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The explicit form for the quadratic contribution to the gravitational field from the dipole distributed
anomalous masses is found. The anomalous masses are represented in the form of layers of variable
height, arranged relative to the reference ellipsoid. The solution is reduced to the mathematical problem
of finding an expression for the coefficients of expansion in terms of spherical harmonics of the square of
any function that can be presented as a finite series of spherical harmonics, in terms of the coefficients
of this initial series. The formulas have been calculated using mathematical modelling of symbol
computation using computer algebra packages. The results obtained are illustrated using the example
of the contribution from relief masses and density jumps on the Mohorovicic (Moho) discontinuity.

Keywords: Gravitational field of the Earth; Mohorovicic (Moho) discontinuity; Relief masses and
density jumps ; Isostatic equilibrium; Anomalous masses

1. Introduction

The study of the global density structure of the Earth has shown that the lateral distribution of
anomalous, i.e. not corresponding to the hydrostatic equilibrium, masses, basically has dipole
character. That is, the peaks of relief correspond to the extrema of height of Moho surface
(M) with opposite sign. Also, the anomalous masses of tops and bottoms of the Earth crust
often correspond to the tops and bottoms of the upper Earth mantle with opposite sign [1, 2].
Consider the problem of linear contribution to the external or internal gravitational field from
the laterally distributed anomalous masses. A linear relation [3] can be established between
the coefficients of expansion (C̄nm, D̄nm) of gravity potential (i.e. force function taken with
opposite sign), in terms of spherical functions, and those of the anomalous masses represented
in form of a simple spherical layer (ānm, b̄nm):{

C̄nm

D̄nm

}
= 3

2n + 1

(
R

R0

)3
�σ

σ̄

{
ānm

b̄nm

}
,
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362 L. P. Nasonova and N. A. Chujkova

where R, �σ, R0, σ̄ are mean radii and densities of a simple Earth layer and all Earth, respec-
tively. Here the following representation for the external and internal gravity potential of an
Earth layer is used:

Ve(r, ϕ, λ) = fM0

r

N∑
n=1

(
R

r

)n

Ȳn(ϕ, λ), Vi(r, ϕ, λ) = fM0

R

N∑
n=1

( r

R

)n

Ȳn(ϕ, λ),

Ȳn(ϕ, λ) =
n∑

m=0

(C̄nm cos mλ + D̄nm sin mλ)P̄nm(sin(ϕ)).

In these formulas P̄nm(sin(ϕ)) are Caula – normalized spherical harmonics (Legendre’s asso-
ciated functions), {ānm, b̄nm} = {ānm, b̄nm}1 are expansion coefficients of relative heights of the
layer h = H(ϕ, λ)/R, in terms of surface harmonics.

In the linear approach the contributions of two dipole distributed simple layers with close
heights are mutually compensated. However, in reality the anomalous masses are not simple
spherical layers, but they are distributed within their height relative to the reference ellipsoid.
In this case a quadratic approach, as shown in [4], the coefficients of the external gravity field
satisfy the relation:{

ānm

b̄nm

}
=

{
ānm

b̄nm

}
1

+ n + 2

2

{
ānm

b̄nm

}
2

+ α(n + 2)

{
ānm

b̄nm

}
3

, (1)

and for the internal field:{
ānm

b̄nm

}
=

{
ānm

b̄nm

}
1

− n − 1

2

{
ānm

b̄nm

}
2

+ α(n + 2)

{
ānm

b̄nm

}
3

, (2)

where the term in brackets { }2 with lower index 2 corresponds to expansion coefficients of
function (h)2, and the term { }3 to the expansion coefficients of function hP̄2(sin(ϕ)), here
α = (2/3)e, e is the oblateness of the reference ellipsoid. It follows from (1) and (2) that the
quadratic contribution { }2 to dipoles, unlike linear { }1 and ellipsoidal { }3 contributions, is
not compensated but is summed.

