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An analytical expression for the elastic energy of the planet tidal deformations induced by external
celestial bodies and by the rotational motion of the planet has been obtained. It was shown that the
elastic energy is not the additive sum of the elastic energies of rotation and the corresponding planet–
perturbing body pairs but contains additional terms of mutual character. Previously we have obtained
a formula for the elastic energy of superposition of the lunisolar tides which also contains additional
terms of mutual character caused by the mutual influence of the Moon and the Sun. In this paper we
have obtained new mutual terms caused by the combination of the rotational deformations of the planet
and by lunisolar tides. These additional terms are more significant and determine the main variations
in the global tension state of the Earth. With various degrees of detail, we have looked at the variations
in this energy in the last few decades, and also for a hundred years into the future. The peak excited
conditions of the Earth and the condition of the active decrease in the elastic energy were determined
on a timescale from 100 to 2100. The correlation of extreme variations in the elastic tidal energy of
the Earth with large earthquakes has been studied.

Keywords: Rotational tide; Lunisolar tides; Superposition; Elastic energy; Earthquakes

1. Introduction

Previously we have studied the effects of superposition of the lunar and solar tides with respect
to the elastic energy stored in the elastic mantle of the Earth [1–3]. The main focus was on
the problem of the possible correlation of the variations in this elastic energy with earthquake
events [4–7]. In our last paper [7], first we studied the variations in the elastic energy caused by
the mutual combination of rotational and lunisolar tides. The dates of phenomenal earthquakes
at Hokkaido (25 September 2003) and Sumatra (26 December 2004) with magnitudes 8.5 and
9.0 respectively have been predicted with a high accuracy to within about 20 h [1, 7]. In the
above-mentioned paper we developed our approach to the analysis of the tension state of the
Earth perturbed by the combination of the rotational and lunisolar tides in the elastic mantle of
the Earth. We have studied the behaviour of the graph of the variations in the elastic energy on
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164 Yu. V. Barkin et al.

different timescales (the last century, the last few decades, the period 1000–2100 and others)
with different degrees of detail. As a result of the preliminary studies we have shown that
the dates of the extreme variations in the elastic energy of the Earth correlate with the dates
of large quakes (on the basis of data in the period 1997–2004). An important regularity has
been discovered for very large earthquakes with a magnitude of not less than 8.0 in the last
105 years (25 events). For the majority of these events their dates are situated close to the
dates of the extreme values of the average curve of the discussed elastic energy (for the ‘roots
of the trees’).

2. Treatment of the problem; the tidal perturbing potential from a system
of celestial bodies

The Earth’s mantle is a non-spherical inhomogeneous cover with a quasiconcentric distribution
of densities. Let R0 be the mean radius of the Earth, and R̃0 the radius of the larger sphere
which we can place in the mantle’s cavity (we assume that the centre of this sphere coincides
with the Earth’s centre of mass).

We shall consider the mantle as a deformable elastic body which is subjected to the attraction
of a system of external celestial bodies Pσ (σ = 1, 2, . . . , N) (in particular from the Moon
and the Sun). The deformations of the Earth produced by these bodies will be described by
the classical model [8], which was studied in detail in [9–11] in order to construct the rotation
theory of the deformable Earth.

Let us consider the main Cartesian reference system Cxyz with the origin at the Earth’s
centre of mass and with axes directed along its principal axes of inertia in the undeformed
state. Let r and r′ be the radius vectors of an arbitrary point (or an elementary volume dm) of
the mantle in the absence of deformations and in the deformable state. As usual, we assume
that the particles of the deformable solid mantle deviate slightly from the positions that they
occupy in the absence of deformation. The small displacement vector u(r, t) in the considered
case is presented as a sum of the elastic displacements of the mantle’s particles caused by
every external celestial body separately:

r(t) = r0 + u(r0, t) =⇒ (x, y, z)(t) = (x0, y0, z0) + (u, v, w)(x0, y0, z0; t), (1)

u = uω +
N∑

σ=1

uσ , u = uω +
N∑

σ=1

uσ , v = vω +
N∑

σ=1

vσ , w = wω +
N∑

σ=1

wσ , (2)

where (x, y, z) are the positional coordinates of the particle of the deformable body, and
(x0, y0, z0) are the positional coordinates that the same particle would have in the absence of
deformations, (u, v, w) being the components of the full displacement vector caused by the
system of external bodies, and (uσ , vσ , wσ ) being the components of the displacement vector
caused by the concrete body Pσ .

