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Basic theoretical methods and solutions describing radio wave propagation in the turbulent plasma are
briefly reviewed. Consideration is given to the results on scattering effects such as angular scattering,
pulse broadening and spectral line spread. Also treated are phase and frequency fluctuations. Of
particular concern are problems of the correlation theory of intensity fluctuations for weak and strong
diffractive and refractive scintillations. Special attention is paid to the effect of refractive scintillation
on a diffractive pattern.
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1. Basic equations

The propagation of a time-harmonic electromagnetic wave in a random medium containing a
weak large scale index of refraction fluctuations is governed by the scalar wave equation [1]

�U + k2n2(r)U = 0 (1)

Here k = 2π/λ is wave number, λ is wavelength, n is refraction index. For plasma [2]
we have

n2 = 1 −
(

ω

ωp

)−2

, (2)

where ω is cyclic frequency and ωp is Lengmuir (plasma) frequency that is determined by the
equation [2]

ω2
p =

(
4πe2

m

)
Ne (3)
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416 V. I. Shishov

Here e and m are electron charge and mass, Ne is electron density. E. Salpeter [3] reduced
equations (2) and (3) to the following form

δn = 1 − n ∼=
(

λ2re

2π

)
Ne (4)

where re is electron radius.
We consider the propagation of a radio wave field in random media where integral scattering

takes place only over small angles. Under this assumption, it is possible to use the parabolic
(diffusive) approximation of wave equation (1) [4]. Let

U(r) = E(r) exp(ikz) (5)

where the z axis is directed along the mean direction of propagation. Neglecting the term
∂2E/∂z2 we obtain the function E(r) satisfies the equation

2ik

(
∂E

∂z

)
+ �⊥E + 2k2δn(r)E = 0 (6)

�⊥ = ∂2

∂x2
+ ∂2

∂y2

Here the mark ⊥ denotes the direction perpendicular to axis z.

2. Linear phase (phase length) and phase scintillation

Neglecting the diffractive term �⊥E in equation (6), we obtain a simple solution

E(ρ, z) = E0 exp[−iSlin(ρ, z)] (7)

where Slin is linear phase (phase length)

Slin = (λre)

∫ z

0
dz′Ne, ρ = (x, y). (8)

The linear phase depends on columnar electron content that is named dispersion measure (DM)
for the case of interstellar plasma. The time delay of pulse propagation through the turbulent
plasma is also determined by columnar electron content:

tdelay =
(

1

kc

)
Slin = (λ2re)

(2πc)

∫ z

0
dz′Ne (9)

We will suppose that fluctuations of Slin are subject to the Central Limit Theorem and the
distribution function of these fluctuations approaches the normal law for large values of dis-
tances z. For this case the main statistical characteristic of the linear phase is a structure
function that is determined by the following equation

DS,lin(ρ, z) = 〈[S(ρ1, z) − S(ρ1 − ρ, z)]2〉 =
∫

dz′D(ρ, z′)

D(ρ, z) = 4πλ2r2
e

∫
d2q⊥[1 − cos(q⊥ρ)]�Ne(q⊥, q‖ = 0)

(10)

Here �Ne(q) is the spatial power spectrum of electron density fluctuations. D(ρ, z) and
�Ne(q⊥, q‖ = 0) are equivalent statistical characteristics of the turbulent plasma.
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Another model of Levy flight statistics was proposed in [5] and is discussed in [6].
For the case of a power law spectrum

�Ne(q) = C2
Neq

−n

L−1 < q < l−1, 3 < n < 4 (11)

the structure function of a linear phase is defined by

DS,lin(ρ) = (kθ0ρ)n−2, l < ρ < L

∼= (kθ0l)
n−2

(ρ

l

)2
, ρ < l (12)

where L is the outer and l is the inner scale. For a Kolmogorov spectrum n = 11/3. θ0 is a
characteristic scattering angle.

3. Methods of solution taking into account diffraction effects

An exact solution of equation (6) was obtained only for the phase screen model. This model
has been extensively studied by a number of authors [3, 7–9]. Assuming the field on the exit
plane of a layer of irregular refractive medium to be only phase modulated, i.e.

