
This article was downloaded by:[Bochkarev, N.]
On: 14 December 2007
Access Details: [subscription number 746126554]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Astronomical & Astrophysical
Transactions
The Journal of the Eurasian Astronomical
Society
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453505

The highly excited atom balance equation diffusion
approximation
N. I. Rovenskaya a
a Institute of Radio Astronomy, Kharkiv, Ukraine

Online Publication Date: 01 August 2007
To cite this Article: Rovenskaya, N. I. (2007) 'The highly excited atom balance
equation diffusion approximation', Astronomical & Astrophysical Transactions, 26:4,

351 - 360
To link to this article: DOI: 10.1080/10556790701592118
URL: http://dx.doi.org/10.1080/10556790701592118

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453505
http://dx.doi.org/10.1080/10556790701592118
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
11

:4
4 

14
 D

ec
em

be
r 2

00
7 

Astronomical and Astrophysical Transactions
Vol. 26, Nos. 4–5, August–October 2007, 351–360

The highly excited atom balance equation diffusion
approximation

N. I. ROVENSKAYA*

Institute of Radio Astronomy, 4, Chervonopraporna St, Kharkiv, 61002 Ukraine

(Received 1 March 2007)

Currently, hydrogen and carbon radio recombination lines are observed from HII and CII regions.
To find the ionized gas physical conditions, the intensity interpretation analysis is carried out based
on the balance equation analytical solutions. The balance equations are formulated accounting for
the spontaneous and collision transition rates and photorecombination. The collision transition rate
is calculated in an impact approximation applicable for the highly excited atom states with numbers
n > 50. The balance equations are solved in a diffusion approximation for the departure coefficient
flow-like functions, which depend upon the principal quantum number or that of a recombination
line. The balance equation solution accuracy is determined by that of the transition rate. The diffusion
equation initial condition is shown to be a function of the principal quantum number for which the
non-equilibrium amplification coefficient has a maximum value. With the experimentally known state
number with the maximum amplification coefficient, the ionized gas electron density can be found
from the initial condition equation. The amplification coefficients analytically found are compared with
those numerically determined and discussed. Interpreting the non-equilibrium line optical depths, the
HII and CII region temperatures can be found, since the electron densities are calculated.

Keywords: Radio recombination lines; CII region; HII region; Highly excited atom populations

1. Introduction

The hydrogen and carbon radio recombination lines (RRLs) numbered H40α − H42α, H92α,

H165α, C201α − C273α, C570α − C686α and C860β − C868β have been studied and show the
kinematics of the HII and CII regions due to the Doppler line shift.

Extragalactic RRLs were first detected in 1977 [1]. The RRLs numbered H92α, H166α were
studied from 1987 to 2002 and gave information about the velocity field of an ionized gas
in the starburst galaxies. These experiments motivated further interferometric observations of
the compact HII regions in many galaxies. Hydrogen RRLs are observed from the galaxies
Arp220, M82, M83, NGC 2146 and many others using the Very Large Array and IRAM 30 m
telescope [1–5].

The lowest-frequency carbon RRLs were first detected as early as 1979 [6, 7]. In further
experiments more than 50 lines were observed in the extended CII region towards Cassiopeia
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A from 1984 to 2001. The carbon centimeter RRLs numbered C200α − C270α are broadened
due to the Doppler effect. As follows from experiments, the lowest-frequency lines are broad-
ened due to a combination of the Doppler, radiation and collision broadening effects. Since the
Doppler linewidth component is experimentally found and the radiation-induced width com-
ponent is calculated for the radiation temperature measured, the collision line width component
can be determined and the electron volume density may be found theoretically by account-
ing for the impact approximation employed in the case 1.6 · 105 K/(n2Te) � 1, n > 50.
Interpreting the experimental intensity values of the radio lines numbered C200α − C229α ,
the CII region temperature can be determined, since the electron density is calculated
and the CII region dimension is taken R = 1000pc. Current experiments are carried out
with the instruments UTR-2 (Kharkiv), DKR-1000 (Puschino), GMRT (India) and VLA
(USA) [6–12].

