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New harmonic coordinates for the Schwarzshild geometry are obtained. Unlike the case of Fock’s 
harmonic coordinates, test particles falling into a black hole approach the event horizon and cross it at 
a finite value of the time parameter. The metric in the new coordinates is investigated. The 
Schwarzshild solution in both Fock’s and the new coordinates is presented. In terms of the field 
description of GR (that is, such a formulation of GR where all the dynamic fields, including the 
gravitational one, are considered in a given background space-time). These field configurations are 
compared, and the particle trajectories in the auxiliary background world are discussed. Due to the 
fact that the Fock solution satisfies the harmonic conditions, an erroneous opinion that a falling 
particle cannot approach the event horizon in the field description, could have arizen. With the help 
of the new solution satisfying the same conditions, it is clearly shown that a particle passes through the 
horizon without obstacles. 

KEY WORDS Black holes, co-ordinate systems, Schwarzshild geometry 

1. INTRODUCTION 

In order to simplify the general relativity (GR) equations, a certain choice of 
coordinates is frequently made. Both in the past and nowadays, harmonic 
coordinates are very popular. Great attention was spared to harmonic coordinates 
by Fock (Fock, 1959). Different theoretical questions are now being investigated 
with their help (see, for example Nakanishi (1986); Ruiz (1986)). Using the De 
Donder (harmonic) coordinate conditions, an approximation method was de- 
veloped allowing us to investigate the detailed structure of the gravitational field 
outside an isolated system (Blanshet and Damaour, 1986). Harmonic coordinates 
are effectively used in construction of a relativistic theory of reference frames for 
the Solar system bodies (Kopejkin, 1988; Brumberg and Kopejkin, 1989). 

In the present paper we propose new harmonic coordinates for the Schwarz- 
shild geometry. What is the goal of their search? What is their advantage 
compared with the well-known Fock harmonic coordinates (Fock, 1959)? 

Let us discuss the latter. The Fock harmonic coordinates, like the Schwarzchild 
ones (Landau and Lifschitz, 1975), are singular at the event horizon. This is 
indicated by the following. In the coordinate time a falling particle approaches 

t Sternberg Astronomical Institute, Moscow 119899, Universitetsky prospect 13, USSR. 
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196 A. N .  PETROV 

the Schwarzshild sphere is infinitely long. Discontinuity of geodesic lines in the 
coordinate diagram reflects this fact. Many coordinates without such a singularity 
were discovered. Among them there are the well-known Lemaitre, Edington- 
Finkelstein, Kruskal-Szekeres, Novikov coordinates (Landau and Lifshitz, 1975; 
Misner et al.,  1973; Novikov and Frolov, 1986). However, so far we did not know 
a harmonic coordinate system which were as good at the event horizon as the 
enumerated ones. 

Here such coordinates are found.? In Sec. 2 the metric in the new coordinates 
is suggested and its properties are investigated. Constructing the new coordinate 
system we wanted, above all, to obtain good description for the motion of 
particles falling into a black hole. Unlike the Fock coordinates, in the new 
coordinates (one can call them contracting coordinates) a falling particle arrives 
at the event horizon at a finite value of the time parameter. On the coordinate 
diagram a geodesic line can be followed continuously through the Schwarzchild 
sphere. 

As it is shown in Zel’dovich and Grishchuk (1986) and (1988), GR admits the 
so-called field description. This is a description where dynamical fields are 
considered in a given background (auxiliary) space-time. This problem was 
treated by many authors, see, for example Rosen (1940); Kraichnan (1955); 
Gupta (1957); Burlankov (1963); Ogievetsky and Polubarinov (1965); Deser 
(1970). Now it has been elaborated with an exhaustive completeness (Grishchuk 
et al., 1984; Grishchuk and Petrov, 1987; Popova and Petrov, 1988). Remaining 
equivalent to ordinary geometric formulation of GR, the field description is used 
for investigation of different theoretical questions (Grishchuk and Petrov, 1986; 
Grishchuk and Popova, 1986). One of the significant results of these investi- 
gations is the following. If two solutions in the geometric description of GR are 
connected by a coordinate transformation, then in the field description they are 
connected by a gauge transformation (by definition, such transformations do not 
touch the coordinates and the background fields). 