E |z=�z = E0 exp[−iSlin(ρ, �z)] (13)

and solving equation (6) in free space with boundary condition (13), we obtain at distance z

E(ρ, z) =
(

ik

2πz

) ∫
d2ρ ′ exp

[−ik

2z
(ρ − ρ ′)2 − iSlin(ρ

′, �z)

]
E0(ρ

′) (14)

For extended medium solutions these were obtained by perturbation methods. Weak modula-
tion of field or single scattering is described by the Born approximation, that corresponds to
term E1 in perturbation series for the wave field [1]

E = E0 + E1 + E2 + · · · (15)

E1(ρ, z) =
(

K2

2π

) ∫
dz′

[
1

(z − z′)

] ∫
d2ρ ′ exp

[−ik(ρ − ρ ′)2

2(z − z′)

]
�n(ρ ′, z′)E0(ρ

′) (16)

The Born approximation is correct for the case of weak phase fluctuations: |S| � 1. The Rytov
approximation corresponds to the term ψ1 in the perturbation series for a complex phase of
the wave field [1]

ψ = ln
E

E0
= ψ0 + ψ1 + ψ2 + · · · (17)

The term ψ1 is determined by equation (16) without factor E0(ρ
′) in the integrand. Rytov

approximation is correct for the case of weak amplitude fluctuations: | Reψ1 |� 1. For large
values of ρ

ψ1(ρ) ∼= iSlin(ρ) (18)

The stochastic equation (6) can be reduced to dynamical equations for field moments if phase
fluctuations are small on distance of the order of an outer scale of inhomogeneities L. These
equations are correct for weak and strong scintillation.
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418 V. I. Shishov

The mutual coherence function of the second order describes the scattering effects

BE(ρ, �f, z) =
〈
E

(
ρ1 −

(
1

2

)
ρ, f −

(
1

2

)
�f, z

)
E∗

(
ρ1 +

(
1

2

)
ρ, f +

(
1

2

)
�f, z

)〉
(19)

where �f is a frequency lag. It is determined by the equation [10–12](
∂

∂z

)
BE(ρ, �f, z) +

(
i

2k

) (
�f

f

)
�⊥BE(ρ, �f, z) = −

(
1

2

)
D(ρ, z)BE(ρ, �f, z)

(20)
For the case of an initially spherical wave the task is statistically homogeneous on the sphere.
To reduce equation (20) for this case we must change z to r (distance from a source) and ρ to
rη (η is the angular distance between two points on the sphere) [13].

Intensity fluctuations are described by the fourth moment of the field [13,14]

M(ρ1, ρ2, ρ3, ρ4, z) = 〈E(ρ1, z)E(ρ2, z)E
∗(ρ3, z)E

∗(ρ4, z)〉
For the simplest case of the initial plane waves this moment is determined by the
equation [13,14] (

∂

∂z

)
M +

(
i

k

)
(∇u∇v)M + f (u, v)M = 0

f (u, v) = D(u) + D(v) −
(

1

2

)
D(u + v) − (D(u − v)

u = (ρ1 − ρ3) = ρ4 − ρ2)

v = (ρ1 − ρ4) = (ρ3 − ρ2)

(21)

To reduce equation (21) for case of the initially spherical wave we must change z to r and u,
v to rη, rζ (η and ζ are angular distances between two points on the sphere).

If we introduce the spectral function

MSp(q, v, z) =
(

1

2π

)2 ∫
d2u exp(−iqu)M(u, v, z) (22)

then equation (21) becomes [14](
∂

∂z

)
MSp −

(
1

k

)
(q∇v)MSp + D(v)MSp =

∫
d2q1�(q − q1, v)MSp(q1, v, z) (23)

�(q, v) = 4π(λre)
2�Ne(q⊥, q‖ = 0)[1 − cos(qv)] (24)

The form of the equation (23) corresponds to the non-stationary transfer equation, where z is
an equivalent to time, v is an equivalent to a spatial coordinate and q is equivalent to velocity.

4. Scattering effects

4.1 Angular scattering

The angular scattering effect is described by the second-order coherence function BE(ρ, �f =
0, z). This coherence function corresponds to the response of an interferometer with base ρ.
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Solving equation (20) for �f = 0 we obtain [10, 13]

Bu(ρ, z) = BE(ρ, z) = BE,0(ρ, z) exp

[
−

(
1

2

)
DS,lin(ρ, z)

]
(25)

The Fourier transform of the coherence function BE(ρ, z) gives the brightness distribution

I (θ) =
(

1

2π

)2 ∫
d2ρ exp

[
−i(kθρ) −

(
1

2

)
DS,lin(ρ)

]
BE,0(ρ, z) (26)

4.2 Pulse scattering

The shape of the scattered pulse is expressed as the Fourier transform of the coherence function
BE(ρ = 0, �f ).

