
This article was downloaded by:[Bochkarev, N.]
On: 14 December 2007
Access Details: [subscription number 746126554]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Astronomical & Astrophysical
Transactions
The Journal of the Eurasian Astronomical
Society
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453505

Escaping and trapped orbits in a "bare" Seyfert 1
nucleus dynamical model
N. J. Papadopoulos a; N. D. Caranicolas a
a Department of Physics, Section of Astrophysics, Astronomy and Mechanics,
University of Thessaloniki, Thessaloniki, Greece

Online Publication Date: 01 August 2007
To cite this Article: Papadopoulos, N. J. and Caranicolas, N. D. (2007) 'Escaping and

trapped orbits in a "bare" Seyfert 1 nucleus dynamical model', Astronomical & Astrophysical Transactions, 26:4, 301 - 309
To link to this article: DOI: 10.1080/10556790701524442
URL: http://dx.doi.org/10.1080/10556790701524442

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453505
http://dx.doi.org/10.1080/10556790701524442
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
11

:4
1 

14
 D

ec
em

be
r 2

00
7 

Astronomical and Astrophysical Transactions
Vol. 26, Nos. 4–5, August–October 2007, 301–309

Escaping and trapped orbits in a “bare” Seyfert 1 nucleus
dynamical model

N. J. PAPADOPOULOS and N. D. CARANICOLAS*

Department of Physics, Section of Astrophysics, Astronomy and Mechanics,
University of Thessaloniki, 541 24 Thessaloniki, Greece

(Received 26 February 2007)

The nature and behaviour of the orbits in a “bare” Seyfert 1 dynamical model is studied. This model is
subject to external perturbation caused by nearby galaxies. Numerical calculations suggest that, when
the external perturbation is high the nature of the majority of orbits change from regular to chaotic. For
higher external perturbations the zero velocity curves open and a number of orbits goes to infinity. In
addition to those orbits, there are orbits that do not escape at all. Theoretical evidence shows that these
orbits have an additional quasi-integral of motion which is a generalization of the angular momentum
of the test particle.
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1. Introduction

Most astronomers believe that the origin of nuclear activity in galaxies and quasars is still a
puzzle. The standard model involves accretion of matter into a compact central object [1]. On
the other hand, a detailed understanding of the physical processes leading to nuclear activity
in galaxies and quasar activity is still lacking. Furthermore, there is evidence that active
galaxies and quasars frequently have close companions. Some show unambiguous signs of
tidal interaction such as asymmetries, tails and bridges [2, 3].

During recent years, new kinematic models of Seyfert galaxies have been developed. Most
of these models are based on recent, high-resolution long-slit spectra of the narrow-line regions
(NLRs) of Seyfert galaxies, obtained with the Space Telescope Imaging Spectrograph (STIS)
aboard the Hubble Space Telescope (HST) [4–10].

In the present paper we investigate the structure of orbits in a “bare” Seyfert 1 dynamical
model. More correctly we study the motion in a dynamical model composed of a “bare” Seyfert
1 nucleus subject to external perturbations caused by nearby galaxies. The present model does
not involve any accretion of matter into a compact central object as was done in other models
for active galaxies [11, 12].
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302 N. J. Papadopoulos and N.D. Caranicolas

There are several reasons for doing this paper: (i) Observations show that Arakelian 120 is a
bright Seyfert 1 galaxy with an emission spectrum indicating a “bare” Seyfert 1 nucleus [13]).
(ii) Such dynamical studies are rare, therefore the results will be of interest and (iii) it would
be nice to compare the present results with those previously obtained for active galaxies and
quasars [12, 14].

Our dynamical model is represented by the potential

V (x, y) = − Mn

(x2 + y2 + c2
n)

1/2
− εxy2. (1)

Here Mn and cn is the mass and the scale length of the nucleus while ε is the strength of
the external perturbation. We use a system of galactic units, where the unit of length is 1 kpc,
the unit of time is 0.97746 × 108 yr and the unit of mass is 2.325 × 107 M�. The velocity
and energy unit (per unit mass) is 10 km/s and 100 (km/s)2, respectively, while G is equal to
unity. In the above units we use the values Md = 400, cn = 0.25 kpc, while ε is treated as a
parameter.