On the basis of the Fock coordinates (Fock, 1959) (in which test particles 
infinitely long approach the event horizon) an opinion that black holes are 
impossible, could have emerged. Due to the fact that the authors of RTG (see, 
for example in Logunov and Mestvirishvili (1986)) give an especial sense to a flat 
background space-time and the harmonic conditions, they obtain such a conclu- 
sion. Here, in Sec. 3, using the field formulation of GR, we compare the 
suggested solution with Fock’s one. The transition from one to the other (when 
the motion of test particles is also taken into account) is interpreted in terms of 
gauge transformations. In our solution, satisfying the same harmonic con- 
ditions, particles penetrate through the event horizon without obstacles. 
Thus, the Einstein equations with the supplementary harmonic conditions, and 
the structure of a flat background space-time, do not exclude black 
holes.$ 

In the Appendix it is shown how the new coordinates were found. Their 
relation to the Fock coordinates is presented. Besides that, brief and clear 

t See also brief communications in Petrov (1990). Vlasov (1990) and besides that in Chugreev 

k, Critique of suggestions of RTG is also contained in Zel’dovich and Grishchuk (1986) and (1988); 
( 1989). 

Burlankov (1989); Grishchuk (1990). 
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NEW HARMONIC COORDINATES 197 

instructions for obtaining expanding harmonic coordinates are given. These 
coordinates will be convenient for the description of test particles ejected from 
under the event horizon. 

2. THE SCHWARZSHILD GEOMETRY AND THE HARMONIC 
CONDITIONS 

Let us write the Schwarzshild metric in the Fock coordinates (Fock, 1959): 
r - a  r + a  
r + a  r - a  

c’ dt’ - - dr2 - ( r  + a)’(d8* + sin’ 8 dq’), (2.1) ds2 = ~ 

where a = GM/c’. After the coordinate transformation 

x = r sin 8 cos q, y = r sin 8 sin q, z = r cos 8 (2.2) 
(where the coordinate t is unaffected) the metric (2.1) satisfies the harmonic 
conditions: 

( G g r V ) , ,  = 0, (2.3) 
where g = det gpv. 

To simplify the presentation we consider a test particle, falling radially into a 
black hole. Besides that, to eliminate cumbersome expressions we confine 
ourselves to the “parabolic orbit” case when a particle begins its motion from at 
rest at the infinity r = w. Then the equation of motion of a test particle has the 
form: 

c r = - 2 n [ j ( x )  2 r + a 3/2 +2(=) r + a ‘I‘ +Inl:-ll 

r + a  “* 
- 2 1 n  I(%) + 111 +const. 

(On “parabolic orbit” in the Schwarzshild coordinates see in Misner et af. 
(1973)) The existence of the term -2a In Ir/a - 1) leads just to the situation that 
a particle falls to the event horizon r = a infinitely long in the coordinate time.? 

Now let us write the new solution: 

&=- r - a  C t  -~ 8a‘ d t  dr - 1 + 2a + (”)’ + ( l a ) ’ ) d r 2  
r + a  (r + a)’ ( r + a  r + a  r + a  
- ( r  + a)’(d8’ + sin’ 8 dq’) .  (2.5) 

It describes the same physical space-time corresponding to the metric (2.1). (On 
the relation to the solutions (2.1) and (2.5) see the Appendix.) We point out 
some properties of (2.5). 

First of all we note that after the transformation (2.2) the metric (2.5) also 
satisfies the conditions (2.3). The metric determinant has the same value as that 
in (2.1), namely detg,, = - ( r  + a)4 sin’ 8. Unlike (2.1), the metric coefficients 

t All test particles and photons radially falling into a black hole have the same asyrnptotical 
behavior with respect to t in the neighbourhood of the event horizon. 
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198 A. N. PETROV 

(2.5) are infinite only at the true singularity r = -a, but remain finite at the event 
horizon r = a. 

The equation of the “parabolic orbit” has the form: 

-*In((=)  r + a ‘ I2  + ~ l ] + c o n s t ,  

where, unlike (2.4), the logarithmic term is absent. Hence, in the coordinate 
diagram (t, r )  a falling particle trajectory may be followed continiously through 
the Schwarzshild sphere. 

Both the form of the metric (2.5) and the structure of the light cones: 

r + 3 a  
dr 1 r2- a* dr r+a 

clearly show the following. In the domain r < a both r and t are spacelike (as in 
Finkelstein’s solution (Finkelstein, 1958)). It is permissible, because the metric 
signature in the domain r < a remains correct, as we have seen above. However, 
when r < a the description of particle motion is somewhat unusual: evolution of 
the spacelike coordinate r is considered in terms of another spacelike coordinate 
t. Still, one should mention that a particle approaches the true singularity r = -a 
at an infinite value of the parameter t (see (2.6)). 

