For multipeak GRBs we propose the following method. Suppose that {tik} is the time

position of some local k maximum of the i burst Gi(t) whose amplitude exceeds a given

threshold Gc, that is, Gik5Gc. Then one can consider the unknown effective arrival time

ti as a discrete random variable with the following possibilities:

ti ! ti1, or ti2, or . . . , tik , . . . ,

where k ¼ 1, . . . , mi, and mi is the total number of local maxima of the function Gi(t).

In particular, the probability density Wi(Z) can be represented by the coefficients pik

proportional to the relative amplitudes of the maxima:

Wi(tj) ¼
Xmi

i¼1

pikd(tj � tik ),

where

pik ¼
GikPmi

l¼1 Gil

41:

Then the sufficient statistics, that we call the homogeneous discrete (HD) algorithm, is

represented by the formulae

Z(t) ¼
1

N

XN

i¼1

zi(t), zi(t) ¼
Xmi

k¼1

pikE(tik � tþ dt): (7)

4.3 Discrete Algorithm with Preference

In the previous method the contributions of all the peaks in the GRB structure were regulated

only by the relative amplitude of the peaks, using the coefficients pik. The order of a peak

in the GRB structure (its position in time) was not important. However, as noted in the

introduction, there are scenarios in which the ‘control reference point’ for the selection of

the GW data is just the beginning of the GR process. To take this fact into account we modify

the previous homogeneous algorithm by introducing a preference factor which decreases the

role of subsequent peaks.

We implement this requirement by replacing the weight coefficients pik by other

coefficients gik chosen in such a way that the contribution of the first peak does not change

SEARCHING FOR GAMMA–GRAVITY CORRELATIONS 563



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

] A
t: 

12
:1

0 
29

 J
an

ua
ry

 2
00

8 

but the other peaks progressively lose their influence with their order number. A formal

description can be written as

gi1 ¼ pi1, gik ¼ pik

Yk�1

l¼1

(1 � pil), k ¼ 2, mi,

with the new normalization constant

ci ¼
Xmi

k¼1

gik

 !�1

By substituting these modifications into the probability density Wi(Z) we finally obtain the

preference-modified discrete (PD) algorithm

Z(t) ¼
1

N

XN

i¼1

zi, zi(t) ¼ ci

Xmi

k¼1

gikE(tik � tþ dt): (8)

5 DETECTION STRATEGY AND SUFFICIENT STATISTICS

The first approach proposed above assumes that the time shift t is a fixed but unknown

parameter. In this case, the search for the ‘gamma–gravity correlation’ can be carried out

in terms of ‘likelihood variable maximization’ by a proper (optimal) choice of the time

shift parameter. Then the sufficient statistics will be the maximum of Z(t) in the admitted

shift interval 0< t<D.

The detection procedure is based on the conventional Neyman–Pearson strategy, with

estimation of false alarm and false dismissal errors as a function of the threshold level Za.

The delay t¼ topt provided by max [Z(t)] will also be evaluated simultaneously. The

hypothesis of gamma–gravity correlation has to be accepted if

Zm ¼ max
04t4D

[Z(t)]5Za; (9)

here Za is the threshold level corresponding to the false alarm probability a:

Fm(Za) ¼ P(Zm4Zajl ¼ 0) ¼ 1 � a, (10)

where Fm(z) represents the integral distribution function of the random variable Zm in the

case of the absence of GW signals (l¼ 0).

Thus the strategy of searching for ‘gamma–gravity correlations’ is defined completely

by Eqs. (6)–(10). The last step required is to determine an explicit form of the distribution

function Fm(Z) to derive the threshold level Za.

6 ADAPTIVE PROCESSING OF GRAVITATIONAL DATA

In all the above algorithms the sufficient statistics have the same structures; it is the selected

mean value of zi variables which are proportional to the gravitational detector’s energy

innovations associated with a sequence of N GRBs in the observation interval (the difference

564 P. BONIFAZI et al.
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appears only in the weight coefficients of zi configuration). If N� 1, the Z statistics tend to a

Gaussian distribution independently of the distribution of E(ti).