2.1 Deformations caused by the gravitational attraction of external celestial bodies

The components of the displacement vector u0 during the deformation of mantle under
Newtonian attraction of the external bodies (the Moon and the Sun) are defined as [8]

(uσ , vσ , wσ ) =
∞∑

n=1

Fn(r0)
∂Wσn

∂(x, y, z)
+ Gn(r0)(x, y, z)Wσn, (3)
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The elastic energy of rotational and lunisolar tides 165

where Wσn is a harmonic of the nth order of the tidal potential caused by the gravitational
attraction of the perturbing body Pσ , and where Fn(r) and Gn(r) are Takeuchi functions
depending only on the variable r .

We shall study the deformation produced in the Earth’s mantle due to its rotation, taking into
account the permanent axial rotation with unperturbed angular velocity � and the perturbations
in the axial rotation and in the pole motion of the Earth. We shall use spherical coordinates
whose origin are at the centre of the body to determine the point P(r, α, β) at which we
evaluate the potential, and we shall determine the orientation of the angular velocity ω from
the spherical coordinates ω = (ω, αω, βω).

2.2 Rotational potential

Because of its own rotation an elastic body is subjected to deformations. The disturbing
rotational potential determining deformations per unit mass is determined by the well-known
formula [9]

Wω = 1

3
ω2r2 − 1

3
ω2r2P2(cos γ ), cos γ = r · ω

rω
, (4)

where ω is the angular velocity of the body, r is the radius vector of a body point and ω is the
modulus of the angular velocity; r = |r| · γ is the angle between the direction of the angular
velocity and the radius vector r.

Previously it was shown that, considering a symmetrically spherical Earth, under the influ-
ence of the perturbing rotational potential (4) the inertial tensor suffers an increase Jω given
by

Jω = Dω

⎛
⎜⎝

R0 − R2 cos(2αω) −R2 sin(2αω) −R1 cos αω

−R2 sin(2αω) R0 + R2 cos(2αω) −R1 sin αω

−R1 cos αω −R1 sin αω −2R0

⎞
⎟⎠, (5)

where

R0 = 1

2
(3 cos2 βω − 1), R1 = 3 sin βω cos βω, R2 = 3

2
sin2 βω, (6)

αω and βω being the longitude and colatitude respectively of the vector ω, and where the
coefficient Dω is determined from its dependence on the elastic properties of the body by the
integral Ir :

Dω = −4π

15

ω2

3
Ir , Ir =

∫
r

(
2ρ0r

4[5F2(r) + r2G2(r)] − r5 dρ0

dr
[2F2(r) + r2G2(r)]

)
dr.

(7)
In the integrand (7), F2(r) and G2(r) are functions determined from the theory of elasticity
[9, 10]. ρ0 is the density of the concentric mass distribution.

In the general case, Dr is a function of time determined from the temporal dependence of
the modulus of the angular velocity ω. In this connection we introduce also the unperturbed
value of this coefficient:

Dω0 = −4π

15

ω2
0

3
Ir . (8)

Here ω = ω0 is an unperturbed value of angular velocity. Thus we have the simple relation

Dω = Dω0

ω2
0

ω2
. (9)

The evaluation of the elastic parameter Dω0 was given in [9, 10]: Dω0 = −2.845 379 ×
1041 c.g.s.
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2.3 The displacement vector of rotational deformations

The rotational tidal potential (4)–(7) can be presented in the following generalized form [10]:

W
(ω)
2 = 1

3
ω2r2 − 1

3
ω2r2(3 sin2 β)P2(cos γ ), Wω =

2∑
m=0

Wω2m, (10)

where Wσn is a harmonic of the nth order of the tidal potential caused by gravitational attraction
of the perturbing body Pσ :

Wσn = Gmσ

rσ

∞∑
n=2

(
r

rσ

)n

Pn(cos Sσ ), (11)

where G is the gravitational constant, Pn are Legendre functions and Sσ is the angle between
the radius vector of the perturbing body with coordinates xσ , yσ , zσ and an arbitrary point
(x, y, z) of the elastic mantle.