It follows from above that the sections t = const are spacelike both outside and 
inside the event horizon. (This is also true for the solution (Finkelstein, 1958).) If 
some events belong to the surface t = const, then in this sense one can speak 
about their simultaneity outside the event horizon, on it and inside it. It may be 
useful for investigations using the (3 + 1)-decomposition procedure where a 
Space-time is interpreted as a foliation of spacelike surfaces, which are defined 
often by f = const (see in Misner et al. (1973)). 

For the Schwarzshild geometry, relations between the Schwarzshild coordinates 
and many others was investigated very carefully (Landau and Lifshitz, 1975; 
Misner et al., 1973; Novikov and Frolov, 1986). After the simple substitution 
r+  r - a the coordinates of (2.1) transform into the Schwarzshild ones. There- 
fore, using the relation between (2.1) and (2.5) (see the Appendix), it is easy to 
define the relation of the new coordinates to all the well-known ones. Note only 
that the coordinates in (2.5) cover the half of the whole Schwarzshild geometry. It 
is similar to, for example the case with the contracting Lemaitre or Edington- 
Finkelstein coordinates (Landau and Lifshitz, 1975; Misner ef al., 1973). 

Both solutions (2.1) and (2.5) with r > a describe the same physical space. As 
it follows from the fact that w n =  0, this space is static. (Here, an is differential 
invariant related to the timelike Killing vector field (Novikov and Frolov, 1986).) 
However, one has to note that due to the mixed tr-term the metric (2.5), unlike 
(2.1), can be called only stationary (not static) for r > a. 

Thus we have two harmonic coordinate systems for the Schwarzshild geometry. 
A question arises: is there a contradiction with Fock’s theorem about uniqueness 
of a coordinate system for an isolated physical system (Fock, 1959)? By studying 
the theorem conditions, which were discussed in detail in Belinfante and Garrison 

, .el =-- (r -t a)’ + = 
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NEW HARMONIC COORDINATES 199 

(1962), we discover the following: None of the metric (2.1) and (2.5) satisfies all 
the conditions in the whole physical space-time. That is, the question disappears 
by itself and there is no contradiction. 

At the end of the section let us make the following remark. Both for (2.1) and 
for (2.5) with - a S r  S a arbitrary two points 1 and 2 such that r2= -rl, 
O2 = n - 01, v2 = n + q1 correspond to the same harmonic coordinate point 
x ,  y, z (2.2) that is, not all the points of the physical space-time are in the one to 
one correspondence with the harmonic coordinates. The left side of (2.3) is 
proportional to the delta-function 6 ( r )  for both the metrics (2.1) and (2.5). As 
the result, the conditions (2.3) are not true at r = 0. (This property was noted in 
Loskutov (1990).) It is possible that there exist harmonic coordinates 
without these defects, but we have no need to search them.? Indeed, for 
both solutions, excluding the domain -a S r s 0 from consideration, one 
can use the harmonic coordinates for r > 0 .  This is perfectly sufficient for an 
investigation of test particle trajectories in the neighbourhood of the event 
horizon. 

3. A PARTICLE IN THE GRAVITATIONAL FIELD AND GAUGE 
TRANSFORMATIONS 

Linearizated G R  is usually used in problems with weak gravitational fields. For 
construction of such a theory the metric tensor g,, involved in G R  is decomposed 
into a sum of the Minkowsky tensor and the gravitational field tensor hpV.  The 
coordinate system is chosen in such a way that IhpVI << 1. The equations are then 
expanded in powers of hpV and, with fairly good precesion, only linear terms are 
preserved. The linearized theory admits gauge transformations which act only 
upon dynamic variables and do not affect the coordinates (Landau and Lifshitz, 
1975; Misner et al., 1973) 

Here 6, means four arbitrary functions, which are so small that Ih'pvI << 1. Still, 
in the literature in connection with (3.1), as a rule, there does not emerge a 
question of gauge transformations for nongravitational dynamic fields or for 
particle motion. Nevertheless, exact analysis shows that one has to  take into 
account such transformations (for weak fields and the transformation (3.1) see in 
Mashhoon and Grishchuk (1980)). The exact (not approximate) field formulation 
of GR (Grishchuk et al., 1984) also admits gauge transformations. Unlike (3.1), 
they are finite and also affect dynamic nongravitational fields. 