One can use this property for performing a preliminary calculation of the threshold Za in

some semiempirical (adaptive) way. The other possibility is to estimate Fm(z) and Za in a

completely empirical manner by simulating of GR pulse time positions using the gravita-

tional detector’s noise background record. Below we consider these approaches separately.

For a given sequence of GRBs, the Z variable represents a stochastic process which is only

a function of the shift t. To study the GW detector noise, one can observe the variations in

Z¼ Z(t) taking arbitrary values of the shift in the observation interval (provided that the GRB

sequence stays within the borders of the noise record). In the digital data processing, the

continuous process Z(t), t � (� �tt, �tt) is replaced by its discrete representation

{Zk ¼ Z(k dt)}, k ¼ 0, � 1, � 2, . . . , � M , (11)

where the interval [� �tt, �tt] is of the order of the observation time, dt is the sampling time of

the shift argument and M ¼ [[�tt=dt]] is the number of shift steps in the observation interval.

The corresponding discrete representation of the ‘sufficient statistics’ and the detection

rule are

Zm¼ max
04k4L

Zk5Za, (12)

where L ¼ [[D=dt]] (assuming that L�M); this means that the sufficient statistics are

formed from the process Z(t) (or Zk) by a maximization procedure in the limited interval

of admitted time shifts t4D (or k4L)) and the threshold equation will be

P{ max
04k4L

Z4Zajl ¼ 0} � 1 � a: (13)

The problem of the ‘absolute maximum distribution’ for a sequence of quasi-Gaussian

correlated variables has a solution (Gusev, 1999) so that, for the threshold with confidence

level 1�a, one can use the following formula:

Za � �ZZ þ sz 2 ln
aL

pa

� �� �1=2

, (14)

where �ZZ ¼ (2M )�1
PM

k¼�M Zk is the empirical mean value of Z, s2
z ¼ (2M � 1)�1

PM
k¼�M

(Zk � �ZZ)2 is the empirical variance of the stationary quasi-Gaussian process Z(t), a ¼ (1 �

R2
0)1=2 and R0 ¼ s�2

z (2M � 1)�1
PM

k¼�M (Zk� �ZZ)(Zkþ1 � �ZZ) is the correlation coefficient of

neighbouring counts.

Equation (14) allows us to perform completely the procedure of data processing for the

search for gamma–gravity correlations up to the final determination of the false alarm

error under the assumption that the E(t) variable is Gaussian. However, it is possible to

develop a fully empirical procedure for estimating the Zm distribution in a manner similar

to that utilized in the work on the neutrino–gravity correlation effect during the SN1987A.

Here the RTM collaboration used a Monte Carlo simulation of neutrino time marks on the

observation interval to obtain the required distributions of sufficient statistics (Aglietta

et al., 1989; 1991).

In the case of GRBs, as the first approximation, some simpler simulation can be performed

(to save the computation time).

SEARCHING FOR GAMMA–GRAVITY CORRELATIONS 565
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Let us divide the total observation interval (the record from the GW detector) into segments

of length D; the total number of segments is Q ¼ 2�tt=D if they touch with each other.

Each subinterval contains k¼D=dt data samples and let Zmk be the local absolute

maximum of ~ZZ inside it. Then the estimate of the integral distribution function for the absolute

maximum of Z(t) (Eq. (10)) (corresponding to the given realization E(t)) can be represented

in the form

F�
m(z) ¼

1

Q

XQ

k¼1

u(z � Zmk ), (15)

where u(x) is a ‘step function’:

u(x) ¼
1, x50,

0, x40:

�

The empirical distribution (18) permits us to evaluate the threshold Za in the conventional

manner (Eq. (10)) for a fixed level of chance probability a .