Now we introduce the spherical coordinates r , θ , ϕ for the elementary mass dm of the mantle
and the spherical coordinates ω, δω, αω for the angular velocity vector (here θ and δω are the
latitude and colatitude respectively; ϕ and αω are the longitudes). With the Cartesian coordi-
nates (x, y, z) of the mantle point and the components of the angular velocity ω = (p, q, r),
these variables are connected by the formulae

x = r cos ϕ cos λ, y = r cos ϕ sin λ, z = r sin ϕ;
p = ω sin δω cos αω, q = ω sin δω sin αω, r = ω cos δω;

cos γ = cos ϕ sin δω cos(λ − αω) + sin ϕ cos δω.

(12)

All coordinates (5) are defined with respect to the main reference system Cxyz.
Let us now use the formula for the multiplication of Legendre functions:

Pn(cos Sσ ) =
2∑

m=0

qnmP m
2 (sin δω)P m

nm(cos θ)[cos(mαω) cos(mϕ) + sin(mαω) sin(mϕ)],
(13)

where

q2m = (2 − m)!
(2 + m)! (2 − δ0m) = 2(2 − m)!

(2 + m)!δm

(14)

are numerical coefficients (here δ0m is the Kronecker symbol and δm = δ0m + 1).
Now we can present the general tidal potential in the special form that was used for calcu-

lations of the tidal energy in the case of one perturbing body [10]. Here we shall follow the
general features of the method used in [10]. So we have the following:

W
(ω)
2 =

2∑
m=0

W
(ω)
2m ,

W
(ω)
2m = r2(Aω

c2mBc2m + Aω
s2mBs2m),

(15)
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The elastic energy of rotational and lunisolar tides 167

where

Aω
cnm = −ω2

3
q2mP m

2 (sin δω) cos(mαω),

Aω
snm = −ω2

3
q2mP m

2 (sin δω) sin(mαω),

Bcnm = P m
n (cos θ) cos(mϕ),

Bsnm = P m
n (cos θ) sin(mϕ).

(16)

Thus, with q20 = 1, q21 = 1/3 and q22 = 1/12, we obtain the expression

W
(ω)
2 = 1

3
ω2r2 − 1

3
ω2r2

{
P2(sin δω)P2(cos θ)

+1

3
P

(1)
2 (sin δω)P

(1)
2 (cos θ)(cos αω cos ϕ + sin αω sin ϕ)

+ 1

12
P

(2)
2 (sin δω)P

(2)
2 (cos θ)[cos(2αω) cos(2ϕ) + sin(2αω) sin(2ϕ)]

}
. (17)

We study the tidal deformations of a celestial body which moves and rotates in the gravita-
tional field of the other celestial bodies Pσ (σ = 1, 2, . . . , N) of the system. The general tidal
potential from the system of these bodies can be represented in the following form [10]:

W(G) =
N∑

σ=1

∞∑
n=2

W(G)
σn =

N∑
σ=1

∞∑
n=2

n∑
m=0

W(G)
σnm,

W(G) =
∞∑

n=2

n∑
m=0

W(G)
nm , W(G)

nm =
N∑

σ=1

W(G)
σnm, (18)

W2m = W
(ω)
2m +

N∑
σ=1

W
(G)
σ2m (m = 0, 1, 2),

where W(G)
σn is a harmonic of the nth order of the tidal potential caused by the gravitational

attraction of the perturbing body Pσ :

W(G)
σn = Gmσ

rσ

∞∑
n=2

(
r

rσ

)n

Pn(cos Sσ ), (19)

where G is the gravitational constant, Pn are Legendre functions and Sσ is the angle between
the radius vector of the perturbing body with coordinate xσ , yσ , zσ and an arbitrary point
(x, y, z) of the elastic mantle.