Here in terms of the field approach both (2.1) and (2.5) are presented, and test 
particle motion is considered. After that, transition from one of these field 
configurations to the other is discussed in terms of finite gauge transformations. 
Before that to make this discussion clearer, we will show the effect of these 
transformations for an arbitrary field configuration and a test particle trajectory in 
an auxiliary background world. 

Appealing to Grishchuk et al. (1984), let us define in a background world with 
the metric yPv the action for a test particle interacting with the gravitational field 

h ; v  = h,, + 6 p . v  + 6 v + .  (3.1) 

t Let us say only that one has to search these coordinates in a wider class of functions. As it follows 
from the Appendix, for the metric one has to admit dependence on t. 
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200 A. N. PETROV 

h ,,: 

S,,,,, = -em ds. (3.2) 

Here m is the particle mass and s is a parameter along its trajectory. The field 
h"", the metric yPv and the background world coordinates X "  are involved in (3.2) 
in the form dr2 = g,&"drS. The functions g,,, depend on hpV and yPv,  more 
exactly, they are defined by the relations: 

The field formulation of G R  is connected with the geometric one (with the metric 
g,,,) just by the relations (3.3). The action (3.2) in terms of the geometric 
formulation is given in Landau and Lifshitz (1975). Variation of Sm+g with 
respect to the coordinates gives the equations of motion for a test particle. Their 
solutions are the vector components of the particle "4-velocity" u " = dx"/ds. 

Let us present the action (3.2) in the more suitable form I L d4x. One easily 
arrives at: 

S,,, = --c I pgP,upu" fi d4x, 
(3.4) 

where 6(r' - ?") is the Dirac delta-function, and is spatial part of the tensor gaS 
defined in (3.3). Then as it follows from Grishchuk et al. (1984), the theory based 
on the action (3.4) and, consequently, (3.2) is invariant under gauge transforma- 
tions for the gravitational field h pv and for the material fields qA E p,  u ": 

qtA = qA + ASqA. (3.5) = h l l v  + A E h P V ,  

Here the gauge additions generalizating (3.1) present infinite expansions with 
respect to an arbitrary finite vector field 5" and its derivatives (see below). 

If the system is invariant under some transformations, then these transforma- 
tions do not change the physical situation. Here, in spite of transform u'", gauge 
transformations do not change real particle motion, only the manner of its 
description is changed. The fact that the background world has an auxiliary 
character, is directly related to the assertion made. 

We should like to present the relations permitting to avoid infinite expansions 
in (3.5). This is possible if the coordinate transformations inducing the gauge 
transformations are known (Grishchuk and Petrov, 1987; Popova and Petrov, 
1988). Let two solutions in the geometric formulation of CR, g l v  and gpv,  be 
connected by the coordinate transformation: 

X " = X ' y X ) ,  (3.6) 
whose reverse one is x " = x " ( x ' ) .  Then after a transition to the field description 
(see (3.3)) we have: 

h ' y x ' )  + j i ' " V ( X ' )  = [ A h ~ V ( X >  + A ~ ~ V ( X > ] ( , = , , , , , ,  
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NEW HARMONIC COORDINATES 20 1 

where A is an abstract notation for the operator of the coordinate transformation 
(3.6). (The specific expression of A depends on the transformation properties of 
the variables considered. For instance, for the vector C": AC"(x) = 
(dx ' " /& / ' )Cs(x ) . )  Furthermore, requiring, that the form of the functions p r P v  in 
the coordinates x ' "  is the same as that of 7,'' in the coordinates x "  and making 
the substitution x ' " = x " ,  one obtains: 

Let us define the vector field lj" presenting the transformation (3.6) in the form: 
L ' y x )  = L y x )  + [AL@vlx=x(x) - L y x )  + Apq,,x(x) - p""(x)]. (3.7) 

Then the transformation (3.7) acquires the form (3.5) for hpv. In a similar way 
one obtains that particle trajectories are transformed according to the relation: 

(This formula is correct if background material fields are absent. The flat 
background to be used below belongs just to this case, for more detail see in 
Grishchuk et al. (1984).) Thus instead of (3.5) we will use the formulae (3.7) and 
(3.8) as those for gauge transformations. 

