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Interstellar scintillation (ISS) has been established as the cause of the random variations seen at
centimetre wavelengths in many compact radio sources on timescales of a day or less. Observations
of ISS can be used to probe structure both in the ionized insterstellar medium of the Galaxy and in the
extragalactic sources themselves down to μ as scales. A few quasars have been found to show large
amplitude scintillations on unusually rapid, intrahour timescales. This has been shown to be due to weak
scattering in very local Galactic ‘screens’, within a few tens of parsec of the Sun. The short variability
timescales allow detailed study of the scintillation properties in relatively short observation periods with
compact interferometric arrays. The three best-studied ‘intrahour variable’ quasars, PKS 0405−385,
J1819+3845 and PKS 1257−326, have been instrumental in establishing ISS as the principal cause of
intraday variability at centimetre wavelengths. Here we review the relevant results from observations
of these three sources.
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1. Introduction

Intraday variability (IDV) was discovered at centimetre wavelengths in the mid-1980s [1, 2].
For over a decade there was much debate over whether the variability could be source-
intrinsic, or whether it was caused by extrinsic mechanisms, namely gravitational microlensing
or interstellar scintillation (ISS). Intrinsic explanations imply very high brightness tempera-
tures, requiring Doppler factors of 50–200 for consistency with the Inverse Compton limited
brightness temperature of ∼1012 K. Over the last decade, much observational evidence has
accumulated to support ISS as the principal mechanism for centimetre wavelength IDV.

The largest survey for IDV to date is the MASIV 5 GHz Very Large Array (VLA) Survey
of more than 500 compact, flat-spectrum radio sources [3]. The MASIV Survey revealed
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variability on timescales of up to 3 days (the duration of the MASIV observing sessions) with
typical modulation indices ∼1% to 10%, in more than half of the observed sources during
one or more epochs. Among other factors, the Galactic latitude distribution of the scintillating
sources provides strong evidence of an interstellar origin of the observed variability. While
ISS of flat-spectrum radio sources is common, variability on timescales of a few hours or less
and with rms amplitude modulation more than ∼10% is extremely rare. At the extreme end of
the IDV spectrum, three quasars are known to show large variations on timescales of less than
1 h. These are PKS 0405 − 385 [4], J1819 + 3845 [5] and PKS 1257 − 326 [6]. Because of
the short timescales of the fluctuations, they can be well sampled in a typical 12-h observation
session with an interferometer such as the Australia Telescope Compact Array (ATCA) or
Westerbork Synthesis Radio Telescope (WSRT), and this has enabled detailed studies of
variability characteristics.As described by Macquart and Jauncey [7], ISS can be used to probe
both the radio structure of the high-brightness source components and the insterstellar medium
(ISM) responsible for rapid variations. In this paper, we review the discovery, observations
and analysis of the three well-studied intrahour variable (IHV) sources.

2. The intrahour variable quasars

2.1 PKS 0405–385

The discovery of hourly variations in the southern z = 1.285 quasar PKS 0405 − 385 at 4.8
and 8.6 GHz caused serious difficulties in explaining variability as intrinsic to the source [4].
As shown in figure 1, the variability was so large and rapid, with changes of up to 50%,
or ∼1 Jy, in an hour or less at 5 GHz, that the implied brightness temperature for intrinsic
variability was in excess of 1021 K and so the authors were led to consider ISS. The observed
frequency dependence of the modulation amplitude and timescales were both consistent with
weak scattering at frequencies of 5 GHz and above and strong scattering at frequencies below

Figure 1. Rapid variations observed in PKS 0405 − 385 over three days in June 1996, from Kedziora-Chudczer
et al. [4]. The observed frequencies are, from top to bottom, 8.6, 4.8, 2.4 and 1.4 GHz.
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5 GHz, with the largest amplitude variations close to the transition frequency [8]. Remarkably,
the dramatic variations ceased after a few months.

Confirming evidence for an ISS origin of the rapid variability in PKS 0405−385 came with
the next episode of IDV in late 1998. The variations were sufficiently rapid and strong that
it was feasible to time the variability patterns at two widely spaced telescopes and search for
any time delay between the patterns. Such an experiment can only be done if the variability
timescale is sufficiently short, typically an hour or less, and the measurement accuracy high
enough to detect flux density changes in tens of seconds, as was the case with PKS 0405 − 385.
A successful experiment was undertaken between the ATCA and VLA at 4.8 and 8.6 GHz.
At the southerly declination of −39◦ the geometry is less than ideal, with very little overlap
between PKS 0405 − 385 rising at the ATCA and setting at the VLA, but nevertheless a
significant time delay of 140 ± 25 s was found, with the pattern arriving first at the VLA [9].
Such a time delay demonstrates unequivocally that ISS is the mechanism responsible for
the dramatic variability in this source, at the same time ruling out intrinsic variability. The
time delay also constrains the velocity at which the scintillation pattern drifts across the
baseline.