P(τ) =
∫

d(�f ) exp[i2πτ(�f )]BE(ρ = 0, �f ) (27)

We must solve equation (20) for BE(ρ, �f ) and then substitute this solution in equation (27).
For the case of the phase screen the shape of the scattered pulse is determined by the brightness
distribution I (θ) on the exit plane of the phase screen. The time delay of pulse ray propagating
in the direction θ is equal to

τ = zθ2

2c
(28)

Using this relation we obtain [15]

P(τ) = 2πI

(
| θ |=

[
(2cτ)

z

)]1/2
)

, τ ≥ 0

0, τ ≤ 0

(29)

For the case of the power law turbulent spectrum the pulse tail has a power law form

P(t) ∝
(

1

τsc

) (τsc

t

)n/2
, τsc = zθ2

0

2c
(30)

If the phase structure function has a square form (12) then the pulse shape is exponential:

P(t) ∝ exp

(−t

τsc

)

Extension of the turbulent medium leads to smoothing of the leading region of pulse [16–18].
The structure of the tail region is the same for the phase screen as for the extended medium [15].

In the presence of strong angular refraction we must change θ to θ ref + θ in equation (28).
The shape of scattered pulse becomes symmetrical [16]

P(τ) =
∫

d(�f ) exp[i2πτ(�f )]BE

(
ρ = 2

(
�f

f

)
zθ ref

)
(31)
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420 V. I. Shishov

4.3 Spectral line broadening

Modulation of the radio wave by a moving turbulent medium leads to temporal field mod-
ulation. In the case of medium moving relatively to the line of sight with a velocity V, we
obtain [19]

BE(ρ = Vt) = 〈H 〉 exp

[
−

(
1

2

)
DS,lin(ρ = Vt)

]

I (�f ) =
∫

dt exp[−i2π(�f )t]〈H 〉 exp[−DS,lin(t)]
(32)

where H is flux and I (�f ) is flux spectral density.

5. Intensity scintillation

5.1 Phase screen

If diffraction effects are ignored we can obtain from equation (20) on the exit plane of the
phase screen [9, 13]

M |z=�z = H 2
0 exp[−F(u, v)]

F(u, v) =
∫ �z

0
dz′f (u, v) = DS,lin(u) + DS,lin(v) −

(
1

2

)
DS,lin(u + v)

−
(

1

2

)
DS,lin(u − v),

(33)

where H0 is the initial flux. The spectral function, equation (22), is

MSp(q, v, z) =
(

1

2π

)2

H 2
0

∫
d2u exp[−iqu − F(u, v)] (34)

The solution of equation (23) in free space corresponds to substitution v → v − qz/k.

MSp(q, v, z) =
(

1

2π

)2

H0
2
∫

d2u exp
{
−iqu − F

[
u, v −

(qz

k

)]}
(35)

Scintillation regimes depend on the value of DS,lin((z/k)1/2) for the case of the power law
turbulent spectrum. When qz/k is small, we can expand exp[−F(u, v) + DS,lin(v − qz/k)]
in power series and obtain the low-frequency expansion for MSp, i.e. [9],

MSp = MSp,0 + MSp,1 + · · · (36)

MSp,0 = H 2
0 exp[−DS,lin(v)]δ(q) (37)

MSp,1(q, v, z) = 4π(λre)
2�zH 2

0 Sin2

(
q2

2kz

)
�Ne(q, q‖ = 0) exp

[
−DS,lin

(
v − qz

k

)]
(38)
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5.2 Weak scintillation

MSp,1(q, z) corresponds to the Born and Rytov approximations [1, 13] if DS,lin(qz/k) � 1:

MSp,1(q, z) ∼= MSp,1,B(q, , z) = 4π(λre)
2�zH 2

0 Sin2

(
q2

2kz

)
�Ne(q, q‖ = 0) (39)

For small z equation (39) describes the scintillation spectrum for important regions of spatial
frequencies. In this case the scintillation index is

m2 = 〈(H − 〈H 〉)2〉
〈H 〉2

∼= m2
B =

(
1

〈H 〉2

) ∫
d2qMSp,1,B(q, , z) ≈ DS,lin

[( z

k

)1/2
]

� 1

(40)
For the large value of |qz/k|, F(u, v) − DS,lin(u) → 0, and we can expand exp[−F(u, v) +
DS,lin(u)] in power series and obtain the high-frequency series expansion for MSp, i.e. [9, 13],

MSp = M
(0)
Sp + M

(1)
Sp + · · · (41)

M
(0)
Sp =

(
1

2π

)2

H 2
0

∫
d2u exp[−iqu − DS,lin(u)] (42)

M
(0)
Sp is the dominant term for large z. The equations (37) and (42) correspond to Gaussian

approximation for the field statistics.

