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IMAGE RESTORATION: METHOD- 
INDEPENDENT LIMIT OF EFFICIENCY 

AND ITS REALIZATION 

V. YU. TEREBIZH 
Crimean Station of Sternberg Astronomical Institute, 334413, Nauchny , Crimea 

Due to radiational and external noise, any image forming system can be described only in a frame of a 
stochastic model, with probability f ( N ,  S) of occurrence of the observed image N, for any searched 
object S. Thus, restoration problem must inevitably be considered as a statistical estimation of 
unknown parameters S. Proceeding from the appropriate definition of restoration efficiency, it is 
possible to show that the method-independent limit of efficiency and accuracy is set by the 
Rao-Cramer theorem. The most promising way to achieve the theoretical limit is based on a 
maximum likelihood image restoration (MLIR) method. Indeed, MLIR gives limiting accuracy when 
light intensity begins to exceed the mean level of external noise. The maximum entropy method 
includes non-necessary, and logically inconsistent, assumptions. 

The concrete formulae for the calculation of an object estimate, and its accuracy, are given. Test 
cases are given, and examples, of using the proposed approach to different inverse problems. 

KEY WORDS Image processing, image restoration. 

1. INTRODUCTION 

The problem of image restoration in its strict meaning assumes the existence of an 
unknown initial image, object S(x ) ,  that was blurred by some image formation 
system with a Point Spread Function (PSF) and by random noise. It is necessary 
to restore the object as accurately as possible, on the basis of the observed image, 
and a priori information about the object, PSF and noise. This problem 
constitutes the particular case of the general class of inverse problems, and one 
can imply another meaning of the above functions at different circumstances. We 
will discuss such possibilities later (see Section 9). Now let us consider the image 
formation process with its specific feature: non-negative object generated by 
stochastic distribution of quantum events. 

During more than fifty years of image restoration theory development, a 
number of relevant methods were proposed (see reviews by Frieden, 1979, by 
Vasilenko and Taratorin, 1986 and by Jain, 1989, ch. 8). The choice of one of the 
methods in a given circumstance, usually depends on a computer power, 
traditions or other attendant factors. From a rigorous point of view, just the 
existence of such a huge number of the image restoration methods, shows clearly 
the presence of serious difficulties in this field. Indeed, it is not a simple problem 
even to compare the power of various methods because it depends on a specific 
situation. 

3 
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At the same time, it seems evident that under given conditions of observations, 
including a priori information, the signal to noise ratio and the PSF form, a 
method-independent natural limit exists of image restoration efficiency. The 
existence of such a limit allows us to introduce an absolute order in the power of 
various methods, and to give the quantitative estimate of the accessible errors of 
restoration. 

The purpose of this paper is to discuss all aspects connected with the meaning 
and realization of the theoretical limit of restoration accuracy. The discussion 
proceeds from six papers of the author, and collaborators at Astrofizika, from 
which the first part was already published (Terebizh, 1990). For brevity, we 
designate the parts of this series as MLIR-1,. . . , MLIR-6. Further necessary 
references are given in the text. 

The main inferences of subsequent discussion are as follows. 

(i) Due to inner (radiational) and external noise, any image forming system 
can be described only in a frame of some stochastic model. The sole aim of this 
model is to provide the conditional probability Pr (image I object) = f ( N ,  S )  of 
occurrence of the observed image N, under a given object that we describe by a 
set of unknown parameters S = (Sl, . . . , Sn), for example, object intensities at 
n pixels, or some structural parameters. 
(ii) The stochastic nature of the image formation process inevitably brings the 
restoration problem to the estimation theory of unknown parameters S. We 
will name this method of thought for brevity,-as statistical parameters estimation 
(SPE). 
(iii) Proceeding from the appropriate definition of efficiency of a restoration 
method (for example, in a root-mean-square sense) it is possible to show that 
the method-independent limit of efficiency and accuracy is given by the 
Rao-Cramer theorem. 
(iv) The most promising way to achieve the theoretical limit of efficiency is 
connected with the maximum likelihood principle. This statement is based on a 
theorem that maximum likelihood estimate coincides with the most efficient 
estimate, if this latter exists at all. 
(v) In a frame of suitably chosen stochastic models of image formation, the 
maximum likelihood image restoration (MLIR) method demonstrates the 
limiting efficiency when light intensity becomes approximately equal to the 
mean level of external noise. 
(vi) The comparative study of SPE, and the now widely used maximum 
entropy (MEM) approaches, show that MEM includes the non-necessary and 
logically inconsistent assumptions. Therefore, all versions of this method 
cannot avoid the investigator’s influence on the choice of solution. On the 
contrary, the SPE approach takes into account all available information about 
the object, imaging system, and noise, and only this information. 

The concrete expressions for calculation of the object estimate and its accuracy 

To simplify notations we use one-dimensional version of the problem; it is easy 
(error corridor) are also given. 

to rewrite the final expressions at needed form. 
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5 IMAGE RESTORATION 

2. IMAGE RESTORATION AS A STATISTICAL PROBLEM OF 
PARAMETERS ESTIMATION 

Due to the quantum nature of light, we have dealt only with an ensemble of 
photoevents: the grains of photoemulsion, photoelectrons in the transparent 
cathodes, the electron-hole pairs in CCD’s and so forth. Similar events take place 
in electronic images. Obviously, an ensemble of events is stochastic, and its 
statistical properties depend on the nature of incident radiation and detector. The 
events are obey the classical statistics in view of its spatial distinguishability. 

The subsequent discussion will be much clearer if we firstly consider the simple 
models of image formation. This is when one attempts to find the object estimate, 
solely on the basis of the finite sample of events or  under zero external noise. 
Since it is very difficult to avoid introducing external noise, these cases do  not 
have practical significance, but from the theoretical point of view they are quite 
useful. After considering these “mental experiments”, more realistic models are 
investigated with the remaining previous approach to the restoration problem. 
We will follow Terebizh (1990) and MLIR-5. 