This paper aims to describe theoretically the RRL non-equilibrium intensities. The non-
equilibrium intensities are functions of the principal quantum number, medium density and
temperature. To calculate the density value, the collision transition rate is determined in an
impact approximation and this approximation case is valid for (1.6 · 105K/n2Te) � 1, where
n is the principal quantum number. The balance equations are solved in a diffusion approx-
imation, which is conditioned by the situation that the transition rates are the most probable
from the nearest levels. The solutions found are applied to interpret the hydrogen and carbon
RRLs observed in experiments.

The line intensity is known to be determined by the highly excited state population differ-
ence and spontaneous transition rate. The highly excited state populations are calculated with
the spontaneous and collision transition rates in the case of the lines formed in an astrophysical
plasma. The balance equations are studied and solved in [13–19]. There are two approaches to
the balance equation solution: numerical solutions are tabulated in [16] and an analytical solu-
tion is based on the flux-like formula for the departure coefficients [18, 19]. For the analytical
approach, the spontaneous and collision transition rates are written as smooth functions of the
principal quantum number with strong dependence on the difference in the quantum numbers,
since the principal quantum number changes. Describing the kinetic phenomena in this form,
the balance equation is written as a Fokker–Planck equation [20]. To show that the principal
quantum number change time is much longer than one transition time, the spontaneous transi-
tion rate is calculated as a function of the angular momentum quantum number. The transition
rates for small angular momenta are as small as (1/n2) → 0. The most probable transition is
that to the nearest level. The collision transition rate is calculated using the impact approxi-
mation. This approximation applicability and accuracy are discussed in [18, 19, 21, 22]. Since
the steep function is (1/�n4), it is evident that collisions slowly change the atom state. The
balance equation in the diffusion approximation is a differential equation with the right-hand
side in the form of photorecombination, and it can be integrated in closed form. The general
solution can be determined by the initial condition, and the latter is determined in the form
(∂bn/∂n)|n=n1 ∼ (1/n12) and is a maximum for some state n = n1. The non-equilibrium
factors bnβn have maximum as functions of electron density and weakly depend upon tem-
perature, the initial condition state n1 can be taken from the experimental data in which the
maximum bnβn factor is measured for the HII region of ionized gas. By using the initial con-
dition equation the electron density can be found as Ne ∼ (n1)−7. From experiments using
Cassiopeia A the maximum amplification coefficient state can be chosen as n1 = 350 − 400
to find the medium density [10, 11].

The calculation coefficients are compared with those already found [16]. The comparison
results are shown in tables 1 and 2. The initial state n1 is calculated with accuracy better than
5% in table 3, but the general solution initial condition given in [16] is twice as large as the
analogous value in this work. The collision diffusion coefficient is proportional to n7, since
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The highly excited atom balance equation diffusion approximation 353

Table 1. The amplification coefficients for
Te = 104 K, Ne = 10 cm−3.

n 1 2 3

50 10.2 10.5 13.9
75 22.8 25.2 38.5

100 85.2 50.0 83.1
125 169.0 79.4 139.2
150 210.0 92.0 167.0
175 112.2 77.4 143.0
200 145.2 54.3 102.5
225 107.2 36.1 69.0
250 87.5 24.2 46.5
275 65.0 16.6 32.1
300 53.7 12.0 22.7

Table 2. The amplification coefficients for
Te = 104 K, Ne = 100 cm−3.

n 1 2 3

50 12.0 13.6 20.3
75 61.0 36.1 60.6

100 118.9 60.8 109.0
125 102.0 55.0 102.1
150 73.4 33.8 64.1
175 51.3 19.3 37.1
200 36.2 11.4 22.1
225 27.8 7.1 14.0
250 19.0 4.6 9.1
275 13.7 3.2 6.2
300 11.1 2.2 4.6

the collision cross-section is proportional n4 [22, 23]. Then the diffusion approximation bnβn

factors should be proportional to bnβn ∼ (1/n6) and half the analogous value given in [16]
for the most highly excited levels with n = 300.