Now we introduce the spherical coordinates r , θ , ϕ for the elementary mass dm of the
mantle and the spherical coordinates rσ , δσ , ασ for the perturbing body Pσ (here θ and δσ

are the latitude and colatitude respectively; ϕ and ασ are the longitudes). With the Cartesian
coordinates (x, y, z) of the mantle point and the Cartesian coordinates (xσ , yσ , zσ ) of the
perturbing body, these variables are connected by the formulae

x = r cos ϕ cos λ, y = r cos ϕ sin λ, z = r sin ϕ;
xσ = rσ sin δσ cos ασ , yσ = rσ sin δσ sin ασ , zσ = rσ cos δσ .

(20)

All the coordinates (20) are defined with respect to the main reference system Cxyz.
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We now find that

Pn(cos Sσ ) =
n∑

m=0

{qnmP m
n (sin δσ )P m

n (cos θ)[cos(mασ ) cos(mϕ) + sin(mασ ) sin(mϕ)]},
(21)

where

qnm = (n − m)!
(n + m)! (2 − δ0m) = 2(n − m)!

(n + m)!δm

(22)

are numerical coefficients (here δ0m is the Kronecker symbol and δm = δ0m + 1).
Now we can present the general tidal potential in the special form that was used for calcu-

lations of the tidal energy in the case of one perturbing body [10]. Here we shall follow the
general features of the method used in [10]. So we have the following:

W = W(G) + W(ω) = W
(ω)
1 + W

(ω)
2 +

N∑
σ=1

∞∑
n=2

W(G)
σn =

∞∑
n=2

n∑
m=0

rn(A∗
cnmBcnm + A∗

snmBsnm),

(23)
where

A∗
cnm = G

N∑
σ=1

mσ

rn+1
σ

P m
n (sin δσ ) cos(mασ ),

(n > 2),

A∗
snm = G

N∑
σ=1

mσ

rn+1
σ

P m
n (sin δσ ) sin(mασ ),

A∗
c2 m =

N∑
σ=1

(
G

mσ

rn+1
σ

P m
2 (sin δσ ) cos(mασ )

)
− ω2

3
P m

2 (sin δω) cos(mαω),

(n = 2, m = 0, 1, 2),

A∗
s2 m =

N∑
σ=1

(
G

mσ

rn+1
σ

P m
2 (sin δσ ) sin(mασ )

)
− ω2

3
P m

2 (sin δω) sin(mαω), (24)

A∗
c1 m = −ω2

3
P m

1 (sin δω) cos(mαω),

(n = 1, m = 0, 1),

A∗
s1m = −ω2

3
P m

1 (sin δω) sin(mαω),

Bcnm = P m
n (cos θ) cos(mϕ),

(n > 2, m = 0, 1)

Bsnm = P m
n (cos θ) sin(mϕ).
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The elastic energy of rotational and lunisolar tides 169

For the perturbing potential Wnm from equations (23) and (24) a solution of the problem of
elastic deformations can be presented by the Hergolz formulae in Cartesian coordinates [10]:

u =
∞∑

n=2

un =
∞∑

n=2

n∑
m=0

(
Fn(r)

∂Wnm

∂x
+ Gn(r)xWnm

)
,

v =
∞∑

n=2

vn =
∞∑

n=2

n∑
m=0

(
Fn(r)

∂Wnm

∂y
+ Gn(r)yWnm

)
,

w =
∞∑

n=2

wn =
∞∑

n=2

n∑
m=0

(
Fn(r)

∂Wnm

∂z
+ Gn(r)zWnm

)
,

Wnm = rn(A∗
cnmBcnm + A∗

snmBsnm).

