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The author considers problems of the practical construction of the analytical theory of the motion of
artificial Earth satellites and the relevant computational programme. He reports about the
construction of this theory, algorithms and programmes. He also points out their merits, gives
assessments of the accuracy of calculations of the coordinates of satellites as well as turning to
concrete examples.
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1. INTRODUCTION

The analytical theory of the motion of artificial Earth satellites has been worked
out by many authors [1, 2, 3, 4, 5]. Until the accuracy of observations of satellites
amounted to 2-5m, the analytical methods of calculating coordinates were
applied for solving many problems. With this accuracy, analytical methods call for
much less time or calculations than methods of numerical integration.

Over the past 20 years the accuracy of observations of satellites has increased
roughly by 100 times. Using modern laser ranging, it is possible to measure the
distance to the satellite with an accuracy of 3-5cm. The attempts to base
calculation programmes on the analytical theory of the motion of artificial Earth
satellites that enable one to calculate the coordinates of the satellite with such
high accuracy have not led to the desired result. Difficulties cropped up due to the
considerable increase of the length of the formulae of the theory while striving for
the accuracy of 1cm. Even the use of systems of programming of analytical
transformations on the computer [4, 6, 7] caused problems.

However, the necessity of the further development of analytical methods and
algorithms of calculating the coordinates of satellites is prompted at least by three
aspects. In the first place, the analytical theory can be successfully used for
solving applied problems in which the required accuracy is not so high. For
instance, the setting of a ground directional aerial to bear on the satellite is
among such problems. Secondly, the analytical theory makes it possible, without
large expenses of the time of calculations, to assess the influence of various
disturbing factors. These estimates can be used, for example, for choosing the
needed combination of the terms of the expansion of functions representing the
right-hand sides of differential equations of the motion of artificial Earth satellites
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120 N. V. EMELYANOV

in case of numerical integration. Discarding of non-essential terms can lead to a
great saving of calculation time. Analytical methods enable one to determine the
sensitivity of the given combination of observations to variations of different
parameters of the expansion of the geopotential. This should be known while
determining the parameters from observations. Thirdly, the problem of ad-
vantages of numerical and analytical methods with the high accuracy of
calculating the coordinates of the satellite cannot be regarded as closed. It is
especially important to consider the case when the coordinates of the satellite are
calculated with due account for the expansion of the geopotential with the
accuracy of up to harmonics of very high orders and degrees, for instance, 180. In
such a case, the calculation of the right-hand sides of equations of motion during
numerical integration, require a great calculational expense. At the same time, it
is known that the magnitude of disturbances from harmonics on the order of 180
is small. Therefore, such disturbances can be determined without high relative
accuracy, which is quite accessible in practice while using analytical methods of
calculating the coordinates of the satellite.

As can be judged from the latest publications on the problem under
consideration, and also from our experience, the compilation of suitable
algorithms that effectively realize analytical methods, is the main issue in using
analytical methods for calculating the coordinates of satellites with high accuracy.

This paper briefly describes the results obtained by the author in the field under
consideration. The main ideas, and partly their implementation, have been
described in the author’s papers [8-12].

2. AN INTERMEDIATE ORBIT

The construction of an analytical theory of the motion of the satellite is usually
based on an intermediate model of motion that includes the effect of the main
forces acting on the satellite. The impact of other factors is taken into account by
methods of the theory of disturbances. The Keplerian orbit is the simplest case of
intermediate motion.

The effective path of constructing the analytical theory of the motion of
artificial Earth satellites based on the non-Keplerian intermediate orbit was
shown in papers [5, 13, 14]. The gain is that the intermediate orbit of the satellite
based on solving the generalized problem of two fixed centres fully takes into
account the influence of the second and third zonal harmonics of the expansion of
the potential of the Earth’s gravity. The trajectory of the satellite moving along
an intermediate orbit is described by the force function [5, 14].

szinl{ 1+\/_——10 + 1—V-1lo }
Vx2+y2 4 [z —c(o + V=D \/xz-l—yz+[z—c(o—\/—_l)]2 ’

2
where x, y, z—rectangular coordinates of the satellite, f—gravitational constant,
m-—mass of the Earth. Constants ¢ and ¢ are determined from the relationship:

12 1/2 J 12 —-1/2
C=r0[-’2— 2 2] ’ 0=—i[12_ - 2] ,
(21) 27, (21)




THEORY OF ARTIFICIAL EARTH SATELLITES 121

where r—mean equatorial Earth radius, J, and J;—coefficients of the second and
third zonal harmonics of the expansion of the potential of the Earth’s gravity,
respectively. .