We show the applicability of the balance equation diffusion approximation by using M82
RRL observations. From the initial condition the HII region densities can be calculated with
the initial atom state n1 = 110 ± 10. It is the state on which the amplification coefficient
has maximum value for the M82 gas. Since the electron densities are determined, the electron
temperatures can be found from the optical depth values. The distance to M 82 is approximately
3 Mpc and the resolution angle is about 0.6′′ [4], thus estimating the HII region dimensions
and calculating the RRL amplification coefficients, the region temperature is found from the
generally accepted non-equilibrium optical depth formula.

The electron density is a steep function of the initial principal quantum number, its deter-
mination accuracy depends upon the initial condition state determination. The value n1 is

Table 3. The n1 parameter numerical and analytical calculation.

1 2

Ne = 10 cm−3, Te = 104 K 145 150
Ne = 100 cm−3, Te = 104 K 105 100
Ne = 10 cm−3, Te = 103 K 130 125
Ne = 100 cm−3, Te = 103 K 90 95
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assumed to be found with accuracy 10%, thus the electron density can be calculated with
accuracy 50%.

The paper has five sections. Section 2 is devoted to the spontaneous and collision transition
rates. In section 3 the diffusion approximation is described and the balance equation is brought
to the diffusion form and solved. The initial condition is discussed and the solutions found are
compared with the numerical analogous values. In section 4 the experimentally found RRL
optical depths are interpreted and the HII and CII region electron densities and temperatures
are calculated. Section 5 is devoted to the main conclusions.

2. The spontaneous and collision transition rates

The aim of this section is to show that the most probable spontaneous and collision transition
rates are those for which the principal quantum number change is n − n′ = �n = 1. The
spontaneous transition rate formula in the dipole approximation is well-known [24–26] and
can be written as follows

An,n+�n = 4(�nωn)
3

3�c3
e2r2

�n(n, ε),

ε =
√

1 − (l + 1/2)2

n2
, (1)

where ωn is the transition frequency for the state with the principal and angular quantum
numbers n, l; r�n(n, ε) is the matrix element of the dipole component with the eccentricity ε;
c is the velocity of light; � is the Planck constant; e is the electron charge.

If we assume that l ∼ n and due to transition the highly excited state changes n − n′ = �n ∼
n, then l′ ∼ 1. Transitions with l − l′ ∼ n are multi-pole and the most probable transition rates
are proportional to the small parameter (�nωnn

2/c)�n ∼ (1/n)n, n � 1. In the other case of
small l, l′ l ∼ 1, l − l′ = 1 the most probable transition rate is small due to the little statistic
weight of the small angular momentum number An,n+�n ∼ (2l + 1/n2).

It is most probable that the spontaneous transition rates are determined by the angu-
lar momentum l ∼ n, and having summed up formula (1) with angular momentum, the
spontaneous transition rate can be found

An,n+�n = 0.789 · 1010

n3�n
(s−1), �n = 1, (2)

where the values are determined in formula (1).
The highly excited atom has a large cross-section, which is proportional to n4, n � 1

and thus the collision transition rates determine the non-equilibrium factors in the balance
equations. Collisions are studied in the model of a highly excited atom and scattering elec-
tron with the interaction potential in a dipole approximation. This model cross-section is
described in the impact approximation with an accuracy that is determined by the condition
(1.6 · 105K/n2Te) � 1, n � 1. The scattering problem is considered in [17, 18, 21–23, 27].
The collision transition rate calculation is as follows

a�n(n, ε) = 1

�

∫ ∞

−∞
dtVn,n+�n exp(i�nωnt),

V�n(n, ε) = e2 r�n(n, ε)

(ρ2 + v2t2)
[cos θ cos θ ′ − sin θ sin θ ′(cos φ − sin φ)],
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The highly excited atom balance equation diffusion approximation 355