2.1. Model A 

Let us introduce, at once, necessary discretization and consider the unknown 
theoretical brightness distribution at the object as non-negative vector 
s = (sl, . . . , s,) normalized in the following way: 

If we have an ideal imaging system, the distribution s of events will result after 
the registration of infinitely large number of photons. But every image consists 
onlv from some finite number of events, for example, L. As a consequence, 
reai sampled distribution of events Y = (vl, . .-. , v,) is different- from 
expected (mean) distribution s k  = L . s k .  Of course, 

n n 

c, Y k  = s k  = L. 
1 1 

the 
the 

(2) 

We have here the typical sequence of independent trials (Feller, 1966), so the 
probabilityf(v, s) to obtain the given vector ( Y k ) ,  that satisfies the condition (2) ,  
is obeyed to the multinomial distribution: 

L! 
YI! . . . Y,! 

ST’. . . s:, f ( v ,  s) = 

and the depending from unknown object part is: 
n 

Inf(v, s) = 2 Irk . In sk + const. 
k = l  

(3) 

(4) 

As we will see later, just the expression for probability f is necessary in order to 
find and to compare different estimates of the object. 
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Figure 1 Example of blurring and restoring of an object; a-initial image (object), &result of 
stochastic smoothing by an imaging system, c-bserved image after adding external noise to previous 
image, d-result of restoration with the aid of MLIR method. 

2.2. Model B 

In a practice, the imaging system redistributes events from each pixel to  a wide 
set of other pixels, so the array of n initial pixels will be transformed to the array 
of m 2 n pixels (Figure lb). The concrete manner of this smoothing can be taken 
into account by a suitably chosen model. The linear smoothing without external 
noise was considered by Richardson (1972), Lucy (1974) and Kosarev et al. 
(1983). 

Assume, according to Terebizh (1990), that in conditions of Model B the 
imaging system works in such a way. Any initial light event that for the ideal 
system should take place, say, at pixel k, may be distributed in real imaging 
system to pixel j with probability hjk, where: 

Each of the L events is distributed independently from the others. So, the 
imaging system is linear, and for any event, the probability to reach pixel j 
becomes: 

Now we have the sequence of independent trials with the probability array 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
12

:0
0 

18
 D

ec
em

be
r 2

00
7 

7 IMAGE RESTORATION 

(pi) ,  and the probability of occurrence, the numbers (vk)  is equal to: 

L!  
p ; ' .  . . P,". 

Y , !  . . . vm! f (v ,  s) = 

Equations (6) and (7) define f ( v ,  s) for any (sk).  We have also: 
m 

Inf(v, s) = 2 vj - Inpj(s) + const. 
j = 1  

(7) 

2.3. Model C 

Of course, the most interesting is the case, when the image is blurred due to both 
inner fluctuations and external noise. The corresponding consideration was given 
by the author (Terebizh, 1990). We give here only the final results. 

As regards to the smoothing, we assume the same linear stochastic process that 
was introduced in Models A and B. Matrix (hjk) is assumed to be known, but it is 
easy to generalize the theory and input in the PSF some free parameters. If PSF is 
the Kronecker symbol, we have the problem of filtering a noisy image. 

The external noise is defined by a random vector (cj) ,  that has to be added to 
the numbers of light events in corresponding pixels of smoothed image (Figure 
lc). All variables ( E j )  are supposed to be mutually independent (white noise) and 
have the Poisson distribution: 

r = 0 ,  1 , .  . .; 
Pr ( ljj = r )  = exp (- bj)  . -, 

r! j = l , 2 , .  . . ,172. (9) 

Introduce designations E( a) for mean value and D( a) for variance of a random 
variable a. For Poisson distribution 

E( E j )  = D( E j )  = bj, (10) 
and the mean background may be both uniform (b, = b = const) or arbitrarily 
varying. 

At last, the observed image (Nj), j = 1, . . . , m, is defined by the distribution of 
registered events including redistributed light events and noise. We observe: 

events at all. Notation Sk = L . sk is also used. 
The strict expression for distribution f(N, S) in the Model C is complicated. By 

using the Darwin-Fowler asymptotic approximation (valid for the number of 
events beginning from a few dozen), it was found: 

where A(N, S) is the root of equation: 
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One can expect from the central limit theorem that approximation A = 1 will be 
better with more total numbers of events. 

2.4. Incoherent source 

We turn now to a very important practice case, when a priori information 
suggests an incoherent nature of the object’s radiation. 

Both the semi-classical approach and the strict quantum theory of time 
distribution of photoevents, shows that for incoherent radiation, the photoevents 
sequence is a twice stochastic Poisson process or Cox-Mandel process (Cox, 1955; 
Mandel, 1958, 1959; Loudon, 1973). This process follows from the usual Poisson 
process if its intensity in one’s turn is assumed to be the stationary stochastic 
process. It is difficult to investigate the general properties of the Cox-Mandel 
process (Mehta, 1970; Terebizh 1991), but, fortunately, for a very wide sphere of 
phenomenons this process can be approximated by the usual Poisson sequence. It 
is necessary to have the exposition time much larger than the coherence time of 
light. Just this condition is fulfilled for typical astronomical or physical experi- 
ment. We consider, below, the temporal process of image formation for 
incoherent sources as a simple Poisson process with a constant intensity. 

We can consider this model, by randomizing the number of light events L at 
Model C in accordance with Poisson law, or by randomizing the independent 
fluxes in pixels. The details one can find in MLIR-5, the final expression for 
density distribution is evident: 

rn Ai”, 
f ( N ,  S) = n exp (-A,) . - 

j =  1 Nj! ’ 

where S = ( S k )  is vector of mean intensities of the incident radiation (object) and: 
n 

are the mean quantities of events in the blurred and noised image, We have, from 
the last two expressions, and (5): 

m n 

lnf(N, S) = 2 N, . In A j ( S )  - S, + const. 
j = I  k = l  

Again, this expression follows from (12) if we take A = 1. It should be noticed 
that functional (16) can be successfully used as an approximation to (12) even in 
the case, when Poissonian scheme is not valid; the reason for this is that it is 
connected with the law of large numbers. 

2.5. Formulation of Image Restoration Problem 

The number of model examples that are similar to those considered above can be 
easily increased. The first task of the investigator is choosing the appropriate 
image formation model that accounts data, and a priori information. The next 
step is connected with calculating the probability f ( N , S )  to obtain an observed 
image for any object. At last, from the main characteristic of the concrete 
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IMAGE RESTORATION 9 

problem f ( N ,  S), we ought to find the method-independent accuracy that it is 
possible to achieve under the given data, and to provide a method for the 
realization of this accuracy. 