It is usual practice to estimate the smallness of the disturbing factors with
respect to the potential of the Earth’s gravity as material points. For the Earth, J,
is of the order of 10> while J; has the order of 107°. This is why the first order of
smallness is ascribed to the second zonal harmonic. The remaining harmonics will
be of the second order of smallness.

The formulae of the intermediate orbit express rectangular coordinates and
velocity of the satellite as explicit functions of time and six elements of the orbit.
They are similar to formulae of the Keplerian orbit, but contain series with
respect to degrees of parameters:

J.
g=5L— ¢, 52=§‘—;;,
which have the first order of smallness.

Formulae derived manually with the accuracy of up to terms of the second
order were published in papers [5, 14]. Paper [9] reports the creation of the
calculational programme, making it possible to derive sought for formulae, with
any necessary accuracy, with the aid of the computer. They were derived with the
accuracy up to terms of the fourth order.

Expressions for coordinates contain three linear functions of time similar to the
mean anomaly under the signs of sines and cosines. Time coefficients in these
functions are also presented by series according to powers of small parameters
£, &. Terms of such series are called secular.

Let us now consider several examples of comparing the calculations with the
results of numerical integration according to formulae of the intermediate orbit.
This will demonstrate the accuracy of the formulae of the intermediate orbit of
the satellite, which would fully take into account the influence of the second and
third zonal harmonics in the expansion of the potential of the Earth’s gravity. All
periodical terms were taken into account to an accuracy of up to the second order
of magnitude and all secular terms were taken into consideration with the
accuracy of up to the third order of magnitude. This means that periodical terms
contained factors:

J3 J3
J2;_’J%)JS)_
" J3
and secular terms contained factors:
J3 J?
5L, I3, =, 03, =.
2 2 J% 2 .,2

Two satellites were taken as examples. One of them is hypothetical (Hypo)
with orbital elements: the mean motion is 12.196 revolutions per 24 hours, the
eccentricity is 0.1 and the inclination is 49°.82. The other satellite similar to the
geodetic satellite Starlet has the elements: the mean motion is 13.82 revolutions
per 24 hours, the eccentricity is 0.021, the inclination is 49°.82. The investigations
were carried out during the time interval of 150 days. Comparisons were made of
the rectangular coordinates obtained for some intermediate time moments
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according to the formulae, and from the numerical integration of the equations of
the satellite’s motion. For the Hypo satellite, deviations did not exceed 2.2 cm
and for the Starlet satellite 1.8 cm.

3. THE METHOD OF THE THEORY OF DISTURBANCES

The impact of the factors that are not included in the model of intermediate
motion is taken into account by methods of the perturbation theory. These
methods can be divided into two groups: the methods of the small parameter and
methods of canonical transformations. Methods of canonical transformations also
use the smallness of some parameters. Some papers stress the merits of the
modification of the method of canonical transformations—the Hori-Deprit
method [7, 15]. The main advantage is that while calculating the perturbations as
functions of osculating elements and perturbations as functions of mean elements,
use is made of the same transformation function. However, in the practical
application of the theory these advantages are often inessential. The merits of any
method can be correctly assessed only while compiling the relevant computational
programme and solving concrete problems.

In this paper the Poisson small parameter method is used [16, 17]. Elements of
the adopted intermediate orbit of the satellite are similar to the elements of the
Keplerian orbit. Let us denote through «, a,, a3 the elements similar to the
semi-major axis, to the eccentricity and to the inclination of the satellite’s orbit
and through S,, B,, fi; the elements similar to the mean anomaly, to the angular
distance of the perigee from the ascending node and to the longitude of the
ascending node of the intermediate orbit, respectively.

Differential equations of the satellite’s perturbed motion will be written in
chosen variables in the form:

da; apg; .
7 A, o + B, (i=1,2,3),
where:

3 OR 2 S8R
;= T =D, a4y i=1,2,3).
Al ’:21 al/ aﬂ] s Bl Zl ji aa/i ( E et ] )

Here t—time, R—perturbing function, while a;;, n—functions depend only on
ay, &,, az. The perturbing function is regarded as small since it describes the
impact of factors that are not taken into account in the intermediate orbit. Its
order of smallness depends on the choice of the satellite’s intermediate orbit. If
the intermediate orbit is Keplerian, the main term of the perturbing function is
due to the Earth’s oblateness and for satellites with the height interval of 1000
to 20,000 km it can be considered the small value of the first order. In the case of
the intermediate orbit that takes into account the second zonal harmonic in the
expansion of the potential of the Earth’s gravity, the perturbing function for the
above-mentioned class of satellites will have the second order of smallness. To
solve equations by the small parameter method it is necessary to expand
right-hand sides into series by powers of small parameters and to search for the
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solution also in the form of the series. Let us denote the order of smallness by the
upper index in brackets.

