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Lagrange’s equations for geostationary satellite motion in spherical coordinates connected with the Laplacian plane
are considered. The first integral of system of equations has been found. The intermediate orbit of satellite has been
constructed.
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1 INTRODUCTION

The need to create a quick algorithm for investigation of the orbital evolution motion of geo-

stationary satellites (GSs) is dictated by constantly increasing population of the geostationary

orbit (GEO) and its environment. The motion theory of a GS is rather complicated. The exis-

tence of longitude-dependent terms in the Earth’s potential function induces long-term large-

scale oscillations in GS longitudes l. Because of the commensurability of the GS’s mean

motion n and the Earth’s rotation _SS, small divisors (_ll� n� _SS) occur. Therefore, to define

the longitude at any time moment, it is necessary to solve the differential resonant equation

of second order, the coefficients of which depend on time.

The lunar–solar attractions cause essential changes in the space orientation of the GS’s

orbital plane. The solar radiation pressure causes variations in the orbital eccentricity e.

The task is simplified if an appropriate coordinate system and suitable intermediate orbit

are selected. In our theory the Laplacian plane is adopted as fundamental. This plane is

inclined to the Earth’s equator by nearly 7� and passes through the node line of the equator

and ecliptic. The inclination i of the GS’s orbit, referred to this plane, will be changed by an

amplitude less than 0.�4; the longitude O of the ascending node and the argument o of the

perigee become nearly linear functions of time. Fortunately none of these elements depends

on l, because the amplitudes of short-term perturbations are negligibly small. Therefore for

the elements i, O, o and e the intermediate orbit can be constructed taking into account the

maximum residuals that arise from all perturbations.
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2 BASIC EQUATIONS AND THEIR SOLUTION

The perturbing function for the intermediate orbit with maximum terms can be represented as

follows:

R ¼ R0(c0, i, e) þ R1(c1, i, e) cos (oþ Oþ oL þ OL) þ R2(c2, i, e) cos (oþ O� lS), (1)

where c0, c1 and c2 are the constant parameters of each term, the orbital elements of the

Moon are indicated by the subscript L, and lS is the longitude of the Sun. The complete

expression for R has been given by Kiladze et al. (1999). Let us introduce the following

definitions:

z ¼ O� OL, R ¼ Oþ o� OL � oL, x ¼ Oþ o� lS, _OO ¼ �k cos i: (2)

Lagrange’s equations for the new variables z, i, R and e can be written as follows:

dz

dt
¼ _zz þ b

cos (2i)

sin i
cos z, (3)

di

dt
¼ b cos i sin z � A _RRe tan

i

2

� �
sin R, (4)

dR

dt
¼ _RR þ b 3 sin i cos i þ cos (2i) tan

i

2

� �� �
þ

A _RR cos R � D_xx cos x

e
, (5)

de

dt
¼ A _RR sin R � D_xx sin x, (6)

where D is the light pressure; k, A, b, _xx, _OOL and _RR are constants, which for resonant GSs have

the following numerical values: D� 0.0001 rad, k� 3.26� 10�4 rad, A� 2.7� 10�4 rad,

b� 0.62� 10�5 rad, _xx��0.0169 rad, _OOL��9.24� 10�4 rad, _RR��0.7� 10�5 rad.

As a rule GSs move in circular orbits; then the second term in Eq. (4) will be equal to zero.

In this case Eqs. (3)–(6) are divided into two systems, each of which contains two

equations only.

Multiplying Eqs. (3) and (4) by b sin i cos i sin z and �_zz sin i � b cos (2i) cos z respectively

and summing, as a result we have an expression in the form of a full differential that gives us

the first integral of the system:

k
2

cos2 i þ ( _OOL þ b sin i cos z) cos i ¼ C: (7)

If we save the second term in Eq. (4), then Eq. (7) will be written

k
2

cos2 i þ ( _OOL þ b sin i cos z) cos i ¼ C þ A

ð
e _RR tan

i

2

� �
sin R(_zz sin i þ b cos (2i) cos z) dt:

(8)

The additional term in Eq. (8) is the periodic function of the time with an amplitude not

more than Ce� 10�8. Therefore Eq. (7) is quite correct and has a satisfactory accuracy.