In this paper we present a method that establishes the analytical relations allowing one to
express expansion coefficients {ānm, b̄nm}2, {ānm, b̄nm}3 through the linear terms {ānm, b̄nm}1,
and we present numerical results. These formulas have been calculated using mathematical
modelling of symbol computation using computer algebra packages.

2. Problem Setting

The original presentation of some function h = H(ϕ, λ)/R as a series of spherical functions
of order n ≤ N has the form:

h(ϕ, λ) =
N∑

n=1

(
n∑

m=0

(
ānm cos(mλ) + b̄nm sin(mλ)

)
P̄nm(sin ϕ)

)
. (3)

A similar expansion for h2 can be presented as:

h2(ϕ, λ) =
2N∑
n=0

(
n∑

m=0

({ānm}2 cos(mλ) + {b̄nm}2 sin(mλ))P̄nm(sin ϕ)

)
. (4)
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Anomalies of an external and internal gravitational field of upper Earth layers 363

For Legendres’ associated functions P̄nm(sin(ϕ)), normalized according to Kaula, we use the
formula

P̄n,m(x) = Kn,mPn,m(x), Kn,m =
√

εm(2n + 1)(n − m)!
(n + m)! ,

ε0 = 1

εm>0 = 2
. (5)

The problem consists in expressing the expansion (4) coefficients {ānm}2, {b̄nm}2, through
the coefficients {ānm}1 = ānm of the initial series for function h(ϕ, λ). In order to solve this
problem we have developed two different techniques. The first one consists in obtaining
directly the decomposition of the product of finite series of elementary surface harmonics
by symbolic integration. The second method is essentially based upon the Clebch–Gordon
series [5]. We present below both methods in detail.

3. Expansion in Terms of Surface Harmonics

Consider the system of elementary surface harmonics Yn,s(x, λ), similar to functions
Yn,s(�, λ), n = 0..2N, s = 0..2n, from [3]:

Yn,s(x, λ) = P̄n,m(x) cos(mλ), (s ≤ n, m = s),

Yn,s(x, λ) = P̄n,m(x) sin(mλ), (s ≥ (n + 1), m = s − n).

The system of functions Yn,s(x, λ) forms an orthogonal system in the closed domain −1 ≤
x ≤ 1, 0 ≤ λ ≤ 2π . Then expansion (4) can be written as:

h2(ϕ, λ) =
2N∑
n=0

2n∑
s=0

hn,sYn,s,
hn,s≤n = {ān,s}2,

hn,s>n = {b̄n,s−n}2
. (6)

The coefficients hn,s of the expansion in terms of elementary spherical functions Yn,s are
calculated by integration:

hn,s = 1

Normn,s

∫ 1

x=−1

∫ 2π

λ=0
h2Yn,sdλdx, x = sin(ϕ). (7)

where Normn,s = 4π is the norm of functions Yn,s(x, λ).
Here in calculation (7) it is necessary to substitute in the expression instead of h2, the square

of the initial expression (3) for h in symbolic form, and to execute integration for any fixed
value N .

In this way we obtain ane expression for the coefficients {ān,m}2, {b̄n,m}2 for N ≤ 5. In order
not to exceed the operative memory, for greater values of N it is preferable to use a step-by-step
method. Then, increasing N in the initial series by one, we do not have to recalculate all the
items in coefficients {ān,m}2, {b̄n,m}2, only those taking into account the contribution of the
additional terms in series (3) appearing due to the increase of N .

Notice that at such transition from N to N + 1 on each step the matrix of possible coefficients
{ānm}2, {b̄nm}2, grows due to the index values n = 2N + 1, n = 2N + 2. This algorithm is
essentially based upon the Clebch-Gordon’s series [5].