More complex and adequate simulation procedures are not forbidden and should be

investigated further.

7 PRELIMINARY TESTING OF THE GAMMA–GRAVITY CORRELATION

ALGORITHMS FOR THE DATA FROM THE BATSE EXPLORER

The algorithms developed in Section 4 were tested using real data collected by the BATSE

observatory (Fishman et al., 1994) and the gravitational wave detector Explorer during the

period from February 1, 1994, up to June 1, 1994.

The BATSE data consist of records of GRB profiles in units of integral intensity or

‘fluence’ (in the energy range Eg> 25 keV). Only the bursts with duration parameter

T90> 2 s (Mitrofanov et al., 1999) were used (their total number was 83). Then according

to the method described in the paper by Mitrofanov et al. (1999) the most significant

parts of the profiles containing more than half the pulse energy were selected. The final

stage of the processing consisted in searching for local maxima for each individual burst

profile. These maxima were used for computing the ‘mass centre’ t�i and the effective

duration Ti in the SM algorithm as well as for determining the burst time marks and the

corresponding weight coefficients for the HD and PD algorithms.

The Explorer data were given as records of data collected for the two modes (r1(t), r2(t)),

with sampling time Dt¼ 0.290 816 s, processed using the Wiener–Kolmogorov filter and

expressed in kelvins. These modes had roughly equal variances, although some parts of

the records had differences of 30–50%. The integral distribution function for both modes

had exponential character for relatively small values (r4s) with some excess (due to

disturbances) at higher energies. The detector energy innovation summed over both modes

E(t) was used for further processing with our algorithms (Section 3).

During the considered period of time there are gaps with no data and parts contaminated

by large technical noises with anomalous values. For this reason we selected for the analysis

only the data with energy below 5 K and standard deviation less than 0.2 K. Finally we

obtained 17 parts; some examples are given in Figure 2. These 17 parts were used to calculate

the Z statistics for all three types of algorithm discussed in Section 3. The list of GRBs and

calculated characteristic times of SM algorithm are given in Table I.
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Gravitational data were taken in the vicinity of GRBs for which the admitted time shift t
did not exceed 100 s.

The Zmax statistics were calculated in the empirical manner (see Section 5). About 5	 106

gravitational data samples were used from the 17 relatively quiet intervals. Using these data

we recalculated the Z statistics corresponding to fictitious time positions of GRBs simulated

by the Monte Carlo procedure. Then we selected the time shift topt that provided a maximum

Z. The value Zmax(topt) gave one point in the Zmax distribution.

The final results of our analysis are represented by a number of plots obtained by two

independent operators.

8 SUMMARY OF THE DATA PROCESSING

(i) In Figures 3(a), (b) and (c) the Z variable, expressed in kelvins, is plotted as a function of

t for the shift interval �30 s using the SM algorithm, the HD algorithm and the PD

algorithms respectively. The highest peak is obtained for the shift t� 13 s (this means that

the gravitational signals precede the corresponding GRBs). We found that the amplitude

of the maximum was reduced by the other algorithms; it equals 0.21 for the SM, 0.18 for

the HD method and 0.16 for the PD method. Z(t) was calculated also for the wider shift

interval of �90 s (Fig. 4). For shifts of �30 s these plots repeat the previous plots and

show new peaks (here smaller than in the �30 s range) in the additional regions of t.

(ii) The empirical distribution functions are reported in Figures 5 and 6 for the shift intervals

�30 s and �90 s respectively, as obtained using the method described in Section 5. By

splitting the realization Z(t) into Q equal subintervals, one finds a maximum of Z(t)

in each subinterval Zk ¼ max [Z(t)], k ¼ 1, . . . , Q. The estimate of the distribution

function was obtained using Eq. (18). Figure 3 shows that the probability of the highest

peak is quite large (about 0.99 for all methods) for the shift interval �30 s. However, it

naturally decreases for the longer interval �90 s (Fig. 4): 1�a� 0.86 for the peak

amplitude 0.2 K using the SM algorithm, 1�a� 0.8 for the peak 0.17 K using the HD

algorithm and 1�a� 0.76 for the peak 0.16 K using the PD algorithm.