5.3 Extended medium

The solution of equation (23) in the form of iteration series is similar to the low-frequency
expansion (36) for the phase screen case [20]. The zero term of this row is determined by
equation (37). The first term is

MSp,1(q, z) = 4π(λre)
2H 2

0

∫ z

0
dz1Sin2

[
q2

2k(z − z′)

]
�Ne(q, q‖ = 0) exp(−L)

L =
∫ z1

0
dz′D

[
qz

k(z − z1)

]
+

∫ z

z1
dz′D

[
qz

k(z − z′)
] (43)

The spatial spectrum of weak scintillation is determined by the equation [1,13]

MSp(q, z) = 4π(λre)
2H 2

0

∫ z

0
dz′Sin2

[
q2

2k(z − z′)

]
�Ne(q, q‖ = 0) (44)

The scintillation index is equal

m2 ∼= DS,lin

(( z

k

)1/2
)

< 1 (45)

and spatial scale is equal

bFr
∼=

( z

k

)1/2
(46)

For large values of DS,lin[(z/k)1/2] according to relations (36) and (41) we obtain the zero
term in the perturbation series for M(u,v,z) that is equal to

M0(u, v, z) = H 2
0 exp[−DS,lin(u)] + H 2

0 exp[−DS,lin(v)] = |BE(u)|2 + |BE(v)|2 (47)
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422 V. I. Shishov

This relation corresponds to Gaussian statistics of field fluctuations. It can be used to express
the frequency correlation function of diffractive flux fluctuation as:

BH(�f ) = 〈H(ρ1, f1)H(ρ1 + ρ, f1 + �f )〉 − 〈H 2〉 = |BE(�f )|2 (48)

Here BE(�f ) is frequency coherence function that discussed above (see equations (19),
(20) and (27). According to equation (27) the characteristic frequency scale of diffractive
scintillation �fdif and the characteristic pulse broadening τsc are conjugated parameters

2π�fdifτsc
∼= 1 (49)

5.4 The effect of a source size on scintillation characteristics

For simplicity we consider the case of the phase screen [3, 21]. If the point source produces
the diffraction pattern H0 (ρ) on the observer plane, then the same source displaced by an
angle θ will produce a similar pattern shifted by distance zθ . The diffraction pattern for an
extended source is given by [3,21]

H(ρ, z) =
∫

d2θH0(ρ + zθ)J (θ) (50)

Here J (θ) is the initial brightness distribution of the source. A spatial spectrum of intensity
fluctuations is determined by the following equation

MSp(q) =
∫

d2ρ exp[−i(qρ)]BH(ρ) = MI,0(q)MJ(zq)

MJ(q) =
∣∣∣∣
∫

d2θ exp[−i(zqθ)]J (θ)

∣∣∣∣
2 (51)

Using this relation we can obtain the amplitude of the source visibility function.
For extended medium the spectrum of weak scintillation is determined by equation (43),

where H 2
0 exp(−L) is changed for MJ[(z − z′)q] exp(−L). For the case of saturated scintil-

lation the correlation function of diffractive scintillation is described by the expression [22]

BH(u) = M0(u, v = 0, z) − H 2
0 =

∫
d2θ exp

[
−

∫ z

θ

dz′D[ϑ(z − z′)])
]

J1(θ)

J1(θ) =
∫

d2θ1J (θ − θ1)J (θ1)

(52)

For large sources with angular size ϕ0 � 1/kz θ the shape of BH(u) doesn’t depend on the
form of J1(θ). The main information on the source angle size is contained in the scintillation
index.

