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The angular distribution of beams being propagated through a medium with random inhomogeneities
is analysed. The peculiarity of this medium is that beams are trapped at random locations and random
times because of wave localisation in the inhomogeneities. The mean-square deviation of the beam
from its initial direction is calculated. The application of this method to the diagnostics of interplanetary
and interstellar turbulent media is discussed.
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Diffusive transport plays an important role for many everyday phenomena in physics, astron-
omy, chemistry, biology, and engineering, where the mean-square displacement tends to a
linear increase with time. Consequently, transmission of particles through a slab is charac-
terised by the conventional Ohm’s law. However, the wave nature of diffusing particles can lead
to a complete halt of diffusion because of the interference of waves propagating in reciprocal
multiple scattering paths, and therefore, the particles stay close to their initial place. Anderson
first predicted the phenomenon (called later the Anderson localisation) in 1958 to explain
the metal–insulator transition in electronic systems [1]. His localisation doctrine has opened a
wide facility for scientists with various interests to develop a vast body of research. No wonder
that the localisation concept may also be applied to classical wave systems [2]. Subdiffusion
is a non-trivial crossover from classical diffusive regime to localisation. It accounts for the
amount of time when a walker does not participate in motion. As a result, in this case, the
mean-square displacement has a slower (power) increase in time.

The classical theory of scintillations assumes that individual angular increments are inde-
pendent and identically Gaussian-distributed random variables. However, the pulse profiles
predicted by the theory disagree with the observable results for the distant pulsars [3]. Recently
Boldyrev and Gwinn [4] showed that the time broadening of the radio pulses from the distant
pulsars can arise from non-Gaussian statistics of interstellar electron-density [4]. The problem
requires Lévy-flights scenario. Lévy statistics contains larger-than-rare events, and its variance
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diverges. The mathematically detailed discussion of Lévy distributions is represented in the
excellent book of Zolotarev [5]. Many physical (and not only physical) examples demonstrate
a contribution of Lévy flights (see the comprehensive reviews [6,7] and references therein). It
is interesting to observe that Lévy flights in time has a direct relationship with subdiffusion
[8]. They originate from a subordination of one random process by another, and the latter is
governed by a Lévy process. The subdiffusion stems from weak localisation effects.

In this connection, we will consider the beam propagation direction in a randomly inhomo-
geneous medium. This is an often observed phenomenon in nature (random refraction of radio
waves in the ionosphere and solar corona, stellar scintillation because of interstellar inhomo-
geneities, etc). The classical approach to the propagation study of a beam (of light, radio waves,
or sound) in random media is based on the analysis of normal diffusion processes [9,10]. But
some astronomical observations [11] of the beam diffusion has an anomalous character close
to subdiffusion. A recent paper [12] is devoted to the theoretical study of subdiffusion of
beams in random media. The effect is caused by wave localisation at random locations and
random times. This leads to traps of beams by inhomogeneities in such a medium. Therefore,
the propagation of beams can contain random jerking. The approach gives a generalisation
of ‘3/2 law’ so-called in [13]. In the present paper, we intend to further explore the transport
properties of the system outlined in [12].

Let a beam propagate through the medium by deflecting in random directions. Due to
random inhomogeneities of refraction, the beam is trapped in some regions (weak localisation).
Because of the traps, beam propagation is ‘frozen’for some time. Next, the randomly deflected
beam leaves the region and propagates further until it is trapped in other regions and the
trapping cycle repeats. Suppose that from the point of view, trapping appearance the medium
is statistically homogeneous and isotropic. The randomly winding beam path is responsible
for the random refraction analysed in this study.

In our considerations, we will use the notations from [12]. The angle θ of deviation of
a beam from its initial direction because of the inhomogeneities is a random variable with a
probability density Vα(θ, σ ), where σ is the path travelled by the beam. The classical approach
to random walks of beams assumes that the random angle jumps �θi at points are separated
by segments of equal length �σi . In the continuous limit, the beam diffusion is described as a
rotational Brownian motion. In our consideration, the random walks consist of random angle
jumps �θi alternating with random lengths �σi (continuous time random walk). In contrast
to [12], the resulting random process is a subordination of the rotational Brownian motion

by a new random process defined in [14]. The new subordinator S
(α)

σ satisfies the self-similar
property:

S
(α)

cσ : d= cS
(α)

σ , c > 0, 0 < α < 1,

where ‘
d=’ reads ‘equal in law’. When α → 1, then S

(α)