Unfortunately, once again the rapid variability in PKS 0405 − 385 ceased before the mea-
surements could be repeated and did not reappear again during the course of an ATCA
monitoring program, which lasted until mid-2002. In 2004, however, PKS 0405 − 385 was
once again found to be showing large and rapid variations [10]. ATCA observations in 2006
revealed extremely rapid fluctuations on timescales much less than 1 h, allowing the pattern
time delay between the VLA and the ATCA to be measured again, this time to an accuracy of
<5 s (Kedziora-Chudczer, presented at ‘Challenges of Relativistic Jets’ meeting in Cracow,
Poland, June 2006).

Like many other IDV sources, PKS 0405 − 385 shows more rapid and larger fractional
variations in polarization than in total intensity, which can be interpreted as being due to two
or more differently polarized, scintillating sub-components within the total intensity scintil-
lating component. A detailed correlation analysis of the Stokes I, Q and U fluctuations of
PKS 0405 − 385 observed in 1996 was performed by Rickett et al. [11]. It was shown that the
observed fluctuations were consistent with a local enhancement in scattering at a distance in the
range of 3–70 pc from the Earth (taking into account uncertainty in the scintillation velocity),
which is much closer than the screen distance assumed by Kedziora-Chudczer et al. [4]. The
favoured model of Rickett et al. placed the screen at a distance of about 25 pc. The observa-
tions at 8.6 GHz are then well modelled by scintillation of a 30 × 22 μas source, with about
180◦ rotation of the polarization angle along its long dimension, as illustrated in figure 2,
from Rickett et al. [11]. At least three differently polarized components are required to fit
the observations and the resulting model is not uniquely constrained. For the model which
is illustrated, the authors chose to minimize the implied source brightness temperature and
allowed a maximum of 70% fractional polarization, which is close to the theoretical maximum
from a uniform synchrotron source. The model peak brightness temperature is 2 × 1013 K,
lower than that inferred in the 1997 paper because of the reduced distance to the scattering
screen.

2.2 J1819 + 3845

After PKS 0405 − 385, the next IHV quasar to be discovered was the fainter quasar J1819 +
3845, for which the variability was discovered serendipitously with the WSRT [5]. With
variations of up to 10% per min at 5 GHz, J1819 + 3845 exhibits the most dramatic radio
variability observed in an extragalactic source. If such variations were intrinsic then the source,
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Figure 2. A model for the μ as-scale polarized structure of PKS 0405 − 385, from Rickett et al. [11]. The angular
scale is shown in milliarcseconds. The left-hand panel is the total brightness temperature with the peak at about
2 × 1013 K, with the arrow indicating the scintillation velocity direction. The right-hand panel is the polarized
brightness with maximum 70% of the total brightness.

at z = 0.54, would have an angular size of order 10 nano-arcseconds and would therefore have
to scintillate, such that ISS would in any case dominate the observed variability. Unlike PKS
0405 − 385, J1819 + 3845 does not exhibit outbursts of variability but rather has continued
to show its characteristic rapid variability since discovery. The rapidity of the variability in
J1819 + 3845 was immediately explained as being due to an unusually nearby scattering
screen, within a few tens of pc from the Sun [5].

The discovery of a changing time delay of up to ∼100 s between the VLA and WSRT [12],
and of a dramatic annual cycle in the characteristic timescale, Tchar, of its variations [13], left no
doubt that the principal mechanism responsible for the dramatic variability of J1819 + 3845
is also ISS. The annual cycle results from the change in scintillation velocity due to the
Earth’s orbital motion and depends on both the transverse velocity of the scattering plasma
and the two-dimensional structure of the scintillation pattern. An analysis of the J1819 + 3845
annual cycle from more than two years’of monitoring with WSRT reveals a highly anisotropic
scintillation pattern with an axial ratio >6:1 [13]. Figure 3 shows Tchar measurements over two
years for J1819 + 3845, overlaid with the model annual cycle for the best fit screen velocity
and anisotropic pattern. From the scintillation characteristics, the scattering plasma is found
to reside in a strong, thin scatterer within ∼10 parsecs, which leads to a source size at 5 GHz
of 100–900 μas and brightness temperature of 1010 to 1012 K.

While the brightness temperature inferred from the annual cycle of J1819 + 3845 is not
especially high, there is some evidence for very high-brightness components in the source
from an analysis of the variations at 1.4 GHz. Macquart and de Bruyn [14] reported the
discovery of rapid, frequency-dependent variations which could be modelled as diffractive
interstellar scintillation (DISS). This is the only reported case of DISS of a quasar. If the
interpretation of Macquart and de Bruyn is correct, the implied brightness temperature is in
excess of 2 × 1014 K. If the brightness temperature is indeed this high, then special emission
processes may be present, e.g., cyclotron maser emission [15].