6. Effect of refractive scintillation on the diffractive pattern

We discussed above the properties of field moments for the case of full averaging on the tur-
bulent medium statistics. The process of averaging over the statistics of the turbulent medium
corresponds to temporal integration with a long integration time T . If

tdif < T < Tref (53)

then the averaging is partial. We will designate such partial averaging by angular brackets with
the subscript “dif”.
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For the case of the phase screen we can represent the partly averaged brightness distribution
〈I (θ)〉dif on the exit plane as [23]

〈I (ρ + zθ , θ , z = 0)〉dif = F(θ − θ ref(ρ)) (54)

where F(θ ) is the brightness distribution of scattered irradiance and θ ref(ρ) is random angular
refraction due to large scale (refractive) inhomogeneities. At distance z we have

〈I (ρ, θ , z)〉dif = 〈I (ρ + zθ , θ , z = 0)〉dif = F(θ − θ ref(ρ + zθ)). (55)

For small variations of θ ref

θ ref(ρ + zθ) ∼= θ ref(ρ) + zθ∇ρθ ref(ρ) (56)

and

〈I (ρ + zθ , θ , z = 0)〉dif
∼= F

[
θx

(
1 − z

(
dθref

dx

))
− θ ref(ρ), θy

]
, (57)

where the x axis is directed along θ ref . Using this expression we can obtain the following
relations:

Flux density variations due to the refractive scintillation are determined by

�H = z

(
dθref

dx

)
〈H 〉 (58)

Frequency scale fdiff variations correlate with flux density variations

�fdiff〈fdiff〉 ∼= (�H)

〈H 〉 (59)

Temporal scale variations partly correlate with flux density variations

�tdiff/〈tdiff〉 ∼= (�H)Cosα

〈H 〉 (60)

where α is angle between θ ref and velocity V.
For extended medium, the correlation between �H , �fdiff and �tdiff is weak [24].

6.1 Slanting features in dynamic spectrum

For the case of phase screen in the presence of strong angular refraction a displacement angle
of the source can be compensated for by the differential angular refraction.An observer can see
the same point of the diffractive pattern during long time if he is moving along the characteristic
line [16]

�f =
(

df

dt

)
�t (61)

This effect leads to slanting features or frequency drift in the dynamical spectrum. This phe-
nomenon can also be explained by the two-beam interference model. If a relative displacement
of two beams is greater than the size of the scattering disc Rsc = zθ0 then the interference of
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fields of these beams can modulate the diffraction pattern. Let us take the sum of fields in the
form

E(ρ, f ) = E1(ρ, f ) exp[−iS1(ρ, f )] + E2(ρ, f ) exp[−iS2(ρ, f )] (62)

Here E1,2(ρ, f ) is determined by diffractive irregularities and S1,2(ρ, f ) is an additional phase
that is determined by large-scale inhomogeneities. The partly averaged correlation function
of flux density fluctuations is given by

BH,dif(ρ, �f ) = 〈H(ρ1, f1)H(ρ1 + ρ, f1 + �f )〉dif − 〈H 2〉dif

= BH,dif,1(ρ, �f ) + BH,dif,2(ρ, �f )

+ 2BE,dif,1(ρ, �f )BE,dif,2(ρ, �f )cos[k(ρθ ref) − �f/�fref ]
(63)

Here BE,dif,1,2(ρ, �f ) is two-frequency coherence function that is discussed above and
BH,dif,1,2(ρ, �f ) is a spatial-frequency flux correlation function that is determined by an
equation similar to (48). The refraction angle θ ref and the refraction frequency scale �fref are
given by

θ ref = (1/k)∇ρ[S1(ρ, f ) − S2(ρ, f )]

�fref =
{(

d

df

)
[S1(ρ, f ) − S2(ρ, f )]

}−1 (64)

6.2 A spatial-frequency spectrum

To analyze the effect of refractive scintillation on speckles of diffractive patterns it is convenient
to use the next spectral function

MSp,2(θ , τ ) = (1/2π)2
∫

d2ρ

∫
df exp[−i(kθρ) − 2πiτf ]BH,dif,1(ρ, �f ) (65)

This spatial-secondary frequency spectrum of the diffraction pattern corresponds to measure-
ment of the brightness distribution of the scattered pulse by antenna with a diagram that is
limited by the scattering angle. Here spatial frequency q measured in k is equivalent to the
direction q/k = θ and secondary frequency τ is equivalent to the time delay. For the case of
the power law spectrum of turbulence and for the large angles |θ | � θscat we can use single
scattering approximation and obtain the next relation

MSp,2(θ , τ ) ∝ [〈GH(r = 0, r1)〉dif〈GH(r1, r)〉dif ]2�Ne

[
q⊥ = k

(
z

z1

)
θ1(r1), q‖ = 0; r1

]
(66)