It should be stressed, at first, an important fact. Namely, the finiteness of the 
sample of events, and the stochastic nature of the smoothing process, inevitably 
give rise to a distribution with fluctuations (see Figure 1). This inner, or  
radiational, noise plays a significant role, both for bright and faint images. 
Indeed, the statistics of events is usually close to the Poisson law, and for this 
case a relative value of radiational fluctuations Z;Jz is negligible in comparison 
with additive noise fluctuations, Z;:& only when the light intensity is much less 
than the mean level of noise. For this reason the restoration of images has a 
characteristic feature, in compare with a general inverse problem. The inner noise 
of the image must be taken into account. Particularly, the usual treatment of 
linear image smoothing by integral term I h(x, x ’ ) S ( x ’ )  dx’, is incorrect. 

We now come to the natural formulation of the restoring problem: it is 
necessary to find, some “good” estimates of unknown parameters on the basis of 
the observed image ( N , ,  . . . , N,,,), and available a priori information about the 
object, imaging system, and noise. 

Up to now, a priori information about the object was confined only by 
requirements of its non-negativity and, perhaps, some information about its 
extent. The first property in a natural way was taken into account by the choice of 
probabilistic distributions. Very often there is some additional a priori 
information that allows us to significantly decrease the number of unknown 
variables. Let us consider, for example, the case when initial distribution 
concentrated in a few pixels, that is, looks like discrete spectrum: 

s k  = I k  . d k , k , ,  t = 1, 2 9  . . . T < n. (17) 

Then we only have 2T unknown parameters, and it is possible to achieve more 
deep restoration. Another case gives the relation: 

where U ( x )  is a given function, and a, B, y are unknown parameters (for 
example, we can imagine that U describes the law of brightness distribution in 
elliptical galaxies, when we have dealt with these objects). 

Supplementary information can be taken into account by a similar manner. Just 
from this information depends the ultimate quality of the restored image. For 
simplicity we imply further that unknown set of parameters S can include both 
some structural constants and object intensities, in arbitrary pixels. It is only 
important that the number of these parameters n is no more than the number of 
pixels of the observed image m. In the above discussed sense, the image 
restoration problem means the searching for a set of estimates of any parameters 
that define the model of image formation. 

It is easy to understand that there are infinite methods of estimating an 
unknown set of parameters, that is, of restoring the blurred image. The best from 
them must have the least scattering near the true object; if a concrete model 
allows, (we will see later that it is possible only when the probability density 
f(N, S) has a special form) the scattering achieves the theoretical Rao-Cramer 
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10 V. YU. TEREBIZH 

lower limit. This latter case is usually characterized by a statement that the 
efficient estimate exists. 

3. NUMERICAL EXAMPLE 

In order to compare different methods, and to introduce an absolute limit of their 
efficiency, we ought to consider rather complicated mathematical concepts. It 

4000r1 I I I 1 1  I I I 1 1  I I I  I I I I I I I I I I 1 I I I I 1 I I 1 1  I I 1 1  11 

$ 2000 

3 0 ~  1000 

x 
I .- 
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0 
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a 
A 

u 
2 12 14 16 lk . 20 

Pixels 
Figure 2(a) Object TEST-1 (full line), mean values for 100 MLIR-estimations of the object 
(asterisks), and standard deviations of these estimates (dotted lines). (b) Examples of smoothed and 
noised images of TEST-1. (c) Examples of restored with MLIR images of TEST-1. (d) Calculated 
standard deviations of MLIR-estimates according to 100 simulations (asterisks), and Rao-Cramer 
lower boundary at first approximation (dotted line). 
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seems desirable to analyze, at first, a simple example that shows the necessity and 
meaning of the chosen description. The full data concerning. this example are 
given in MLIR-6. 

The one-dimensional object TEST-1 (Figure 2) has extension n = 17, and its 
blurred and noised image has extension m = 21 pixels. The sampled intensities 
were considered as simulations of independent Poisson random variables, with 
mean values 4 ,  . . . , SI7, the estimates of which should be found; the total mean 

IMAGE RESTORATION 

C 

0 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18119 20 

Pixels 
Figure 2(a) Object TEST-1 (full line), mean values for 100 MLIR-estimations of the object 
(asterisks), and standard deviations of these estimates (dotted lines). (b) Examples of smoothed and 
noised images of TEST-1. (c) Examples of restored with MLIR images of TEST-1. (d) Calculated 
standard deviations of MLIR-estimates according to 100 simulations (asterisks), and Rao- Cramer 
lower boundary at first approximation (dotted line). 
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V. YU. TEREBIZH 12 

brightness of the object is L = 12,200 events. 100 independent simulations of the 
object were performed, and each of them were further randomly smoothed and 
noised by Poisson external noise, with mean total intensity B = 2100. Each of the 
observed images were restored with the aid of MLIR, that was described at 
MLIR-1 and MLIR-5. The Poisson nature of the object and external noise, as 
well as the PSF form and mean level of noise were available as a priori 
information. 

One can expect that the restoration of different random images of the same 
initial object lead to different object estimations. This feature is inherent to all 
methods of image restoration. A “good” method should give the unbiased 
estimate of the object, that is, its mean value from many restorations must be 
equal to the true object, and the efficient estimate, that is, variance of estimate, 
must be as small as possible (see for exact definitions the next section). 

The bias of the mean from the 100 MLIR-estimates of TEST-1 (asterisks on 
Figure 2a) is considerably less than the standard deviation of these estimates 
(dotted lines). In other words, the bias is negligible in the considered case. The 
quality of any estimate depends mainly on its scattering near the true object. 
What can we say about this characteristic for MLIR-estimates of TEST-l? The 
observed scattering, and the least theoretically possible one, that follows from 
Rao-Cramer (RC) theorem (Section 5 ) ,  are compared in Figure 2d. It should be 
noted that the RC limit was only approximately calculated here, without 
knowledge of bias, so, the theoretical boundary for scarce pixels near the edges of 
the image is slightly incorrect. Taking into account this fact, we see that the 
precision of MLIR-estimates can not be exceeded for this example-the error 
corridor for reitoration by MLIR is as narrow as possible. 