The Clebch–Gordon decomposition is given in [5] for the product of two Legendres’ asso-
ciated functions Pn,m(x) ∗ Pk,l(x) with a different set of indexes in the form of a finite sum of
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364 L. P. Nasonova and N. A. Chujkova

functions Pn1,m+l(x) with numerical coefficients.A similar expansion for normalized functions
has the form:

P̄n,m(x)P̄k,l(x) =
n+k∑

n1=max(|n−k|,m+l)

S̄n,m,k,l,n1 P̄n1,m+l(x), (8)

where S̄n,m,k,l,n1 will be called the Clebch–Gordon coefficients. The coefficients S̄n,m,k,l,n1 can
be obtained by direct integration as in (7):

S̄n,m,k,l,n1 = 1

Normn1,m+1

∫ 1

x=−1

∫ 2π

λ=0
P̄n,m(x)P̄k,l(x) cos((m + l)λ)Yn1,m+ldλdx.

In the present work we also use another method to calculate the coefficients S̄n,m,k,l,n1 , which
is more economical in numerical computation and uses less execution time. Using the known
relation Pn,m(x) = (1 − x2)m/2(dm/dxmPn(x)), we obtain from the formula (8), using (5), a
polynomial with respect to x, identically equal to zero for −1 < x < 1:

Kn,m

dm

dxm
Pn(x)Kk,l

dl

dxl
Pk(x) −

n+k∑
n1=max(|n−k|,m+l)

S̄n,m,k,l,n1Kn1,m+l

dm+l

dxm+l
Pn1(x) = 0.

Equating to zero the coefficients of this polynomial corresponding to the different powers of
x, we get a system of ordinary linear equations on S̄n,m,k,l,n1 .

4. Expressions for the coefficients {ānm, b̄nm}2, {ānm, b̄nm}3

Let us denote through h(N)
n,s the coefficients of expansion (6), when initial expansion (3) for

function h has been executed up to order N (the same for N + 1). Then it follows from (7)
h(N+1)

n,s = h(N)
n,s + dh(N)

n,s , here at passage from N to N + 1 we have to add to the factors h(N)
n,s

the components dh(N)
n,s , which can be expressed using (8):

1) for s = 0, (additives at calculation of coefficients {ān,0}2):

dhN
n,0 = 1

2

∫ +1

−1
P̄ 2

n,0dx
N+1∑

k=max(1,|N+1−n|)
δkS̄N+1,0,k,0,nāN+1,0āk,0

+ 1

2

2N+2∑
p=0

[p/2]∑
j=0

∫ +1

−1
P̄p,2j P̄n,0dx

N+1∑
k=max(1,j,|N+1−p|)

δkS̄N+1,j,k,j,p

× (āN+1,j āk,j + b̄N+1,j b̄k,j ),

(9)

2) for 1 ≤ s ≤ n, (additives at calculation of coefficients {ān,m}2, m = s):

dhN
n,s = 1

4

∫ +1

−1
P̄ 2

n,sdx

×
min(s,N+1)∑

l=max(0,s−N−1)

N+1∑
k=max(1,s−l,|n−N−1|)

δkS̄N+1,l,k,s−l,n(āN+1,l āk,s−l − b̄N+1,l b̄k,s−l)
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Anomalies of an external and internal gravitational field of upper Earth layers 365

+ 1

4

min([(2N+2−s/2)],max(0,N+1−s))∑
j=0

2N+2∑
p=max(s,s+2j)

∫ +1

−1
P̄p,s+2j · P̄n,sdx

×
⎧⎨
⎩

N+1∑
k=max(1,s+j,|N+1−p|)

δkS̄N+1,j,k,s+j,p(āN+1,j āk,s+j + b̄N+1,j b̄k,s+j )

+
⎛
⎝ N+1∑

k=max(1,j,|N+1−p|)
δkS̄N+1,j+s,k,j,p(āN+1,j+s āk,j + b̄N+1,j+s b̄k,j

⎞
⎠

⎫⎬
⎭. (10)

3) for n < s ≤ 2n, (additional items at calculation of {b̄n,m}2, m = s̄ = s − n):

dhN
n,s = 1

4

∫ +1

−1
P̄ 2

n,s̄dx

×
min(s̄,N+1)∑

l=max(0,s̄−N−1)

N+1∑
k=max(1,s̄−l,|n−N−1|)

δkS̄N+1,l,k,s̄−l,n(āN+1,l b̄k,s̄−l + b̄N+1,l āk,s̄−l)