For the Keplerian intermediate orbit of the satellite the expansion of the
perturbing function into powers of small parameters under consideration consists
just of two terms:

R=R"+ RO,

The coordinates of the satellite in the non-Keplerian intermediate orbit depend
on small parameters €,, £,. In this case the perturbing function has the second
order of smallness and its expansion will be written in the form:

R'=R(2)+R(3)+R(4)+ .

The procedure of the small parameter method is described in the textbook [16}].
For the given case the procedure is considered in detail in [17}. Therefore, it is
not given here. It consists in the successive fulfilment of analytical operations over
the perturbing function. These are operations of three types: 1) differentiation (3)
with respect to arguments a;, a,, as, B,, By, B3, 2) integration () with respect
to time, 3) multiplication (X) of derivatives from the perturbing function by the
expression that is obtained after the integration. Since the perturbing function
represents a series containing up to several tens of thousands of terms, the
multiplication operation (X) is very time-consuming even for computers.

As it follows from [8, 10, 11], the disturbing function for all perturbing factors
of a gravitational nature is represented in the form of a trigonometric series with
coefficients depending only on «,, &, @3, and with arguments that are linear in
time. The periods of harmonics of such expansion are determined by combina-
tions of frequencies of rotational processes: the satellite’s orbital motion, the
revolution of the node and the perigee of the orbit of the satellite, similar
processes for the Moon and the Sun, and the Earth’s rotation. The disturbances
in the motion of the satellite of the class under consideration have the following
typical periods: short-periodical—the period of the satellite’s revolution,
diurnal—the period of the Earth’s revolution, mean-periodical—half-period of
the Moon’s revolution and long-periodical-—periods of the revolution of the node
and the perigee of the satellite’s orbit, the half-period of the Sun’s revolution.
After the integration of each trigonometric term of the expansion of the
perturbing function with respect to time (f), the frequency of one harmonic is
written in the denominator. This is why for long-periodical terms each process of
integration with respect to time lowers the order of the smallness of the
perturbation by unity. Table 1 shows the minimal orders of the smaliness of
perturbations obtained at each stage of applying the small parameter method for
Keplerian and non-Keplerian intermediate orbits.

Table 1 S—secular disturbances, Sh—short-periodical, L—long-
periodical

Keplerian orbit Non-Keplerian orbit

No.
of stage  Operations S Sh L Ay Sh L
1 3, f 1 1 — 2 2 1

2 x,8,f 2 2 1 3 3 2
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As evident from the table, to obtain all disturbances of the prescribed order of
smallness for the non-Keplerian intermediate orbit in the small parameter method
it is necessary to fulfil by one step less. It is of special importance that it is
necessary to carry out a one multiplication of series less. The ;)ayment for such
simplification is the necessity to obtain expressions for R®, R®,. . .. The
expressions for R® in cases of perturbations due to the non-sphericity of the
Earth and from the Moon and the Sun are derived manually in [10, 11]. As a
result it turns out that the problem of the advantages of an intermediate orbit can
be solved only through the realization of the theory in the form of the
computational programme. At least it is obvious that to obtain all secular and
short-periodical perturbations up to the second order of smallness and all
long-periodical perturbations of the first order it is more advantageous to use the
intermediate orbit based on the solution of a generalized problem of two fixed
centres. The implementation of such theory shows that in time intervals of up to
five days, the accuracy of about 2 m in the satellite’s coordinates is obtained.

4. THE EXPANSION OF THE PERTURBING FUNCTION

The initial expression for the geopotential U as a function of the spherical
coordinates of the satellite is used by us in the form:

fm& &g, :
U="—=2 > = P,(sin )(C, cos kA + S, sin kA),
' n—ok=ol

where r—geocentric distance, g—latitude, A—Ilongitude of the satellite with
respect to the Greenwich meridian, P, (sin ¢)—Legendre functions (with
k =0—Legendre polynomials), r,, C,x, S..—numerical expansion coefficients.
The limit of summing N is chosen depending on the required accuracy of
calculating the coordinates of the satellite and on the height of the satellite above
the Earth. Practically with the modern accuracy of observations N can assume
values of up to 180.

The initial expression for the perturbing function conditioned by the attraction
of the external perturbing body (the Moon or the Sun) is of the form:

1 xx'+yy' +zz'
R
fm A r12

where m'—mass of the perturbing body, A—distance from the satellite to the
perturbing body, x', y’, z’, r'—geocentric coordinates and the distance of the
perturbing body.