The high efficiency of MLIR is not accidental, it is a known result in the 
statistics that if the efficient estimate exists, the maximum likelihood estimate 
coincides with it. 

4. DEFINITION OF RESTORATION EFFICIENCY 

Figure 3 represents the main features of the image restoration procedure. It is 
considered at the frame of statistical parameters estimation approach. 

Due to both radiational and external noise, any object, say 0’ or Of’, from the 
object space, has inevitably random counterparts at the image space. If we define 
a stochastic model of image formation, it is only possible to calculate the 
probability distributions P’ and P“ to observe images that were caused by the 
objects 0’ and 0 correspondingly. Similarly, the true object corresponds at the 
image space to the probability density Pt, and somewhere under this distribution 
is the really observed image. 

Assume that we use some method to reach an estimate of true object E,. Of 
course, it is very improbable to strictly get the true object; as a rule we will obtain 
an estimate at the distance p > 0 from it. As long as the observed image is 
random, so is p .  From many “imaging and restoration” procedures of the same 
true object, we will obtain an ensemble of object estimates with different values of 
p .  This random variable has some probability density f ,(x),  and can be 
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Object 
space 

Figure 3 The scheme of quality evaluation of a random object estimate. 

characterized by moments: mean value 6 = E(p), variance D(p) = E[p - E(p)]’ 
and so on. It is natural to consider, as a best, the estimate that has minimal 
scattering SL near the true object: 

Q = E(p2) = D(p) + 6’. (19) 

It should be stressed that scattering depends both from variance D(p) and bias 6. 
The choice of quadratic measure of a distance is not only convenient, but is sole 

for any approximately normal sample distribution (Kramer, 1946, ch. 32). 
Up to now, we have considered for the sake of simplicity, the one-dimensional 

case; in reality, both the object S = (Sl, . . . , S,) and its estimate S* = 
(Sy, . . . , S,*) have usually n >> 1 dimensions, and the scattering depends on the 
direction in the object space. The foundation of general theory of parameters 
estimation was given by Ronald Fisher (see numerous references in Cramer, 
1946, especially significant is the 1921 paper by Fisher). Let us turn to this general 
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theory, following partly the handbooks of Cramer (1946) , Kendall and Stuart 
(1969), Cox and Hinkley (1974), Borovkov (1984) and their cited literature. 

In one-dimensional case scattering of the estimate S* near the true value S is: 

&(S) = E(S* - S)2  = D(S*) + a2. (20) 

It seems, that optimal is an estimate, for which SL is not larger than any other 
estimate scattering at arbitrary possible value of S (for all possible objects). A 
simple example S* = const. shows the meaningless of this definition (the broken 
clock once a day is more correct than any other one!). It is quite reasonable to 
narrow the class of possible estimates by considering, for example, only estimates 
with a given bias 6. We name eflcient the one- or multidimensional estimate, for 
which scattering is minimal at a given subclass. 

Consider the multidimensional images. For any model of image formation 
there is a probability density f(Nl, . . . , N,; S,, . . . , S n ) = f ( N ,  S) to observe 
blurred and noised image N for any given object S. We denote by 
f = (cl ,  . . . , 5,) the random image-vector, and by N its possible value. The 
searched estimates S* are functions of f, and to find its moments we should use 
the distribution f ( N ,  S). 

Statistics usually consider a few independent simulations of one- or multi- 
dimensional random variable, and parameter estimations are searched on the 
basis of the whole of this sample. But in the image restoration problem we usually 
have a sole image of a multidimensional object. Therefore, we consider here only 
this latter case, although the generalization is trivial. 

Let us choose a direction y in the n-dimensional object space. The scattering of 
estimate S* in direction y is: 

and for the efficient estimate, the scattering is minimal in all directions. If we 
introduce the scattering matrix: 

= IIwtkll (22) 

(23) 

with elements: 

w;k = E[(ST - S;) . (S; - s k ) ] ,  

we can say that for efficient estimate the quantity: 
n 

Qy = c wik 'Yi 'Yk 
i . k = l  

is minimal for arbitrary vector y. 
In matrix form, the definitions (22) and (23), may be written as: 

W = E[(S* - S)= . (S* - S)], 

where T denotes transposition. Introducing the estimate bias: 

6(S) = E(S*) - S, 
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15 IMAGE RESTORATION 

it is convenient to write the scattering matrix in a form: 

(27) w = a2 + @(S) * 6(S), 
where: 

o2 = E[[S* - E(S*)IT . [S* - E(S*)]] 
-the variance matrix. As one can see, expression (27) is quite similar to the 
one-dimensional formula (19). 

It is easy to imagine all of the above quantities as appropriate descriptions 
(ellipsoid of scattering and so on) of points (restored images) located in 
n-dimensional object space near the true object. 

5. RAO-CRAMER INEQUALITY 

It seems quite evident that it is impossible to find an estimate of unknown 
parameters with an infinitely small scattering. Indeed, it was proved by R. Fisher, 
and other authors after him, that the scattering of any estimate has a lower limit 
(see references in the previous section). This statement is now usually known as 
the Rao-Cramer (RC) theorem. Perhaps, the first proposition to use the R C  
theorem in calculating errors of image restoration, was made by Slump and 
Ferwerda (1986); see also review by Adorf (1990). On the image restoration 
language, the multidimensional RC theorem gives the method-independent the 
most narrow error corridor after restoration. There is no need to explain the 
significance of this result. 

The one-dimensional version of R C  theorem has the following formulation: 
under some regularity conditions R for any estimate S* of unknown parameter S 
with bias 6(S), and limited variance the lower limit of scattering exists, that is 
given by inequality: 

Here : 

-Fisher information, f (c, S)-sample probability density with change N to 
random variable 5 and the stroke means derivative with respect to S .  The condition 
R assumes continuous differentiability of fl’*(N, S )  with respect to S and also 
existence, non-negativity and continuity of Z(S). 