σ�n(n, ε) = 2π

∫ ∞

ρ0

ρdρa2
�n(n, ε),

WC
�n(n) =

n∑
l=1

2l + 1

n2
< vσ�n(n, ε) >,

WC
�n(n) = Ne

4

3
√

2π
1.18

(
m

kTe

)1/2 (
�

m

)2

n4

[
ln

(
n2Te

1.6 · 105K

)
+ 1/2

]
(s−1),

�n = 1,
1.6 · 105K

n2Te

� 1, (3)

where a�n(n, ε) is the first-order perturbation theory coefficient; V�n(n, ε) is the dipole poten-
tial with the atom radius r�n(n, ε); θθ ′φ are the angular coordinates of the atom and scattering
electron; ε is the atom eccentricity determined in formula (1); ρ, v are the target distance
and scattering electron velocity; σ�n(n, ε) is the atom cross-section; WC

�n(n) is the collision
transition rate summed up with the angular quantum number; Ne, Te are the electron density
and temperature, correspondingly; m is the electron mass; k is the Boltzmann constant.

The collision transition rate is calculated in the perturbation theory approximation, since in
this approximation the coefficients a�n(n, ε) are found in the case in which the atom electron
velocity is smaller than that of the scattering electron.

Formulas (2) and (3) are written with semi-classical accuracy. For the highly excited
states with the numbers n = 50 − 100 the Gaunt correction formula is gn,n+�n = 1 −
0.1728(22/3/n2/3�n2/3) and is equal to 0.97. Thus the semi-classical matrix element
approximation is carried out with good accuracy [15].

3. The balance equation diffusion approximation

The non-equilibrium population factors are known to be determined by the spontaneous and
collision transition rates [13–19]. The highly excited electron source is photorecombination,
since this process is not compensated by photoionization in the optically thin medium [26].
The balance equations can be written as follows

∞∑
�n=1

An+�n,nbn+�n exp

(
En − En+�n

kTe

)
− bn

∞∑
�n=1

An,n−�n

+
∞∑

�n=−∞
WC

|�n|(n + �n)bn+�n exp

(
En − En+�n

kTe

)

− bn

∞∑
�n=−∞

WC
|�n|(n) = W rec

n Sn, W
rec
n = Ne

64

3

√
π

3

a0�

m
α3

(
1.6 · 105K

n2Te

)3/2 [
ln

(
n2Te

1.6 · 105K

)
+ 0.5772

]
, Sn = (Te/1.6 · 105K)3/2

4π3/2a3
0Nen3

,

Nn = bnN
∗
n , a0 = 0.529 · 10−8(cm), α = 1

137
, (4)

where bn is the departure factor from the LTE population value N∗
n ; W rec

n is the photore-
combination rate calculated using Kramer’s formula. The other parameters are described in
formulas (2) and (3).
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Since the spontaneous and collision transition rates are smooth functions of principal quan-
tum number, they are expanded in a Taylor series, as can be shown by an example of the
spontaneous transition rate as follows

An+�n,nbn+�n ≈ An,�nbn + �n
∂

∂n
(An,�nbn) + (�n)2

2

∂2

∂n2
(An,�nbn) + · · · ,

Bn =
∞∑

�n=−∞
�nAn,�n, Dn =

∞∑
�n=−∞

(�n)2

2
An,�n,

Bn = 3.2 · 105K

n3Te

Dn,
1.6 · 105

n2Te

� 1, (5)

where the parameters are described in formulas (1) and (2).
Balance equation (4) is transformed to the diffusion approximation equation and solved in

closed form as follows:

∂

∂n

(
Dn

∂bn

∂n

)
= W rec

n Sn,

∂bn

∂n
=

( w

5n2
+ Cw

) 2

1 + 2DC
n

,

w = 64

3

√
π

3

a0�

m
α3 1

4π3/2a3
00.789 · 1010

,

DC
n =

∞∑
−∞

(�n)2

2
WC

|�n|(n)
n3

0.789 · 1010
, (6)

where C is the constant of the general solution, the other parameters are described in
formulas (1) and (2).