+ 1

4

min([2N+2−s̄/2],max(0,N+1−s̄))∑
j=0

2N+2∑
p=max(s̄,s̄+2j)

∫ +1

−1
P̄p,s̄+2j · P̄n,s̄dx

×
⎧⎨
⎩

N+1∑
k=max(1,s̄+j,|N+1−p|)

δkS̄N+1,j,k,s̄+j,p(āN+1,j b̄k,s̄+j − b̄N+1,j āk,s̄+j )

+
⎛
⎝ N+1∑

k=max(1,j,|N+1−p|)
δkS̄N+1,j+s̄,k,j,p(−āN+1,j+s̄ b̄k,j + b̄N+1,j+s̄ āk,j

⎞
⎠

⎫⎬
⎭. (11)

In these formulas we use the following notation: δk =
{

1,k≤N
1
2 ,k=N+1, [p/2] = (p − p mod 2)/2,

here [p/2] is the integral value, i.e. the integer nearest to the positive number p/2. In order
to obtain definitive expressions for hn,s, (n = 0..2Nmax , s = 0..2n), it is necessary to sum
up all the components dh(N)

n,s , obtained through the passage from N to N + 1, starting from
the minimum value N0 = [(n − 1)/2], for which the coefficient hn,s appears, up to Nmax − 1,
where Nmax is the maximum order for initial expansion (3). Notice that for n = 0, the formula
(9) is reduced to a known result:

{ā00}2 =
N∑

n=1

n∑
m=0

(
ā2

nm + b̄2
nm

) =
∫∫

(hs)
2dλd sin ϕ.

Similarly, using (8), we get the coefficients {ānm, b̄nm}3, n = 0..N+2, m = 0.. min(n, N),
of the expansion of function h(ϕ, λ)P̄2(sin(ϕ)), which enter in (1),(2):

{ān,m}3 =
min(n+2,N)∑

k=max(1,m,|n−2|)
S̄2,0,k,m,nāk,m; {b̄n,m}3 =

min(n+2,N)∑
k=max(1,m,|n−2|)

S̄2,0,k,m,nb̄k,m. (12)

The absolute values of numerical coefficients in formulas (9)–(12) do not exceed 2.3.
We see that taking into account the squared terms from expansion of the relief surface

of degree N brings an additional contribution to the harmonics of the potential of degree
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366 L. P. Nasonova and N. A. Chujkova

n = 0 ÷ 2N , and the magnitude of this contribution increases with growth of n. The contri-
bution to the null harmonic outlines the difference between the average radius of an isometric
sphere and the average radius of a reference relief surface.

5. Numerical Results and Conclusions

In this paper we have presented a method for finding analytical expressions for the coefficients
of expansion in terms of surface harmonics, of the square of a function with a couple of
arguments (x = sin ϕ; λ), written as a finite series of elementary spherical functions, through
the coefficients of initial expansion. In order to implement this technique and get numerical
results we developed a recurrent (with respect to the series order N ) algorithm that we do not
present here. The advantage of the approach, compared to direct integration (7), is that the
former can be used efficiently for fast numerical computations for any value of order N . The
latter one can be implemented only for small N , as, starting from N = 6, it rapidly leads to
huge numerical operations exceeding the computer memory.

We obtained the final analytical formulas adapted for direct numerical computations for all
significant terms up to Nmax = 9. It allows one to estimate the contribution from the square
terms to the Stokes’ constant degrees 0 ÷ 18. The results are illustrated using the example of
the contribution from square terms of relief masses and density jumps on the (M) surface to
the gravitational field of the Earth.