To fulfil the analytical solution of differential equations for elements of the
intermediate orbit, the perturbing function must be expressed through elements.
Working out the algorithm of solving the problem, we expressed the perturbing
function in the general form for all perturbing factors of the gravitational nature:

sin\ . . . ) . . .
R= 2 R;(.k»?-jq<cos)(hﬁl + JoBa+j3Bs + jaS +jsh + A+ - - - fohs),
hJe

where S-—sideral time, A4, ..., As—fundamental arguments and the mean
longitude of the Moon. The index k determines the choice of the trigonometric
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function: k=0 for sin, k=1 for cos. The values R{*).. depend on elements
a,, &, a3. Such a form of expansion was first adopted in f8]. It turns out that the
perturbing function conditioned by tides of the absolutely elastic Earth can also
be expressed in this form [18]. Concrete expressions of values R for various
types of perturbing factors are obtained in 8, 10, 11, 18, 19].

In the particular case of perturbations due to the Earth’s non-sphericity we
have:

Ja=~Js Js=js="-jo=0.

Coefficients in the expansion of the perturbing function R can be expressed more
briefly through: R{). while expressions for them have the form [19]:

o
RSy =fm 2 a7 Fp (@)X} (ar) )

q,j3>
p=p’
where:

— 7 0 _ C 1) 2
q9=] + 2p’ CSI}3 - rgsq,fz’ CSLL - rgcq»is’

functions of the inclination and functions of eccentricity are denoted through
F...(a3), X (&,). The summation limits are determined this way:

) N—-j " . L.
p=B("5E), =B max (0,2 2~ o s~ )
and:

qui =S.p» Cq./' =C,,; for gq—j—even,

S—‘Ixj = Cq,i’ Cq,j = _Sq,j, q —] e odd.

The expression given here for the disturbing function were derived in
[8, 10, 11, 19]. They are convenient in compiling the algorithms of the calculation
of disturbances. Subsequently such form of expressions was used in [20, 21].

5. THE REALIZATION OF THE THEORY OF THE MOTION OF
ARTIFICIAL EARTH SATELLITES

There is a distance between the publication of convenient formulae of the
analytical theory of motion and its implementation in the form of the computa-
tional programme that makes it possible to determine the coordinates of satellites
at the prescribed time moments. Here one has to overcome difficulties associated
with restrictions of means of calculation and means of programming.

In [12] T reported the construction of the analytical theory of the motion of the
artificial Earth satellite by the Poisson small parameter method on the basis of the
above-described non-Keplerian intermediate orbit. The theory is implemented in
the form of the computational programme. I obtained all secular and short-
periodical terms with the accuracy of up to the third order and all long-period
terms up to the second order, inclusive. Two stages of the small parameter
method listed in Table 1 are fulfilled. In constructing the theory series containing
several thousands of terms are multiplied. These operations are carried out with
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Table 2

Satellite orbit Deviations

Semi-major axis Eccentr.  Inclin. rms max
7,969 km 0.01144 47°.227 5.1cm 153 cm

12,275 km 0.00385 110°.005 4.7cm 14.5cm

the help of computers without using systems of programming analytical opera-
tions in the letter form. Due to the lack of space I do not describe the algorithm
of such construction of the theory. Let us consider only performed estimates of
the accuracy of the created theory.

The accuracy of the analytical theory of the satellite’s motion was estimated
through comparison of calculations under the constructed computation pro-
gramme with the results of the numerical integration of the equations of motion
in rectangular coordinates. The accuracy was controlled separately for distur-
bances due to the Earth’s non-sphericity and disturbances due to the impact of
the Moon and the Sun.

Let us consider the results of the comparison in the case of disturbances due to
the Earth’s non-sphericity. The comparison was made at the time interval of 2
days. In the expansion of the potential of terrestrial attraction I took into account
all terms up to the 20th order and degree, inclusively. Two model satellites were
considered. One of them is similar to the satellite Lageos. Table 2 shows the
root-mean-square and maximum deviations of coordinates at the interval of the
comparison for two satellites.

The accuracy of the theory in the case of disturbances due to the Moon was
estimated for the Lageos satellite in two time intervals. The root-mean-square
value of deviations at the 2-day interval made up 34 cm and at the 30-day interval
about 2 m. The analysis of the deviations has shown that they are of a periodic
nature depending on time with the period of about 14 days. The lowering of the
accuracy of the analytical theory of the satellite’s motion in the case of
disturbances due to the Moon is conditioned by the fact that disturbances with
periods of about 14 days which must be obtained while performing the next stages
of the small parameter method are not taken into account. These disturbances
have a considerable magnitude since in the course of the triple integration with
respect to time, the small frequency of the harmonic (1/14 of the revolution per
24 hours) enters three times the denominator of the expression for disturbances.

The merit of the constructed algorithm of the analytical theory is that it is
feasible to a first approximation to determine disturbances separately from any
harmonic of the expansion of the geopotential. Periodical perturbations due to
factors of a gravitational nature can be easily analysed as regards periods and
amplitudes.
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