TABLE I GRBs and Calculated Characteristic Times for the SM Algorithm.

BATSE
number Date

Start
time ti Ti

2798 February 6, 1994 0 h 8 min 37.790 s 14.71267 2.01313
2799 February 6, 1994 18 h 25 min 47.672 s 1.06628 0.12664
2812 February 10, 1994 19 h 13 min 16.953 s 15.93025 9.07841
2831 February 17, 1994 23 h 2 min 42.070 s 109.80354 19.93446
2843 February 22, 1994 11 h 50 min 53.078 s 2.29636 2.47170
2855 March 1, 1994 20 h 10 min 37.078 s 19.33162 3.85228
2856 March 2, 1994 5 h 8 min 31.510 s 108.75011 18.56343
2877 March 12, 1994 11 h 28 min 22.680 s 58.36422 8.32440
2880 March 13, 1994 13 h 2 min 22.809 s 0.53577 0.30319
2889 March 19, 1994 23 h 57 min 20.922 s 55.66040 7.84840
2891 March 23, 1994 22 h 4 min 38.430 s 4.40141 2.98549
2897 March 29, 1994 18 h 15 min 37.883 s 8.39619 7.25977
2919 April 10, 1994 15 h 45 min 2.941 s 0.68974 0.80839
2922 April 12, 1994 1 h 40 min 31.000 s 93.45382 18.38526
2925 April 13, 1994 14 h 11 min 24.512 s 5.69802 4.41095
2929 April 14, 1994 16 h 46 min 25.559 s 16.69360 6.02316
2994 May 26, 1994 20 h 20 min 5.789 s 5.38500 2.02936
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(iii) The noise distributions for the two modes are shown in Figure 7, using 94 100 samples

for each mode near the 17 bursts mentioned above. They are approximately the same

(the solid curve corresponds to r1(t), and the dashed curve to r2(t)).

(iv) When considering the specific GRBs responsible for the effects observed in Figure 1,

the following selections were made

(a) Figure 8 represents the Z variable constructed for the group of five bursts mostly

contributing to the peak at zero shift (BATSE numbers 2798, 2812, 2855, 2863

and 2891).

(b) Figure 9 corresponds to the group of other five bursts with the Z peak at the shift of

13 s (BATSE numbers 2797, 2815, 2831, 2843 and 2856).

FIGURE 3
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(c) Figure 10 corresponds to the remaining seven bursts (BATSE numbers 2799, 2852,

2853, 2877, 2880, 2889 and 2890) with relatively weak amplitudes.

We finally compare the filtering properties of our algorithms denoted by Zm, j the value of

the absolute maximum of the stochastic process Z(t) for j¼ SM, HD, PD algorithms and

with Fm, j(z) its empirical distribution function under the hypothesis that l¼ 0. Then we

have Fmj(Zm, j)¼ 1�aj (see Eq. (13)) where j¼ SM, HD, PD. The relative efficiency of HD

and PD algorithms with respect to SM could be defined as gHD and gPD:

gHD ¼
aHD

aSM

, gPD ¼
aPD

aSM

:

FIGURE 4
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These coefficients provide a better representation of the quality of the algorithms HD and

PD than the simplest estimation based on the signal-to-noise ratio q¼ Zmj=sj, j¼ SM, HD,

PD, where s2
j are the variances of the random processes Zj(t).

8.1 Using the Minimum for the Two Modes

We mentioned in Section 2 that the alternative quantity r2 ¼ min (r2
1, r2

2) could be used as

the observed variable. This choice is based on the fact that a short burst of gravitational

radiation should excite both modes by the same amount, while a noise pulse may affect

the two modes differently. As a consequence, the variable r2(t) provides a better rejection

for some disturbances.