σ becomes deterministic. Recall that the

anomalous diffusion X(S
(α)

t ) with such a subordinator gives a stretched exponential function
of relaxation [14]. All this allows us to write the probability density Vα(θ, σ ) in the integral
form

Vα(θ, σ ) =
∫ ∞

0
V1(θ, σx) dgα(x) ,

where the probability distribution gα(x) is described by the Laplace transform

Gα(s) =
∫ ∞

0
exp{−sx} dgα(x) = exp{−(As)α}

with s ≥ 0 and A > 0 [5]. This distribution is totally asymmetric, and 0 < α < 1 in view
of the fact that σi are non-negative random variables. The probability density V1(θ, σ )
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corresponds to the normal diffusion. Then the relations yield the mean

cos θ = e−2Dσα

,

where D is constant. At a large σ , all beam directions are equiprobable. However, in contrast
to normal diffusion (α = 1), any beam has to travel a longer path σ to reach this state. This
process is somewhat analogous to ‘superslow’ relaxation.

Following the tools developed in [13], we can find the mean square of the distance r from
the starting point to the observation point reached by the beam that has travelled an intricate
path of length σ through the medium:

r2 = σ

D1

∫ ∞

0
x dgα(x) − 1

2D2
1

(
1 − e−2Dσα

)
, D1 = const. (1)

The first term of expression (1) tends to infinity, as the function gα(x) is the probability
distribution of a fully skewed Lévy process. Thus, the value (1) has the same trend. If the z

axis of a polar coordinate system is aligned with the initial beam direction, then the mean
square of the distance passed by the beam along this axis is given by the formula

z2 = 1

3D1

[
σ

∫ ∞

0
x dgα(x) − 1

6D1

(
1 − e−6Dσα

)]
. (2)

Again, because of the first term, the mean z2 becomes infinite. Now, the mean square devia-
tion of the beam from its initial direction can be calculated by combining equation (1) with
equation (2):

ρ2 = r2 − z2 → ∞. (3)

The behaviour of the means r2, z2, and ρ2 is not something strange. It is governed by Lévy
flights, and the variance of the mean squares diverges. If α = 1, then the mean squares (1)–(3)
take the finite values supporting the ‘3/2 law’ [13], as the subordinated random process has an
ordinary Gaussian distribution.

In the paper [12], the physical situation is quite different. This subdiffusion has the inverse-
time α-stable Lévy subordinator. Though both �σi and �θi are Markov processes, the
subordinated process may not preserve the Markov property [15]. The subordinator inserts
long-term memory effects, and the probability density of the subordinated process obeys a
fractional Fokker–Planck equation in spherical coordinates. The signature of such memory
effects is just a power kernel of the fractional operator in time, and the corresponding random
process is something intermediate between a purely random process and a deterministic one
(see more details in [16]). All the mean squares r2, z2, and ρ2 become finite (for any value of
0 < α < 1). They increase as σα at a large σ . As a result, we arrive at a generalised ‘3/2 law’
in the form

√
ρ2 ≈ 2

√
2√

�(3α + 1)
B1/2σ 3α/2, B = const., Bσα � 1. (4)

In fact, in the case of α = 1, the normal diffusion results in the classical ‘3/2 law’, but for
0 < α < 1, according to equation (4), the value

√
ρ2 behaves as σ 3α/2 for a small Bσα . As has

been shown above in (3), the process Vα(θ, σ ) behaves otherwise. In any case, both processes
can be present in random media, but they correspond to different physical situations.

Finally, we briefly sum up our consideration. Plasma transport in the presence of turbulence
depends on a wide variety of parameters such as the levels of magnetic field, the ratio between
the particle Larmor radius and the turbulence correlation lengths, the turbulence anisotropy,
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etc [17]. Many researchers addressed this issue from both theoretical and experimental points
of view [18] (and references therein), but a full understanding is still lack. The point is that
the turbulence itself is a very difficult phenomenon in plasma physics. Sometimes, the wave–
particle transport in turbulent plasma is characterised by anomalous, non-Gaussian features.
This means that there exist regimes where wave–particle interactions depend on Lévy statistics.
In particular, the density of particles can be described by fractional Fokker-Planck equations
[17]. Although surprising, this possibility is implicit in the idea of wave interference resulting
from multiple scattering. The probing into turbulent plasma with radio wave propagation
allows one to get an additional information on the turbulence anisotropy in solar wind as well
as in other astrophysical situations. The analysis gives tools to detect of weak localisation
in the astrophysical plasma. The experimental difference, noticed in [11], from the ‘3/2 law’
(more precisely, from an exponent of 3/2 in the classical power law) gives us hope.
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