We assume a clockwise rotation with an angular velocity �. The corresponding Hamiltonian,
which is known as the Jacobi integral, is

HJ = 1

2
(p2

x + p2
y) + V (x, y) − 1

2
�2(x2 + y2)

= 1

2
(p2

x + p2
y) + Veff(x, y) = EJ , (2)

where px , py are the momenta, per unit mass, conjugate to x and y

Veff(x, y) = V (x, y) − 1

2
�2(x2 + y2), (3)

is the effective potential and EJ is the numerical value of the Jacobi integral.
This article has the following targets: (i) to study the regular and chaotic nature of motion

and to connect the transition from regularity to chaos with the values of the parameters entering
the potential (3). (ii) To find the escaping orbits as well as the trapped orbits when the zero
velocity curves are open. (iii) To present some theoretical evidence in order to support the
numerical results.

The layout of the paper is as follows: in section 2 we study the regular and chaotic nature of
motion. Section 3 is devoted to the study of escaping and trapped orbits. In the same section
some theoretical arguments, are presented, which are used to explain the numerical outcomes.
We close with a discussion which is presented in section 4.

2. The nature of motion

As we are interested to obtain a global picture for the nature of motion we shall use the
x − px, y = 0, py > 0 Poincare phase plane. The results come from the numerical integration
of the equations of motion

ẍ = −2�ẏ − ∂Veff

∂x
, ÿ = 2�ẋ − ∂Veff

∂y
, (4)

where the dot indicates derivative with respect to the time.
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Figure 1 shows the x − px, y = 0, py > 0 Poincare phase plane for the Hamiltonian (2)
when EJ = −160, Mn = 400, cn = 0.25, � = 1.25 and ε = 0.2. Most of the phase plane
is covered by orbits producing invariant curves. This means that the largest part of orbits
are regular orbits. The invariant curves surrounding the fixed points (on the left-hand side)
corresponding to the direct and the retrograde (on the right-hand side) periodic orbits are
produced by the two main families of orbits in the potential (1). As one can see the first
invariant point is stable while the second is unstable. In addition to those 1:1 resonant periodic
orbits there are also regular orbits producing sets of small islands. These orbits are product of
secondary resonances. A small chaotic layer is also seen on the left hand side part of figure 1.

Figure 2 is the same as figure 1 when ε = 2.2. Here the two main families of regular orbits
continue to exist but they cover only a small area around each of the two periodic points. The
rest of the phase plane is covered by a chaotic sea. Therefore, our numerical outcomes suggest
that the result of a strong external perturbation is to destroy a large part of regular orbits and
to produce an extended chaotic sea.

Comparing figures 1 and 2 we find that the regular area around the invariant point corre-
sponding to the direct periodic orbit is considerably smaller than that around the invariant
point corresponding to the retrograde periodic orbit. This can be explained by considering
the angular momentun of the two orbits starting near the each of the two invariant points in
figure 2. We know that the angular momentum in the rotating potential (3) [15] is given by the
expression

L = xẏ − ẋy − �(x2 + y2). (5)

Figure 1. The x − px , y = 0 phase plane for the Hamiltonian (2) when EJ = −160, Mn = 400, cn = 0.25,
� = 1.25 and ε = 0.2.
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Figure 2. Same as figure 1 when ε = 2.2. Note the large chaotic sea.

As L is not conserved we can take its mean value for a time period using the formula

< L >=
n∑

k=1

Lk. (6)

For the first orbit, starting near direct invariant point, we take x = −1.5, y = px = 0 while
in all cases the value of px is found using Jacobi integral.All other parameters are as in figure 2.
For this orbit shown in figure 3 we find from (6) < L >= −23.66. For the second orbit, starting
near retrograde invariant point (see figure 4), the initial conditions are x = 1.5, y = px = 0.
We find from (6) < L >= 17.94. The numerical integration was carried for 50 time units
while n was taken equal to 5000. We see that direct orbits have negative values of mean
angular momentum while retrograde orbits have positive mean values of angular momentum.
Therefore the result shown in figure 2 is evident as orbits of small angular momentum become
easily chaotic under large perturbations.

3. Escaping and trapped orbits. Theoretical arguments

In this section we study the behaviour of orbits for large external perturbations. In this case
the zero velocity curves (ZVCs)

Veff(x, y) = EJ , (7)

are open curves and there are cases where the test particle goes to infinity. A large number
of orbits (about 500) were calculated in the case when ε = 2.23, while all other parameters
were taken as in figure 1. The corresponding ZVC is open. Note that the value of ε cannot
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Figure 3. An orbit starting near the direct invariant point. This orbit has a small value of 〈L〉.