We used the quantity r2 to test our algorithms. The corresponding Z variables vs. the time

shift t are given in Figures 11(a), (b) and (c) for the SM, the HD and the PD algorithms

respectively. These plots are different from those of Figure 3. In particular there is a

FIGURE 5
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maximum for the negative time shift �5 s (i.e. with gamma pulses arriving before the GW

detector signals, which contradicts the astrophysical expectations). As before, the smoothing

of the noise grows from the SM algorithm to the PD algorithm.

In the present case, the empirical confidence level for Zm (0.9 for SM, 0.8 for HD and 0.7

for PD) remains similar to that obtained previously, but the limited volume of available data

in this test does not allow us to give a preference for any of the algorithms.

9 DEVELOPMENT OF ALGORITHMS FOR A NON-GAUSSIAN BACKGROUND

If the GW detector noise n(t) (Section 2) does not follow a Gaussian distribution, then the

variable Z ¼ lnL (Eq. (1)) does not correspond any longer to the optimal approach. It has

to be replaced by another variable. Below we discuss how one could proceed in this case.

FIGURE 6
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Let the response function of a bar detector written in the narrow-band form be (see Section 2)

gðtÞ ¼ g0ðtÞ cos½o0t þ cðtÞ
;

where o0¼ (o1þo2)=2 is the central frequency of the antenna bandwidth (in the paper by

Astone et al. (1997), g(t) was presented as a sum of mode oscillators; it is easy to convert

it into the form (16).) Then the packet of signal pulses at the detector’s output is

s(t) ¼
X

k

sk (t), sk(t) ¼ akg0(t � tk) cos [o0(t � tk) þ c(t � tk) þ jk]:

The important point here is that the values (ak, tk,jk) are unknown stochastic parameters. If

no a priori information concerning these values is available, one should use the Bayesian

approach, that is the likelihood ratio �LL averaged over these parameters.

At the output of the fast matched filter (x(t)! y(t)) (Astone et al., 1997) the observable

realization remains a narrow-band process:

y(t) ¼ sy(t) þ ny(t) ¼ yc(t) cos (o0t) � ys(t) sin (o0t):

By performing the demodulation using a lock-in amplifier with central frequency o0, one can

obtain the slow quadrature signals yc(t) and ys(t) for further processing, containing the noises

nc(t) and ns(t) and signal components with amplitudes Ak ¼ aks2
y , where s2

y is the variance of

stationary random process ny(t).

It is known that, for stationary narrow band processes, a two-dimensional distribution

function W2(nc, ns) can be reduced to a one-dimensional distribution of the squared envelope

e(t) ¼ n2
c (t) þ n2

s (t):

W2(nc, ns) ¼
1

p
W (n2

c þ n2),

FIGURE 7
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where W(e) is the probability density of the envelope e(t) ¼ n2
c(t) þ n2

s (t). This is because the

phase is uniformly distributed in the interval (0, 2p) and does not depend on the envelope

evolution e(t). Thus all useful information is contained in the envelope’s variations. Using

the envelope, one can obtain the likelihood ratio in a conventional way. It is factorized on

factors �LLk of the individual signal pulses. Then it should be averaged over the stochastic

parameters Ak and jk:

�LL ¼
YN
k¼1

�LLk , �LLk ¼
W ((yck � Ak cosjk )2 þ (ysk � Ak sinjk )2)

W (y2
ck þ y2

sk)

� �
: (17)

The notation h� � �iAk , jk
means statistical averaging, yck ¼ yc(tk þ Dt) and ysk ¼ ys(tk þ Dt).