2.3 PKS 1257 − 326

The IHV quasar PKS 1257 − 326 was discovered serendipitously with the ATCA [6]. ATCA
monitoring of PKS 1257 − 326 at 4.8 and 8.6 GHz revealed an annual cycle in the timescale of
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Figure 3. The large annual modulation in characteristic timescale observed in J1819 + 3845–note that the y-axis
is shown on a logarithmic scale. The line shows the best fit to these measurements and two-station time delay data,
fitting for the screen velocity and an elongated scintillation pattern [13].

variability, which is repeated over several years of observations at both frequencies. Success-
ful time delay measurements have been made for PKS 1257 − 326 between the ATCA and
VLA on three occasions during 2002–2003 [16]. The observed annual cycle and time delays
demonstrate conclusively that the rapid, large-amplitude variability of PKS 1257 − 326 is
entirely due to ISS. A striking feature of the time delay measurements for PKS 1257 − 326
is the length of the delays; for both PKS 0405 − 385 and J1819 + 3845 the measured delays
were ∼2−3 min at most, whereas for PKS 1257 − 326 delays as long as 8 min were observed,
as shown in figure 4. These long time delays, when combined with the annual cycle in vari-
ability timescale, imply that the scintillation pattern must be highly anisotropic, as has also
been determined for the other two fast scintillators [11,13].

In principle, the annual cycle and time delay observations can be combined to determine
the peculiar velocity of the scattering medium as well as properties of the scintillation pattern,
i.e., its characteristic length scale as well as the axial ratio and position angle of anisotropy in
the pattern. However, there are degenerate solutions when the scintillation pattern is highly
anisotropic, as shown in Bignall et al. [16]. The characteristic scale of the scintillation pattern
along its short axis can still be uniquely determined; however, the pattern scale and component
of scintillation velocity parallel to the long axis are degenerate.

Interestingly, PKS 1257 − 326 also showed an annual cycle in the time offset between
the 4.8 and 8.6 GHz scintillation patterns observed over the course of 2001 [6]. This was
modelled as a jet-like source which is optically thick between 5 and 8 GHz. That the time
offset always has the same sign implies that the scattering screen always crosses the 8.6 GHz
‘component’ first, thereby constraining the direction of the offset. For a screen distance of
10 pc [16], the fitted displacement vector corresponds to an offset of ∼12 μ as which at the
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Figure 4. Simultaneous observations of PKS 1257−326 with the VLA and ATCA from 2002 May, showing a clear
time delay of 8 min between the variability patterns with the VLA leading.

source redshift of z = 1.26 corresponds to a projected linear displacement of order 0.1 pc.
More recent monitoring data suggest that the offset has changed, perhaps as a result of the
intrinsic evolution of the source. Both the flux density and spectral index of the source have
slowly evolved over several years of ATCA monitoring.

3. Discussion

In weak scattering, the characteristic length scale of the scintillation pattern is related to the
size of the first Fresnel zone, rF = √

cL/(2πν), where ν is the observing frequency and L

is the distance to the scattering medium which is assumed to be confined to a plane. Thus
for a given velocity of the scattering screen, a shorter scintillation timescale, Tchar, implies
a closer scattering screen. When the source has angular size larger than the Fresnel scale at
the screen, however, Tchar is increased and the amplitude modulation is reduced. The closer
the scattering screen, the larger the angular size of the source which can scintillate through it.
This implies that for Active galactic nuclei (AGN), whose angular sizes are generally inferred
to be larger than the Fresnel scale at distances greater than a few tens of parsec, large and
rapid amplitude scintillation may only be observed through nearby scattering screens. The
fact that only a handful of IHV quasars has been found suggests that the covering fraction
of nearby scattering material in the Galaxy is very small. Another consideration is that more
distant scattering material can cause angular broadening which may quench the scintillation
in foreground screens.

Both source and screen properties play a role in the observed scintillation of AGN. Of
the three IHV quasars discussed here, two show long-lived rapid scintillation over several
years of monitoring, while PKS 0405 − 385 shows episodes of IHV lasting from months
to years. The analysis of Kedziora-Chudczer [17] found no clear connection between long-
term source-intrinsic changes and episodes of IHV. This suggests that intermittency in ISM
turbulence, rather than source evolution, could be responsible for the episodic IDV observed
in PKS 0405 − 385.

All three IHV sources show evidence for highly anisotropic scattering at frequencies
of 5 GHz and above. Highly anisotropic ISM turbulence is suggested also from other
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observations, e.g., the parabolic arcs observed in the secondary spectra of pulsars undergoing
diffractive scintillation [18]. Unfortunately, high anisotropy leads to ambiguity in solving for
the scintillation parameters, which to some extent limits the information on source structure
obtainable from ISS observations. Nevertheless, ISS is a useful probe of source structure on
scales smaller than can be resolved with current VLBI and also of properties of turbulence in
the local ISM.
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