Figure 4. An orbit starting near the retrograde invariant point. This orbit has a large value of 〈L〉.
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be found analytically as in other cases [16]. Numerical calculations suggest that the majority
of orbits escape for a time period Tesc ≤ 300 time units, while there are some cases when the
test particle stays inside the ZVC for a time period T > 2000 time units. This time period is
larger than the age of the universe.

Here we must note that the escape time period Tesc depends strongly on the numerical
integration program. We must emphasise that when computing the x − px phase plane many
iterations are used in order to find the y = 0 plane. In this case the numerical integration
gives small values of Tesc. On the other hand, for orbit calculations when a simple integration
program is used we find larger escape time periods Tesc. All the above mentioned Tesc were
calculated by the second simple program.

Figure 5 shows the x − px phase plane when ε = 2.23. As one can see there are orbits that
do not escape at all. These trapped orbits are quasi-periodic orbits giving invariant curves on
the x − px plane surrounding the direct and retrograde periodic points. The outermost curve
is the limiting curve

1

2
p2

x + Veff(x) = EJ . (8)

Note that the limiting curve is always closed for all values of ε. Therefore, it is evident that,
the test particle escapes through the open channels of the ZVC in the configuration [x − y]
plane. An escaping orbit is shown in figure 6. Initial conditions x = −0.5, y = px = 0. All
other parameters are as in figure 1, while ε = 2.23. The orbit escapes after T = 240 time
units. Here the orbit was plotted for the last 40 time units.

All the numerical calculations were made by the sharp Bulirsh–Stoer method in double
precision. The accuracy of the calculations was checked by the constancy of the Jacobi integral
which was conserved up to the twelfth significant figure.

Figure 5. The x − px phase plane when ε = 2.23. All the invariants curves belong to trapped orbits.
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Figure 6. An escaping orbit when ε = 2.23. See text for details.

The general characteristics of the system, for small values of ε, can be reproduced qual-
itatively using a quasi-integral of motion [17]. As such a quasi-integral we may consider a
generalization of the angular momentum of the test particle, that is

φ = L2 + 2�x3py − 2�2x4 − �x2 − εx2. (9)

Eliminating py between (9) and the energy integral (2) after setting y = 0 we obtain

φ(x, px) =
[

2EJ + 2Mn

(x2 + C2
n)

1/2
+ �2x2 − p2

x

]
x2 − �x2 − εx2. (10)

Figure 7 shows the curves φ(x, px) = c, when c = 10, 50, 130, 300, 450 from outside
inwards. The values of the parameters are as in figure 1. One can see that the general charac-
teristic of the system is well described by the quantity φ. Note that as the value of c increases
we get invariant curves closer to the two invariant points.
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Figure 7. Theoretical x − px phase plane. The values of parameters are as in figure 1.

4. Discussion

In this paper we have made an effort to describe and study the dynamical behaviour of a
simple model of a Seyfert 1 galaxy. The model consists of a “bare” Seyfert 1 nucleus. We
have chosen to study this case because recent observations indicate the existence of this kind
of active galaxy. In particular, we were interested in the situation in which the model galaxy
was subject to external perturbation caused by nearby galaxies.

Numerical calculations show that, for small external perturbations, the motion is regular with
small chaotic regions. For large external perturbations the chaotic regions are very large. Here
we must emphasize that the chaotic behaviour is a consequence of the external perturbation
and does not come from the nuclear activity as in other cases [12, 14]. This comes from the fact
that, when the external perturbation is absent, the model is axially symmetric. Furthermore,
note that the nearby companions cause small chaotic regions, even for very small perturbations
(see figure 1).

The role of the angular momentun is very important in this case as it was in the previous
studied cases [15]. Orbits with small values of 〈L〉 are chaotic while orbits with large values
of 〈L〉 are regular. Here we must make clear that, for about two decades since early work [18],
we always find that the angular momentum is a very critical parameter, which is strongly
connected to chaos in galactic models (see also [11]).

Another interesting result is that of the escaping orbits.When the ZNC is open there are orbits
that escape to infinity. It was found that the majority of orbits escape in relatively small time
periods but there are also some orbits, that remain for large time periods inside the open ZVC
before escaping. In most cases those time periods are comparable to the age of the universe.
In addition to the escaping orbits there are orbits that do not escape at all. These trapped orbits
produce invariants curves around the stable direct end retrograde invariant points.
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Finally we must not forget that the general characteristics of the system are qualitatively
explained, for small external perturbations, using a quasi-integral of motion which can be
considered as a generalization of the star’s angular momentum.
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