Consider a simple example. Assume that random variable C has Poisson 
distribution f ( N ,  S) = exp ( - S )  * S N / N ! ,  N = 0, 1, . . . with unknown parameter 
S. We have: 313s In f (C, S) = CIS - 1, d2/dS2 lnf(C, S) = - CIS2, and in view of 
EC = S we obtain: Z(S) = S-’. The R C  inequalit for any method of estimation 
may be written as Q(S) 2 [1+ 6’(S)]’ . S + 6 (S). Particularly, the MLIR- 
estimate S =  5; has zero bias, and for this estimate, RC inequ?lity becomes 
Q(S) 2 S. On the other hand, the direct calculation gives s2 = D(S) = S, so the 
scattering of MLIR-estimate reaches the R C  boundary. 

Y 
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V. YU. TEREBIZH 16 

Most useful in practice, is the multidimensional RC theorem: under regularity 
conditions R the scattering matrix (25) of any estimate S* satisfies inequality: 

W ? A ,  (31) 

(32) 

where, by definition, matrix A is: 
A ZE [U + A(S)] Z-'(S) * [U + A(S)]' + a T ( S )  * 6 ( S ) ,  

u k unit matrix, A ( s )  = Ild6j(s)/dskII and Z-'(s) is the inverse matrix to Fisher 
information matrix with elements : 

The R condition assumes continuous differentiability o f f  1'2(N, S) with respect to 
Sk, continuity of Fisher matrix and difference of its determinant from zero. For 
unbiased estimates, evidently, 

W ( S )  2 Z-ys). (34) 
It is now necessary to give some explanations concerning the meaning of matrix 

inequalities. The condition W 2 A equivalent to  the non-negative deficiency of 
matrix W - A ,  that is, to usual inequality: 

for any yl ,  . . . , y,,. In particular, substituting here yj equal to Kronecker symbol 
a,, we obtain for diagonal elements: 

wpp 2 app, p = 1, 2, . . . , n. (36) 
In view of (20) and (23), let us define the scattering of individual component of 
multidimensional parameter by expression: 

Q k ( S )  = Wkk = E(S; - sk)2]. 

Q k ( s )  2 akk, k = 1, . . . , n, 

(37) 

(38) 

Q k ( S )  2 zkk(S),  (39) 

The inequality (36) may be written at the final form: 

where akk are diagonal elements of matrix (32). For unbiased estimate: 

where I'k are elements of matrix Z-', that is inverse to the Fisher information 
matrix (33). 

In the frame of image restoration, these results mean that the scattering of 
intensities of restored image relatively true one can not be less than some boundary 
values, that are defined by equations (32), (33), (38) and (39). 

Notice that (39) is a stronger inequality than simple generalization of the 
one-dimensional inequality S2 2 l/zkk(s). Later we consider the meaning of the 
RC inequality for non-diagonal elements. Here we attract attention to the 
accuracy of restoration. 

The RC theorem proves existence, and gives value of the accuracy limit, but it 
says nothing about very important practical questions: when is it possible to 
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IMAGE RESTORATION 17 

achieve the limit? and, how can it be done? The comprehensive answer to the 
first question is given by the following theorem (Darmois, 1935; for other 
references see Kendall and Stuart, 1969): for estimate S* of the vector parameter 
S, the equality in (31) can be achieved when, and only when, the distribution 
density f (N, S) belongs to an exponential family, that is; 

n 

1 n f ( ~ ,  S )  = C, sT(N) . qi(,,.(S) + V(S) + x(N), (40) 
1 

where scalar functions 1c, and x are arbitrary, and vector q ( S )  has derivative 
matrix : 

ll~~i(S)/~Skll = [(u + A(S))-'IT . I(S). (41) 

For unbiased estimates, the right hand of (41) is equal simply to Fisher information 
matrix I ( S ) .  A t  last, in the one-dimensional case the (40) and (41) become: 

We discuss the answer to the second question, at the next section. 

6. MAXIMUM LIKELIHOOD ESTIMATES 

In view of what was said in a previous section, the importance of the following 
theorem is evident: if the eficient estimate exists, and the regularity con_ditions R 
are valid, this estimate coincides with the maximum likelihood estimate S(N), that 
is, with the function that maximize density f (N, S )  under the given observed image 
N: 

f(N, S ) I S = S ( N )  = max. (43) 

In other words, the maximum likelihood estimate provides the maximal probabil- 
ity to the observed image N ,  under available information about the object, PSF 
and noise (see Fig. 3). 

The maximum likelihood approach is the most promising way to reach the most 
accurate restoration. However, for this we must know the probability density 
f ( N ,  S), that is, to make concrete the imaging system. 

Note that the generally accepted equations for calculating maximum likelihood 
estimate: 

(44) 
d 
-f(N, S)IS=$(N) = 0, 
ask 

k = 1, . . . , n 

are equivalent to (43), only if all maxima are situated inside of the object space 
S k  L 0. This is not the case for the faint parts of the image, therefore, the strict 
principle (43) should be used. 
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18 V. YU. TEREBIZH 

Consider the MLIR-estimates for models discussed at Section 2. 

6.1. Model A 

As far as the total number of observed events is equal to the number of light 
events L, the estimate of L is evident. Maximization of (4) under constraints (2) 
can be easily performed with the aid of Lagrange method, and we obtain the 
optimal MLIR-estimate: 

$ k =  l /k/L, or $ k =  ' v k .  (45) 
This is the known result: the best estimate of theoretical distribution coincides 
with the sampling distribution. 

The distribution density (4) belongs to the family (40), therefore, the efficient 
estimate exists. One can verify that this efficient estimate is coincident with (45). 

6.2. Model B 

The maximum likelihood approach for this model was proposed by Lucy (1974). 
As far as the existence of external noise is inevitable, and the presence of even 
such small noise drastically change the final picture, this model has mainly 
theoretical significance. It is worth mentioning that, as used by Richardson (1972) 
and by Lucy (1974), the ambiguous Bayesian approach is not necessary at all. 
Nevertheless, the Lucy (1974) paper was the first successive attempt to use the 
powerful maximum likelihood approach in the image restoration problem. 

Some numerical methods of maximizing of (8) had been considered by Tarasko 
(1969), Richardson (1972), Lucy (1974) and Kosarev et al. (1983). Another 
approach to the problems of a similar type was discussed in MLIR-3. 

Under m > n density (8) cannot be written in the form (40). This means that 
the efficient estimate does not exist in this case. In reality the MLIR-estimate is 
very close to the efficient one; we further discuss this item for the Poisson model. 