The general solution constant can be determined in the form ∼ (1/n12), since the partial
solution is proportional to (1/n2). The state n1 can be determined from the condition in which
the spontaneous transition rate is equal to that of collision. For the state n1 the non-equilibrium
amplification coefficients bnβn are maximum. In this paper let us calculate C = 1. To calculate
the number n1, the initial condition equation can be written for the maximum value of the
(∂bn/∂n)-factor as follows

2DC
n |n=n1 = 1, (7)

where DC
n is found in formula (6)

There are well-known numerical solutions in [16]. Let us compare the numerical solution
and that using formula (6).

We present the values calculated using formula (6) in tables 1–3.
In tables 1 and 2 bnβn-factors are given for the different densities: column 1 givesthe values

found in [16]; in column 2 the values are calculated using formula (6) with constant C = 1;
in column 3 the values are determined with constant C = 2.

In column 1, results from [16] are detailed for the different temperatures and densities. In
column 2 the initial condition state numbers are calculated using formula (7).

It is evident that the initial condition state numbers chosen coincide. The insignificant
difference for n1 is calculated with accuracy 5%. The amplification coefficient difference can
be explained by the C constant choice. If we take C = 2, the maximum coefficients found
analytically differ from those found numerically by 10%. Some difference for n = 300 may
signify that in the numerical paper the collision transition rate is chosen in some other form.
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4. The observed data interpretation

Currently, the hydrogen recombination lines are observed from the HII regions in extragalactic
sources. These data are found by using the Very Large Array and IRAM 30 m telescope. The
line intensities and widths are represented in [1–5]. Let us interpret the recombination line
data for M82. The data represented in [4] are described in table 4.

Assuming the initial condition state number n1 = 110, it is easy to calculate the electron
densities in the HII regions marked E2a, E1a in table 4 and accounting for formula (7). The
region dimension is determined by taking into account that the source distance is RS ≈ 3Mpc
and angular dimension is 0.6′′. The HII region temperatures may be calculated by the well-
known formula in [28] as follows

τL = 0.19 · 10−3

(
104K

Te

)5/2

N2
e R

1√
π�νL

bnβn, (8)

where τL is the line optical depth; R is the region dimension; �νL is the Doppler centimeter line
width; bnβn is the amplification coefficient. The other parameters are described in formulas (3),
(6) and (7).

The calculation data are represented in table 5.
The parameters in table 5 are described in table 4 and formula (8).
There are five HII region data which are shown in [4] and used for interpretation. To

find the electron densities, the E1a and E2a regions are chosen. The other region data of
the line optical depths differ from those shown here by less than 20%. The average HII
region electron densities calculated are found Ne ≈ 100cm−3for the five regions. The HII
region temperatures are calculated with a better accuracy than that of the electron densities.
In table 5 the amplification coefficients are ≈ 100, in [4] the same coefficients are smaller.
Thus the electron temperature estimations differ. Since the region dimension is determined
inaccurately, then the electron temperature will be found with inaccuracy greater than 100%.
This inaccuracy is principal and the M82 electron temperatures cannot be calculated with
higher accuracy.

The carbon RRLs in emission can be interpreted by using formulas (6,7). The experimental
intensity and width values of the radio lines numbered C200α − C229α are detailed in table 6,
the CII region temperature may be calculated by formula (8), if the CII region dimension is
taken R = 1000 pc, this choice is determined by the extremely low electron density and the
necessity to get a high value for the bnβn-factors. The carbon observation experiments were
carried out with the instruments UTR-2 (Kharkiv), DKR-1000 (Puschino), GMRT (India) and
VLA (USA) [6–12].

Table 4. The RRL observation data.

Coordinates (1950) Peak Flux (mJy) Width �νL(kms−1)

E2a 69◦55′08′′9h51m46s 0.57 ± 0.03 121 ± 37
E1a 69◦54′00′′9h51m42s 0.87 ± 0.07 90 ± 18

Table 5. The HII region data.

n1 Ne(cm−3) bnβn R Te(104K)

E2a 110 75 70 8.7 3.6
E1a 110 75 70 8.7 4.4
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Table 6. The carbon RRL observation data.