Using Eq. (7), the solutions of Eqs. (3) and (4) have been expressed by the elliptic integral:

t � t0¼

ðV

V0

sin i di

[(ðk2=4Þ þ b2) cos4 i � k _OOL cos3 i þ (kC � _OO2
L þ b2) cos2 i þ 2C _OOL cos i � C2]1=2

:

(9)
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After taking the integral (9), the solution for O also can be obtained (Kiladze et al., 1999).

To solve the system of Eqs. (5) and (6) the new variables p and q are introduced:

p ¼ e cos R þ A, q ¼ e sin R, (10)

and also

dt ¼ ( _RR þ d) dt, (11)

where

d ¼ b sin i cos z 3 cos i þ
2 cos2 i � 1

cos i þ 1

� �
: (12)

Then Eqs. (7) and (8) may be rewritten as follows:

dp

dt
¼ �q þ D_xx sin (R � x),

dq

dt
¼ p � D_xx cos (R � x) � Ad:

(13)

The solution of the linear system of Eqs. (13) may be obtained without any mathematical

difficulties because on right-hand sides of these equations the variables determined from

Eqs. (5) and (6) are entered as free terms.

Then, by integrating Eq. (11) the time can be defined as a function of the variable t:

t ¼

ð
dt

_RR þ d
: (14)

Finally, the solution of these elements can be constructed by adding all necessary perturba-

tions and the evolutions of i, O, e and o can be calculated for a period starting several tens of

years ago.

The software constructed on the basis of the described solution has permitted us to study

the long-term orbital evolution of all uncontrolled known GSs and to compare it with NASA’s

orbital two line elements. Integral (7) has been used for identification of GS observations.

3 RESONANT EQUATION FOR LONGITUDE AND ITS SOLUTION

To investigate the motion of a GS the resonant equation of longitude (l¼MþoþO7 S,

where M is the mean anomaly and S the sidereal Greenwich Time) was used by Gedeon

(1969). Gedeon’s equations have been derived in adopted coordinate systems and with

adding lunar–solar pertubations:

d2l
dt2

¼ �n2 �
X
lmkpq

Almkpq sin [ml� mllmkpq þ (k � m)O] þ LSP, (15)

where n is mean diurnal motion of the GS, the coefficients Almkpq depend on Hansen’s coeffi-

cients, the inclination functions (Gaposchkin, 1973), the geopotential parameters and the

semimajor axis expressed as the mean radius of the equator of the Earth, and l, m, k, p

and q are indices of summation of the geopotential harmonics. LSP designates the influence

of lunar–solar perturbations, the maximum term of which is equal to _OO2f (O), where f (O) is a

periodic function. It should be noted that the presence of O in Eq. (15) is a consequence of
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the Laplacian plane introduction. Taking into account its weak change is simpler than the

change in inclinations referred to equators.

If O were constant, then the equation of motion (15) would have a first integral analogous

to Jacobi’s integral:

dl
dt

� �2

¼ C1 �P(l), (16)

where C1 is a constant of integration and

P(l) ¼ 2
X
lmkpq

Am(m � k)

m
cos [ml� jm � (m � k)O] (17)

with

Am ¼ �n2Almkpq, jm ¼ mllmkpq:

However, O is a function of time. Therefore, it is necessary to take into account the varia-

tion in C1

dC1

dt
¼ 2 _OO

XAm(m � k)

m
sin [ml� jm � (m � k)O] þ 2_ll _OO2f (O): (18)

The derivative dC1dt is also used by us as a small parameter for constructing the motion

theory for a GS. A detailed description of this process has been given by Kiladze and

Sochilina (1996). The constructed intermediate orbit has become the basis of appropriate

software. This software was successfully used to investigate the motion of about 700 uncon-

trolled GSs.

4 CONCLUSIONS

The scientific importance of the integral of motion (7) must be especially mentioned. For a

time after Newton had resolved the two-body problem in celestial mechanics, only one inte-

gral of motion appeared (Jacobi, in the nineteenth century). During the development of

science, every new integral of motion has its own (sometimes unusual) application. The inte-

gral (7) has an additional application as the criterion for the identification of GSs that had

been lost and after a long time were rediscovered.
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