Note that the inverse solution, that is, the solution of the system of equations 
p ,  = v l / L ,  is not a positively defined, and for that reason it doesn't coincide with 
the desired optimal MLIR solution. There is also no guarantee that the inverse 
solution satisfies the second condition (1). 

6.3. Model C 

This model is quite simple, but at the same time it takes into account all the main 
features of real images. Algorithm for maximization (12) under constraints (1) 
was considered in MLIR-3; this paper also includes the discussion of test cases 
(the one at Figure 1 shows MLIR abilities just for Model C). The efficient 
estimate doesn't exist again. 

6.4. Poisson Model 

Consider the possibility to find the most theoretically accurate (or eficient) 
estimate for incoherent sources. It is evident that for rn > n distribution (16) has 
not the general form (40), when such an estimate can be found. Thus, we obtain 
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19 IMAGE RESTORATION 

the important conclusion: for  incoherent sources, there does not exist a method of 
image restoration that has Rao-Cramer limiting accuracy of restoration. 

At the same time, it is quite possible to find such a method that under some 
conditions has practically equal efficiency to the limiting one. In view of the 
results of Section 6, first of all, we can expect this from the maximum likelihood 
approach. Indeed, the strict solutions for the simplest cases, and numerical 
simulations for more complex ones, shows that MLIR has limiting efficiency when 
light intensity becomes approximately equal to the mean level of external noise 
(see Section 3 and Figure 2). 

According to MLIR, we should obtain the estimate 3, that maximizes (16) 
under constraints: 

(46) S k r o ,  k = 1 , 2  , . . . ,  a. 

To calculate the R C  boundary from (32),  we must know Fisher information 
matrix (33) and bias (26). Information matrix for incoherent radiation can be 
easily found from (33),  (15) and (16): 

This expression is valid for an arbitrary method of estimating. From the rigorous 
point of view, we should know the object S beforehand to calculate Z(S), but 
beginning from the image intensity of order of a few dozen of events, per pixel, 
we can replace the mean intensities in (47) by real observed ones. The result is: 

hjih,k 
I & = X -  , i , k = l ,  . . . ,  n, 

j = 1  Nj 

and it is possible to approximately calculate the limiting accuracy of restoration 
only on the basis of observational data. 

As to the bias of an estimate, it is evident that 6(S) strongly depend on the 
method of restoration, and in many situations it is difficult to find strict results. In 
particular, we failed to find the general expression for the bias of MLIR yet. It 
seems very probable that the bias of MLIR quickly tends to zero as light intensity 
exceeds the mean level of external noise. If we take 6 ( S )  = 0, we obtain a slightly 
incorrect RC boundary, and for MLIR this factor has significance only in a very 
scarce region of image. This phenomenon one can see on the example of 
restoration of TEST-1 (Figure 2d). 

It is not usually easy to see the general features of a process if we confine 
ourselves only to numerical simulations. Analytical examples are needed, even if 
they are not of practical significance. Here give a very simple example of 
incoherent source, only one pixel of the object and two pixels in the degraded 
image (n = 1, m = 2 ) .  In this case PSF is defined by values of h,, and 
hZ1 = 1 - h l l .  One can immediately obtain the general MLIR-solution, but even 
at such restricted formulation, it has rather a complicated form. Thus, we further 
assume that mean values of exterpal noise are an obeyed relation: 6 ,  = [ ( l  - 
hl , ) /h , , ]  9 b , .  The MLIR-estimate S, of the real object intensity is: 

if w 5 r, 
w - r, if w > r, (49) 
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20 V. YU. TEREBIZH 

Figure 4 Main characteristics of MLIR-solution for analytical example with r = 15: the estimate of 
true intensity (1); square root from scattering accordingly to Rao-Cramer theorem with true (2) and 
zero (4) bias; the similar quantity for MLIR-estimate (3). 

where r = b,/hll and o is Poisson random variable with mean value A =  S, + r. 
From this relation, and equations (20), (26), (29) and (30), one can obtain exact 
expressions for the bias and scattering of MLIR-estimate (49) and compare the 
last quantity with lower RC boundary SL,,S,). The full description is given in 
MLIR-6; we show here the results for the case r = 15 (Fig. 4). 

The significative inferences from this example are following. (1) For zero 
external noise, the bias of MLIR-estimate is identically equal to zero. The 
possibility should be investigated that the bias of MLIR-estimates is completely 
caused by external noise. (2) The bias under discussion monotonously decreases 
as intensity S1 increases, and relative value of bias is negligible when light 
intensity exceeds the mean level of external noise. (3) The scattering of 
MLIR-estimate slightly exceeds the R C  boundary at small intensities, but very 
quickly becomes equal to it for Sl 2 r. (4) If the estimate were unbiased, we 
would have accordingly to (29): SLRc(S1) = [Z(S1)]-' = S, + r. By using this 
relation, we exaggerate the theoretical lower limit at small intensities, but for 
S, 2 r the error is negligibly small (compare with Figure 2d). 

7. CONTROVERSY WITH MAXIMUM ENTROPY APPROACH 
The existence of a large number of image restoration methods raises the question 
concerning the place of the proposed statistical parameter estimation (SPE) 
approach, and its comparative power. 
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21 IMAGE RESTORATION 

7.1. Linear Methods 

As to linear methods of restoration, it has been known for a long time that they 
do not allow to account, in a natural way positivity, of the original image and the 
random character of the image formation process. For these reasons the linear 
methods cannot provide, in principle, the superresolution phenomenon. It means 
that such fine details of the object are restored, that it seems to be impossible, in 
view of the smoothing by PSF. The origin of this (inherent only to non-linear 
methods) phenomenon was completely ascertained by Schelkunoff (1943), 
Toraldo di Francia (1955), Wolter (1961), Harris (1964) and Frieden (1967). The 
practice also shows that “linear methods applied to Poisson-noise data immedi- 
ately provide an error estimate” (Adorf, 1990b). 

7.2. Maximum Entropy Method (MEM) 

Much more attention now attracts the general maximum-entropy way of 
estimation on the basis of partial knowledge that was proposed by Jaynes 
(1957a,b). In conformity to image restoration MEM was developed by Frieden 
(1972), Skilling and Bryan (1984) and in many other investigations (see reviews 
by Frieden, 1979, and by Narayan and Nityananda, 1986). There are at least four 
definitions of “entropy” that have to be maximized and a lot of relevant 
numerical algorithms. 