τL(10−4) �νL(kms−1)

G00-00 2.1 20.5
Cas A 3.8 4.1

Table 7. The CII region data.

n1 Ne(cm−3) bnβn R Te(K)

G00-00 400 0.016 10 1000 300
Cas A 350 0.04 10 1000 500

The parameters in tables 6 and 7 are described in formula (8).
The density and temperature data in tables 5 and 7 strongly depend upon the initial condition

state number choice, which is written in the form to get high values for the bnβn-factors.
From calculations using formulas (6) and (7) the beta lines numbered H110β − H112β and
C350β − C400β are those with amplification coefficient higher than that of the alpha lines.
These lines may be observed as follows from the alpha line optical depth values and thus it
can be proved that the initial condition state number is chosen accurately and near its real value.

5. Conclusions

The velocity fields and physical conditions have been studied by ionized gas RRL observa-
tions. In this paper the non-equilibrium amplification coefficients are calculated to interpret
the densities and temperatures of the compact HII regions and extremely large CII regions.
To explain the non-equilibrium line emission, the balance equations are formulated and solved
analytically in the diffusion approximation.

The spontaneous and collision transition rates determine the highly excited atom popula-
tions. With this condition the balance equations were studied numerically in [13–16, 29, 30].
There is an analytical approach to the balance equation solution based on the diffusion descrip-
tion of the population flows. The balance solutions are described analytically in [17–19, 26].
The diffusion approximation is based on the condition that the most probable transition rates
are those which change the state n on n′ with �n = 1, n � 1 . With this goal the radius matrix
elements are calculated in section 2. It is shown that the most probable transitions are those
with the angular momentum l ≈ n, the principal quantum numbers change by the rule �n = 1
as follows from formula (2).

Since the collision transitions determine the populations on the most highly excited levels,
the impact approximation collision cross-sections with the transition rates are given by formula
(3) in which the accuracy of the calculation method is determined by the condition for the
temperature and level number (1.6 · 105K/n2Te) � 1.

Since the first diffusion coefficient is much smaller than the second Bn = (3.2 ·
105K/n3Te)Dn, the diffusion approximation equation has a particularly simple form and
its solution is the power function of principal quantum number by formula (6). The electron
source is photorecombination, which is not compensated by ionization in the optically thin
plasma. Thus the differential equation has the partial and general solutions. To chose the gen-
eral solution, it is shown that the general solution should be written in the form ∼ (1/n12),
where n1 is the initial condition state number for which the spontaneous transition rates are
equal to those of the collision. The number n1 is calculated by equation 7.
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The numerical approach is compared with analytical solution. In table 3 the initial condition
state number is represented and differs from analogous value with the accuracy more than 5%.
In tables 1 and 2 the amplification coefficients bnβn are written with those of a numerical value
in [16]. The analytical coefficients differ from those of the numerical value with accuracy 10%
for the maximum amplification coefficients. A remarkable difference can be seen for n = 300.
The analytical solution is much smaller due to the power function of electron flow for the most
highly excited levels bnβn ∼ (1/n6), as follows from formula (6).

Currently, hydrogen RRLs are observed from the HII regions in extragalactic sources. These
data are observed by using the Very Large Array and IRAM 30 m telescope. The H42α, H53α

and H92α line intensities and widths are detailed in [1–5]. We interpret the RRL data for
M82. The data represented in [4] is described in table 4. In table 5 the electron densities and
temperatures are represented for the ionized gas of the HII regions studied.

The carbon observation experiments are carried out with the instruments UTR-2 (Kharkiv),
DKR-1000 (Puschino), GMRT (India) andVLA (USA) [6–12]. The carbon intensities of RRLs
in emission can be interpreted by using formulas (6) and (7). The experimental intensity and
width values of the radio lines numbered C200α − C229α are given in table 6, the CII region
temperature may be calculated by formula (8), since the CII region dimension is taken as
R = 1000 pc, the extremely low electron densities and high temperatures are represented in
table 7. According to the centimeter line intensity data the CII regions have extremely low
electron densities and very large dimensions.
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