Factors 〈GH(0, r1)〉dif and 〈GH(r1, r)〉dif describe flux modulations due to refractive scintil-
lations. Here r1 = (ρ1, z1) is the position of the scattering point and ρ1, z1 are determined by
the equations

ρ1 = (z − z1)θ

τ =
(

1

2

)
z

(
z

z1 − 1

)
|θ |2 (67)

θ1(r1) is the local scattering angle

θ1(r1) = θ

(
z

z1

)
+ �θ ref(r1) (68)

where �θ ref(r1) is an additional angle determined by refractive inhomogeneities.
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We see that the temporal–angular distribution of the intensity of the scattered pulse gives
information on the spatial structure of the turbulence level. For the case of an extended medium
this distribution is continuous with speckles determined by flux fluctuations due to refractive
scintillation. For the case of phase screen, non-zero values of the function MSp,2(θ , τ ) are
concentrated in a surface that is determined by equation (65). Similar results can be obtained
for the case of transmitting antenna.

If we measure dynamical spectrum (temporal–frequency structure of flux fluctuations) we
can obtain the secondary spectrum of the dynamical spectrum [25]

S2(ft, ff) =
∫

dt

∫
df exp(−2πftt − 2πff�f )BH,dif(t, �f ) (69)

MSp,2(θ , τ ) can be reduced to S2(ft , ff) by the integration on angle component θ⊥ normal
to velocity V. The cases of an observer and source movements correspond to receiving and
transmitting antennas.

For the case of a phase screen with strongly anisotropic inhomogeneities, enhanced inten-
sity of the secondary spectrum concentrates near an arc structure that is determined by the
relation [26]

τ =
(

1

2

)
z

(
z

z1 − 1

)
|θ |2, θV = 2πft

kV
(70)

where θV is the component along the direction of velocity V.
The passing of rays through caustics can generate a similar structure. For example, if an

observer (or a source) is placed near a focal line of a cylinder lens and if focusing dominates
scattering we can see enhanced intensity of the secondary spectra near arc structure

τ = zfoc|θx|2, θx = 2πft

kVx
(71)

where zfoc is the focal distance.

7. Asymmetry coefficient

The most important measured quantity is the scintillation index

m2 = 〈(H − 〈H 〉)〉2/〈H 〉2 (72)

where H is total flux density of a source. However, extragalactic sources have complex
structures, consisting of a compact scintillating component and an extended non-scintillating
component. Consequently, without knowing the flux density of the scintillating component
Hc, it is not possible to determine the corresponding scintillation index, mc:

m2
c = 〈(H − 〈H 〉)2〉

〈Hc〉2 = m2

( 〈Hc〉
〈H 〉

)2

(73)

It was proposed in [27,28] to overcome these difficulties using measurements of the asymmetry
coefficient of the flux-fluctuation distribution

γ = 〈(H − 〈H 〉)3〉[〈(H − 〈H 〉)2〉]3/2 (74)
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As is shown in [28], γ is given by the relation

γ = Amc (75)

The numerical coefficient is determined by the flux-fluctuation distribution. It depends on the
shape of the turbulent spectrum and on the scintillation regime. For the Kolmogorv turbulent
spectrum in the weak scintillation regime the flux-fluctuation distribution function follows a
logarithmic normal law [28,29] and A = 3. For diffractive scintillation A = 2 and for refractive
scintillation A = 3 [28].

To analyse the fluctuations on various scales it was proposed to use the asymmetry
function [29]

γ2,1(t) = −2〈[�2(t)]3〉
〈[�2(t)]2〉〈[�1(2t)]2〉1/2

�1(t) = H(t1 + t) − H(t1)

�2(t) = H(t1 + t) − 2H(t1) + H(t1 − t)

(76)

The function γ2,1(t) is related to the function [DH(2t)]1/2/〈Hc〉 by the formula

γ2,1(t) ∼= A2,1[DH(2t)]1/2

〈Hc〉 (77)

The factor A2,1 is weak function of t . For large t � t0

γ2,1(t) ∼= 21/2 γ = 21/2Amc (78)

The distribution function of small-scale flux-fluctuations of weak and diffractive scintillation
follows the Rice–Nakagami distribution function [30]. Using this distribution function we
obtain for a small time lag t � t0, A2,1 = 3/2. For refractive scintillation A2,1 = 3 [30].
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