Figure 1 illustrates the dependence on the degree of expansion n (on abscissa) of the relative
mean quadratic contribution from relief masses, density jumps on (M), and the summary
contribution respectively:

¯�Vn = V̄n − (V̄n)1

(V̄n)1
=

√
Dn − √

(Dn)1√
(Dn)1

,

Figure 1. Dependence of relative mean quadratic contribution ¯�Vn from quadratic terms to exterior gravity potential
on the series degree n.
1. for masses of the relief;
2. for jump density on (M) surface boundary;
3. for summary (relief + density jump) contribution.
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Anomalies of an external and internal gravitational field of upper Earth layers 367

Figure 2. Histogram of distribution of the relative contribution to Stokes constants from the sum of quadratic terms
for relief masses and density jumps on (M).

where Dn = ∑n
m=0(ā

2
nm + b̄2

nm), here index 1 corresponding to linear approximation. We can
see on figure 1, that the contribution from the square terms of the jump on (M) is greater by an
order than the contribution from the relief. Also, the total contribution is approximately of the
same order as the linear contribution for harmonics n = 1 ÷ 9, and slightly decreases (about
twice) only for harmonics corresponding to the relief’s incomplete isostatic compensation on
(M) (n = 6, 10 ÷ 18).

Figure 3. Linear contribution to gravity anomalies on Earth ellipsoid from Earth crust in isostatic equilibrium.
Section of isolines 2 mGal. Range of variations is (−17 ÷ 18) mGal.
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Figure 4. Quadratic terms contribution to gravity anomalies on Earth ellipsoid from relief masses and density jumps
on (M). Section of isolines 2 mGal. Mean value 3.3 mGal, peak value 13 mGal.

Comparing formulas (1) and (2), it follows that contributions from square terms to external
and internal gravity fields for n > 1 have approximately the same absolute values and opposite
signs (for potential). Note that for gravity force the contibution of the squared terms to external
and internal force have the same signs and differ only by factors (n + 1)(n + 2) and n(n − 1)

for external and internal fields, respectively. The contributions from linear terms and the terms
taking into account the elliptic structure have opposite signs for external and internal gravity
force, (unlike the potential, for which these contributions have the same sign).

Figure 2 presents a diagram of the distribution of relative contributions to Stokes con-
stants from the sum of square terms for relief masses (r) and density jump on (M):

δnm =
∣∣∣(n + 2/2)

{
ar

nm+KaM
nm

br
nm+KbM

nm

}
2

/ {
ar

nm+KaM
nm

br
nm+KbM

nm

}
1

∣∣∣, where K ≈ 0.115. It is apparent from figure 2,

Figure 5. Summary contribution (linear and quadratic) to gravity anomalies at 500 km height from Earth crust in
isostatic equilibrium. Section of isolines 2 mGal. Range of variations is (−4 ÷ 16) mGal. Mean value 2.8 mGal, peak
value for quadratic contribution 7 mGal.
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that for several coefficients, the square contribution is greater than the linear contribution
(δnm > 1) (for C̄7,1, C̄11,1, D̄11,6, C̄12,0, C̄13,6,), and mostly (≈ 57%) δnm > 0.01, which is
essential at the modern accuracy of Stokes’ constants.

Figures 3 and 4 present maps of the total contribution to anomalies of the external gravity
force on the terrestrial ellipsoid using the linear approximation (figure 3), and the quadratic
approximation (figure 4), (expansion of degree N = 18, the ellipsoidal term is absent). It is
apparent from the figures that the linear contribution is basically correlated with the heights
of relief or with depths of (M), i.e. is positive for continents and negative for oceans. The
quadratic terms’ contribution is correlated with squares h2

M , h2
r , i.e. is positive everywhere.

Besides, the order of magnitude can be compared to the linear contribution.
Therefore, taking into account only the linear approximation to interpret gravity anomalies

may lead to incorrect estimation of the contribution of the crust boundaries to the Earth gravity
field, and to incorrect estimation of the degree of correlation of these boundaries with gravity
anomalies.

The contribution of squared terms is especially remarkable in the satellite zone, where for
some regions its absolute value can exceed the linear contribution. Figure 5 presents a map
of the total contribution of linear and squared terms to gravity force anomalies at a height
of ≈ 500 km, taking as reference an ellipsoid similar to the terrestrial ellipsoid. Comparing
figures 3 and 5 we see that for some regions the sum and linear contributions have opposite
signs, whicht can considerably distort the interpretation of satellite data.
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