FIGURE 8

SEARCHING FOR GAMMA–GRAVITY CORRELATIONS 573



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

] A
t: 

12
:1

0 
29

 J
an

ua
ry

 2
00

8 

For weak signals Ak�sy the likelihood ratio can be expanded in series on the signal

amplitude (Rudenko and Gusev, 2000). Then Eq. (17) results in the following approximation:

�LLk � 1 þ
A2

4
f (Ek ), Ek ¼ y2

ck þ y2
sk , f (E) ¼

1

W (E)

d

dE
E

dW (E)

dE

� �
, (18)

where A2 ¼ hA2
ki is the mean intensity of the signal pulse.

Equation (18) assumes that the tk values are defined by observations obtained from other

channels. As we have seen in the case of GRBs, there is a large uncertainty in the tk estimate

FIGURE 9
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due to the very complex structure of GRBs. For this reason, the algorithm (18) should be

averaged also over the tk distribution:

�LLk � 1 þ
A2

4
h f [E(tk þ Dt)]itk : (19)

Finally, sufficient statistics for searching for the gamma–gravity correlation against a non-

Gaussian background can be represented as

Z ¼ constant
X

k

ð
tk

f [E(Zþ Dt)]Wk(Z) dZ: (20)

Here Wk(Z) is the probability density of the arrival times tk as in Eq. (2).

FIGURE 10
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In a real experiment the density probability We(e) mostly is unknown. Then one could use

its parametric approximation. For this purpose a family of Pearson’s curves is good (Gusev

et al., 1998) as well as poly-Gaussian distributions.

Equation (20) represents a generalization of the gamma–gravity correlation algorithms for

non-Gaussian background. In the particular case of Gaussian noise,

We(e) ¼ (2s2)�1 exp �
e

2s2

� 	
,

the nonlinear algorithm (20) reduces to the previous form similar to Eq. (1): f (E) ¼

E=2s2 � 1 / E.

FIGURE 11
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10 CONCLUSIONS

Our test processing of the BATSE Explorer data allows us to come to the following

conclusions.

(i) During our tests, several peaks were found above the detection threshold with relatively

high confidence level (0.7–0.9) (see Section 7). We believe that this is the result of

the non-stationary non-Gaussian excess noise which shows up in the high-energy tail of

the gravitational detector data distribution. The empirical distribution function of the

absolute maxima (15) obtained by the averaging over shift time subintervals assumes

that the detector noise is locally stationary. In reality, the detector’s background is

contaminated by large non-thermal pulses (excess noise). However, these pulses are rare

enough to produce a small influence on the empirical distribution function (due to the

time-averaging procedure). Thus such pulses could be detected as some ‘false signals’

above the threshold corresponding to the ‘stationary statistics’.

(ii) Having in mind this conclusion (see i, above), when comparing the tested algorithms,

one reasonably gives preference to those which are less sensitive to excess non-sta-

tionary noises (i.e. have a decreased property of recording these noises as ‘false sig-

nals’). The quantitative characteristic of such ability is just the relative efficiency

parameter g introduced in Section 7. This parameter increases from the SM to the PD

method; in particular for the shift interval the relative efficiencies are gPD� 1.71 and

gHD� 1.42.

(iii) The confidence limit for real signals decreases in general when we increase the admitted

shift interval. This interval can be reduced only with reference to accepted astrophysical

source models.

(iv) The tested sample taken to illustrate the data processing appeared to be too short; it

contained only 17 GRBs, too small to observe any accumulation effect needed for the

detection of weak signals. The recommendation of using longer records (with a duration

of 1 year or more) is the obvious conclusion for further studies.

As a final remark we would like to emphasize that the possibility of accumulation of GW

pulses strongly depends on a priori astrophysical knowledge of the source nature and so any

algorithms of data processing will be ‘model dependent’. In particular we used above the

simplest model of ‘identical GW–gamma radiators’ isotropically distributed at distances

with equal red shifts; in this case, one can take the same ‘gravity–gamma’ delay time for

all events. More realistic models have to take into account the dependence of the delay

time on cosmological distance z, which could be considered as a stochastic parameter

with a suitable distribution.
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