The main idea of MEM consists in removing the instability that is inherent to 
the solutions of inverse problems by choice of “maximal free”, under given 
constraints solution. It was at first believed that the maximum entropy require- 
ment (or maximal degeneracy in other words) of the solution automatically 
provides its maximal probability. Frieden (1985), in the example with rolls of a 
dice, has shown that such a view is erroneous. This fact was hard blow on validity 
of MEM. 

Our general objection against MEM can be formulated in the following way: 
one cannot invent any a priori principle to solve a problem; it is only allowed to 
describe a real process as completely as possible, and to try to develop the most 
appropriate model. Any form of “entropy” is a human notion, and it can foffow 
from correspondent consideration, but cannot unticipate it. By proposing the 
entropy principle, Jaynes introduced subjectivity into the whole subsequent 
consideration of the problems. This subjectivity reveals itself in various aspects of 
different versions of MEM. 

To give a demonstration of such subjectivity, let us consider the strict 
application of Jaynes’s principle in the frame of described in Section 2 Model C 
of image formation (similar inferences follow from discussion of the other 
models, in particular Poisson model for incoherent sources, see MLIR-5). 

It will be recalled that we consider as an object some unknown normalized to  1 
brightness distribution of events s = (sl, . . . , s,) together with its intensity L.  
Perfect (ideal) imaging system will produce random pattern v = ( v l ,  . . . , v,) of 
events with mean E(vk)  = L . sk = &. Any real such system will give another 
random pattern N = (Nl, . . . , Nm), m z n, where N accounts the smoothing and 
external noise. In particular, for linear model, we have: 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
12

:0
0 

18
 D

ec
em

be
r 2

00
7 

22 V. YU. TEREBIZH 

The SPE approach implies the searching for the best, in some definite sense, 
estimates s* = (s;) of unknown parameters s ES ($ ) .  These estimates are 
considered as the restored image. 

The way of estimation in MEM is quite different. First of all, the equation (50) 
for mean values is replaced by equation: 

n 

for random values: observed image N, object pattern v and external noise 5. Just 
some “best” estimate V *  is considered here as a restored object. Secondly, in 
view of multiplicity and instability of the solutions of (51) the MEM chooses such 
solution vE of these equations that has maximal statistical weight, that is, it can 
be sampled by maximal number of ways. The last quantity equal to: 

L! r =  
V l !  - . . . . V”!  ’ 

so, the maximization of r is equivalent to the minimization of the production in 
the denominator of (52). In view of Stirling’s approximation to  factorials the last 
requirement becomes: 

n 

- 2 (VkVkIL) ln ( V ~ I L )  = max. 
k = l  

(53) 

Thus, the searched estimate vE of the object should maximize the value of 
Shannon (1948), entropy (53), under constraints (51). Since the noise pattern in 
(51) is unknown, the strict meaning of these constraints are necessary to specify. 

The shortcomings of MEM approach are evident. 
i) Equations (51) are not true, and the above mentioned replacing can 

sometimes be feasible, but sometimes it can introduce an appreciable error. 
In SPE there are no outside equations; the strict relations (50) are 

consequences of the model description. 
ii) As long as the concrete noise pattern E in (51) is unknown, there are infinite 

methods of accounting these equations; a number of such methods are really used 
in practice. This circumstance introduce subjectivity to the procedure of 
restoration. 

iii) The way of introducing (51) as constraints is far from a natural way in SPE, 
where inner noise is an inherent feature of the model. 

iv) Requirements of maximal probability, or degeneracy of the object pattern 
V ,  are human notions that do not follow from the essence of the problem. These 
requirements do not coincide with the maximum likelihood principle. 

Of course, this latter is also a subjective attempt to search for the solution, but 
in SPE maximum likelihood appears only at the final stage of the investigation as 
one of the many possible estimation methods, perhaps the most promising among 
them. It is possible (in SPE) to calculate method-independent limiting accuracy of 
restoration, after that one can use any method that allow us to achieve the 
Rao-Cramer limit. 

v) The most degenerate solution differs from the most probable one (Frieden, 
1983, 1985). It is easy to see this fact for the considered here model C.  Indeed, 
the probability of the occurrence of pattern v under constraints (2) is given by (3), 
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23 IMAGE RESTORATION 

and this latter function by no means is not maximal at Y = vE, when r is maximal. 
The most probable and most degenerate solutions coincide only for a uniformly 
gray object (sk = const), but then “what is the purpose of imaging it?” (Frieden, 
1983). The requirement of maximal degeneracy contradicts the a priori 
information and data. For instance, we may take as an alternative to the uniform 
distribution, the consequence of the large numbers law: sk = vk /L .  Substituting 
these equations to (3) and using Stirling approximation we obtain condition of 
maximal degeneracy in the form: 

n 

- C In (vk/L) = max, 
k = l  

(54) 

that is, Berg (1967) “entropy” has to be maximal. 
It is difficult to avoid the conclusion that requirements to maximize Shannon, 

Berg or any other form of “entropy”, are connected with available a priori 
information. This fact was stressed by Frieden (1983), who attempted to 
introduce this information in an explicit form. He suggested to randomize the 
distribution (3) with respect to ( s k ) :  

L! 
Y , !  . . . . . Y, 

! I . . . I sY1. . . . .s> -p(s, ,  . . . , s,) dsl  . . . ds,, (55)  f ( Y )  = 

where probability density p(s) should take into account the physical information 
concerning the occurrence rate of s. In particular, in a case p ( s )  = S(s - z )  we 
come to models some of which were considered above. This time, by maximiza- 
tion of (55) ,  we obtain, instead of Shannon or Berg functionals, the condition that 
conform to a priori information. 

This is quite correct, but it should be mentioned that a) equation (55)  is not the 
most general manner to set (in our language) a model of image formation: we 
can, for instance, randomize L as well, to introduce a parameters in p(s)  and so 
on; b) equation (55)  is a way to make concrete the image formation model, but it 
has no bearing on the method of estimation of the object (maximization off ( Y )  is 
additional requirement, as before, that is not the same as the maximum 
likelihood principle). 