I t  seems attractive to describe the two solutions (2.1) and (2.5) in the field 
approach and to compare them. Indeed, both these cases have many similarities: 
(i) after the transformation (2.2) g,, satisfy the conditions (2.3); (ii) g,, do not 
depend on t or t; (iii) the metrics g,, approach the flat metric in the spherical 
coordinates for r - w ;  (iv) the hypersurface r = a is null and defines the event 
horizon while the hypersurface r = -a defines a true singularity. The difference 
has been already discussed, it consists in the description of a falling particle in the 
neighbourhood of the event horizon. 

For each of these solutions it is reasonable to describe the flat background in 
the spherical coordinates. So the background metric can be written in the form: 

(For the solution (2.5) the substitution r = t  is made. The field indices will be 
numerated according to (3.9): x" = ct, x '  = r ,  x 2  = 8, x' = q. 

u '" (x )  = u"(x )  + [ A U " l x , x ( x )  - u " ( x ) ]  =Au"(x ,x (x ) .  (3.8) 

ds' = c'dt' - dr2 - r'(d6' + sin' 6dq'). (3.9) 

1 
Now using (3.3) and (3.9) let us define the field h"" for (2.1): 

the rest h"" = 0. In the same manner for (2.5) one obtains: 

(3.10) 

the rest h'," = 0. Let us note the similarities of the field configurations (3.10) and 
(3.11). Everywhere in the background world excluding the point r = 0, both fields 
satisfy the conditions: 

hPV:, = 0, (3.12) 
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where the semicolon means covariant derivatives with respect to the flat metric 
(3.9). This fact is a direct consequence of the fact that after the transformation 
(2.2) both metrics (2.1) and (2.5) satisfy the conditions (2.3). Both fields do not 
depend on the time coordinate t ,  that is, for the auxiliary background they are 
always and everywhere static. The existence of the following two conclusions is 
indebted for the fact that for each of the solutions (2.1) and (2.5) the asymptotic 
behaviour of g,, at r+ 03 is the same, and the flat background is also the same. In 
the Minkowsky coordinates of the flat background (see for comparison in 
Grishchuk et al. (1984); Grishchuk and Petrov (1987)) both fields hMV and h t p v  
decrease at r + m  no slower than llr. The total energy for each of the field 
configurations is the same, namely: Mc2 (as it should be for the Schwarzshild 
black hole, see in Grishchuk et af. (1984)). 

For both solutions the choice of the background metric in the form (3.9) 
excludes the domain - a s I < 0 from consideration in the field description. We 
do not know a solution where the complete space-time presented by the solution 
(2.1) (not its part) could be considered in unique flat background world without 
breaking the conditions (3.12). A search of such solutions is equivalent to a 
search of harmonic coordinates discussed in the end of Sec. 2. We are not 
interested in this question because for our purpose (to compare particle 
trajectories in the neighbourhood of r = a for solutions (2.1) and (2.5)) the 
peculiarity mentioned is not an obstacle. 

Finally, let us discuss the trajectories of the test particles. For a free particle 
falling radially in the field configuration (3.10) a solution of the equations of 
motion has the form: 

r - a '  \ r+  a/ ' 
(3.13) 

After integration of cdt = (u"/ul)dr one obtains the equation (2.4), where now t 
and r are the auxiliary flat background world coordinates. The particle 
approaches r = a for an infinitely long time t .  On the other hand, for the field 
configuration (3.11) we have: 

+ \+a) 
(3.14) 

Now, by integrating cdt = (u to /u t l )d r  one obtains the equation (2.6) (with the 
change t = I ) ,  that is, unlike (3.13), the particle approaches the event horizon 
and penetrates under it at finite value of the parameter t. 

Now let us consider the connection between the field configuration (3.10) and 
(3.11). For their construction the solutions (2.1) and (2.5) were taken as initial 
ones. However, the solutions (2.1) and (2.5) are connected by a coordinate 
transformation. Therefore, (see Introduction and the first half of this section) 
these field configurations should be connected by a gauge transformation (3.7). 
Indeed, this is so. Picking out one of the discussed field configurations as an initial 
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one, using (3.7) one obtains the other one. The operator a in (3.7) is defined by 
the coordinate transformations given in the Appendix. 