In conclusion, the shortcomings i-iv of MEM are inherent to the essence of this 
approach, and it is not possible to predict their consequences in any real 
situation. 

8. SOME EXAMPLES 

It should be confessed that since the proposal of the considered approach 
(Terebizh, 1990), we were working main1.y with test cases, but not with the real 
data. The reasons for that are clear. First of all, only for the test case can we 
know the object completely and have an opportunity to perform an entire 
checking of the method. Secondly, to restore the real images we should prepare 
the corresponding two-dimensional software and have a powerful computer. In 
MLIR-1 to MLIR-6, one can find about a dozen one-dimensional test cases, so 
we give here a sole such example, but for two dimensions (Figure 5) .  
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Figure 5 Test object ( a ) ,  degraded due to smoothing and external noise image (b) and the 
MLIR-estimate with non-negativity as a sole a priori information (c). 
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9 

c 

.- .- 
+ 
Y 

Figure 6 Photoelectric scan of double star n Boo with the components separation 5 . 6 ,  at very a bad 
seeing (a), and MLIR-estimate (b). 

The second example deals with the real observations (Figure 6). The double 
star 3t Boo with components separation 5.6" was observed at a very bad seeing 
with the strip photon counting photometer (Terebizh, 1981). The equivalent 
width W, (or practically equal to it, the full width at  half intensity) of a single star 
image was =4.5", and even so wide a double star was partly overlapped. In the 
course of MLIR processing, the information about the double nature of the 
object was not used; only the non-negativity of an unknown object was assumed. 
The full width of the restored images at half intensity is approximately equal to 
0.3". 
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9. APPLICATIONS OF STATISTICAL APPROACH TO OTHER 
INVERSE PROBLEMS 

The SPE approach has been discussed above in the context of optical images 
restoration. The characteristic feature of such problems is non-negativity of the 
object. Just this fact allows us to  introduce the powerful probabilistic way of 
consideration. In the case of optical imaging this way corresponds to the physical 
nature of the problem, but it is easy to understand that SPE approach and MLIR 
can also be applied to many inverse problems, with the above mentioned feature 
and with the “events”, as simply as an auxiliary model. 

We consider here two examples, from which the first example concerns a 
concrete problem and the second one outlines an approach to  the class of inverse 
problems. 

9.1. Number of Flare Stars in Stellar Aggregates 

It was proposed by Ambartsumian (1968) that the full number of flare stars in a 
cluster can be estimated from the following arguments. Assume at first, that there 
are only two types of stars in a cluster: a) stable stars and b) flare stars, in a 
number of S, with the same frequency of flares f i  hour-’. It is very probable that 
under random moments of observations, and a comparatively large lag between 
flares, the temporal sequence of the observed flares of any flare star is close to the 
stationary Poisson process. Consequently, the mean number of flare stars that 
experienced k flares during time T is equal to: 

M,(T)=S,exp(-f,T).(flT)k/k!, k = ~ ,  I, 2 , .  . . . (56) 
It follows from these equations: 

If we equate the mean numbers M I  and M2 to the observed ones, we will obtain a 
possibility to estimate the number of flare stars that have not had flares during the 
considered exposition time, and then the full number of flare stars in the cluster 
S , .  This manner of estimation is known as the moment method. 

As it turned out with time, the suggestion of a sole frequency of flares is too 
rough. So, Ambartsumian later proposed to introduce a frequency spectrum of 
flare stars (see for discussion and references Ambartsumian, 1988). If g ( f )  df is 
the number of flare stars with frequencies of flares in the interval [ f ,  f + d f ] ,  we 
can write instead of (56): 

Again with replacing Mk to the observed numbers we can try to restore the 
distribution g ( f ) .  It was found that this inverse problem in its ordinary 
formulation is extremely difficult, and up to now the information about g(f) is 
very uncertain. 

We can know all possible information on the basis of available observational 
data, if we turn to the SPE formulation of the problem. Indeed, let us introduce 
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the necessary discretization S k  = SAfi g(f) df, k = 1, 2, . . . and the Poisson “point 
spread function”: 

j = o ,  1 , 2 , .  . . , 
k = 1,2 ,  . . . . 

( fkTY’  
h j k ( T )  = exp ( - f k T )  7 (59) 

It then becomes possible to interpret as “smoothing”, the process of flares 
occurrence, in which the “object” ( S k )  is randomly transformed to the distribu- 
tion (4) of stars with j flares during time T. At last, the background flare stars 
add the Poisson “noise” with some mean “intensity” (b j ) .  In this formulation of 
the problem we come to the model C,  and can use not only the MLIR-solution, 
but calculate the error corridor according to (38) or (39). The concrete data will 
be considered elsewhere. 

9.2. Deterministic Smoothing 

A number of inverse problems that have no deal with images, in a strict meaning, 
suggest a non-random smoothing process. This situation constitutes the particular 
case of SPE, so, the general results are valid here as well. Let us consider, for 
instance, the linear deterministic smoothing and random external noise: 

For a non-random object, S, the stochastic properties of the “image” N ,  that is, 
f ( N ,  S), are completely defined by external noise distribution. 

In general, any inverse problem that permits to formulate a stochastic model of 
an investigated process with some density distribution Pr (N, N + dN I S) = 
f ( N ,  S )  dN can be considered in the frame of stochastic parameter estimation 
approach that was described in the previous sections. 

10. CONCLUDING REMARKS 

Perhaps, it is worthwhile to mention, once more, that the approach discussed 
here considers, as independent parts, the description of the image forming system, 
the statistical parameter estimation, and the concrete methods of restoration. It 
seems probable that only this way, allows us to avoid subjectivity-the most 
dangerous factor for power and reliability of restoration methods. As to the 
choice of the restoration method, the MLIR is preferable, in view of the fact that 
it provides the limiting efficiency and resolution power for a wide circle of 
conditions (only a rogue can cure any illness, but good physicians, in any given 
circumstance, do all that is possible). 

The interest to the image restoration problem has been recently animated after 
the sad news that the Hubble Space Telescope’s images strongly suffer from a 
spherical aberration. One can hope that intensive work in this field will provide a 
quick deepening of our understanding of relevant questions, so the Hubble 
Telescope, in a large measure, will return its power. 
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