The same is valid for the vector components un. Each of the solutions (3.13) 
and (3.14) can be obtained one from another by the gauge transformation (3.8). 
Essentially for a test particle trajectory in the auxiliary background world this 
means the following. By a gauge transformation either this line is saved from a 
“catastrofic” discontinuity at the event horizon or, on the contrary, an initially 
continuous trajectory is “broken”. It is pertinent to remind that gauge transfor- 
mations act neither upon the coordinates, nor upon the background metric. 
Besides that, here they do not violate the conditions (3.12). Thus, in the exact 
field formulation of GR a particle trajectory in a background world can be 
essentially changed by a finite gauge transformations. In the case of the weak 
field formulation this line is changed only “slightly” (Mashhoon and Grishchuk, 
1980). 

In conclusion, let us note the following. Taking into account that (3.12) is 
satisfied, one could ascribe to the parameter t a wrong meaning of an observed 
variable in the flat world. Then as a result of an investigation of the field 
configuration (3.10) one could get the opinion that black holes are impossible 
since t-+m as far as the particle approaches the Schwarzshild sphere (Logunov 
and Mestvirishvili, 1986). Here, without breaking the conditions (3.12), we 
presented a solution where the particle approaches the event horizon and crosses 
it without obstacles. that is, we show, that the additional conditions (3.12) do not 
exclude black holes. 

Acknowledgements 

The author expresses his gratitude to L. P. Grishchuk for numerous useful 
discussions and very valuable recommendations. 

APPENDIX 

In  the Appendix we show how the new harmonic coordinates were found. 
The general form of the equations for coordinate transformations conserving 

the conditions (2.3) is given in Fock (1959). Using the metric (2.1) as an initial 
example, let us write these equations for the transformations that preserve 
spherical symmetry (and which also do not alter the angles, that is, 8+ 8, 
(P- (P): 

(r + a)’ . 
r - a  

(r2 - a2)t” + 2rt’ - ~ f = 0, 
(A.1) 

p = 0  (r + a)3 
(r’ - a2)pf ’  + 2rp’ - 2p - ~ 

r - a  

where t = t ( t ,  r),  p = p(t, r), (.) = d/cdt ,  (‘) = d/dr. Restricting ourselves by the 
requirement that the metric in the new coordinates should not depend on t, we 
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have z = A,t + A2 + R ( r ) ,  p = p ( r ) .  Then, using (A . l )  one gets: 

t = A l t + A 2 + B l l n  

p = C l r  + c 2 ( k I n  1-1 r - a  + I), 
r + a  

where A l ,  AZJ B1, BZJ C1 and C2 are constants. With no loss of generality we 
take A2 = B2 = 0. If we desire to have the Minkowsky metric at r--* 03 after a 
transformation like (2.2), we should put A l  = C ,  = 1. Following Belinfante and 
Garrison (1962), we choose C 2 = 0 ,  since for C 2 # 0  the one to one correspon- 
dence between the physical space-time points and the harmonic coordinate points 
is broken even outside the event horizon. Finally, from the requirement that the 
particle should approach the event horizon at a finite time t the choice B ,  = 2a/c 
follows. The mentioned logarithmic term in the geodesic equation (2.4) vanishes 
just in this case, that is the equation (2.4) is transformed into (2.6). 

So the transformation to be found takes the final form 
r - a  

c t = c t + 2 a I n  - 
lr + al 

r = r ,  e = 8, cp = v- 
If this transformation applied to (2.1), the metric (2.5) is obtained. Vice versa, 
the transformation inverse to (A.3) applied to the metric (2.5), gives (2.1). 

According to the point of view of Zelmanov’s method of chonometric 
invariants (see in Zelmanov (1956); Zel’manov and Agakov (1989)), the 
transformation (A.3) differs from the transformations from Schwarzshild’s 
coordinates to the Lemaitre, Kruskal-Szekeres or Novikov coordinates (Landau 
and Lifshitz, 1975; Misner el al., 1973; Novikov and Frolov, 1986) and it is only 
similar to the transformation into the Finkelstein ones (Finkelstein, 1958). 

The coordinates found are similar to the contracting Finkelstein coordinates. In 
the solution (2.5) particles falling into a black hole are described well at the event 
horizon, unlike those ejected from its interior. In order to construct a coordinate 
system, where description of the ejected particles would be convenient, one has 
to choose B I  = -2a/c in (A.2). Then as a result one would obtain expanding 
coordinates. They will be also harmonic. 
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