(25)

For the perturbing potential Wω2 m from equations (23) and (24) a solution of the problem
of elastic deformations caused by rotation of the body can be presented in a similar form:

u = u2 =
2∑

m=0

(
F2(r)

∂Wω2 m

∂x
+ G2(r)xWω2 m

)
,

v = v2 =
2∑

m=0

(
F2(r)

∂Wω2 m

∂y
+ G2(r)yWω2 m

)
,

w = w2 =
2∑

m=0

(
F2(r)

∂Wω2 m

∂z
+ G2(r)zWω2 m

)
,

Wω2 m = r2(Aω
c2 mBc2 m + Aω

s2 mBs2 m).

(26)

The solution (26) presents a linear superposition of the solutions of classical problem for one
perturbing body. It is important to note that the form of solution (23) and (24) is identical with
the classical formulae that were used in [10] for the calculation of the analytical expression for
the energy of tides. It allows us to use almost all intermediate non-trivial analytical transfor-
mations of [10] to calculate the elastic energy for the more general case of the superposition
of tides considered in this paper.

Here the functions Fn(r) and Gn(r), similar to Kn(r), are functions of only r , which can be
obtained as the solution of a system of ordinary differential equations. For Takeuchi’s models
and for the modern models 1066A and 1066B of the Earth given by Gilbert and Dziewonski
[12] in the cases n = 2, 3, these functions were determined in [9–11]. These functions do not
depend on the action of perturbing bodies.

In spherical coordinates the components of the displacement vector are determined by
following well-known formulae:

ur =
∞∑

n′=1

1

r
ln′Wn′ ,

uθ = 1

r

∞∑
n′=1

Fn′
∂Wn′

∂θ
,

uϕ = 1

r sin θ

∞∑
n′=1

Fn′
∂Wn′

∂ϕ
,

(27)
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where

ln′ = n′Fn′ + r2Gn′ .

3. The elastic energy

If an elastic isotropic body, obeying the Hooke law, is deformed by the gravitational attraction
of external celestial bodies, an elastic deformation energy is produced. This energy per unit
volume is expressed as

E = λ

2
(exx + eyy + ezz)

2 + μ(e2
xx + e2

yy + e2
zz + 2(e2

xy + e2
xz + e2

yz), (28)

eij being components of the deformation, which relate to the displacement vector u = (u, v, w)

by means of

exx = ∂u

∂x
, exy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
,

eyy = ∂v

∂y
, exz = 1

2

(
∂u

∂z
+ ∂w

∂x

)
,

ezz = ∂w

∂z
, eyz = 1

2

(
∂v

∂z
+ ∂w

∂y

)
.

(29)

The components of the displacement vector were obtained as a solution of the problem of
the theory of elasticity. They are determined by equations (23), (24) and (26).

To obtain an expression for the deformation energy it is sufficient to insert the series (26)
into equations (28) and (29) and then to calculate the corresponding volume integral spread
over the entire elastic shell in its initial state:

Ed =
∫ R

r

∫ π

0

∫ 2π

0
Er2 sin θ dr dθ dϕ, (30)

where R and r are the mean radius and the inferior radius respectively of the elastic shell.
Here we shall use detailed calculations of the integral (30) for the classical problem of the

lunar tides [9, 10] but we shall take into account some generalization of our problem to the
system of perturbing bodies.

In the above-mentioned papers, to calculate the energy (30), spherical coordinates have
been used. In this case the spherical components of the displacement vector are defined by the
following formulae [8]:

ur =
∞∑

n=1

urn =
∞∑

n=1

n∑
m=0

(n

r
Fn(r) + rGn(r)

)
Wnm,

uθ =
∞∑

n=1

uθn =
∞∑

n=1

n∑
m=0

(
1

r
Fn(r)

)
∂Wnm

∂θ
,

uϕ =
∞∑

n=1

uϕn =
∞∑

n=1

n∑
m=0

(
1

r sin θ
Fn(r)

)
∂Wnm

∂ϕ
.

(31)
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On the other hand, in these coordinates the elastic energy per unit volume is

E = λ

2
(err + eθθ + eϕϕ)2 + μ(e2

rr + e2
θθ + e2

ϕϕ + 2(e2
rθ + e2

rϕ + e2
θϕ), (32)

where the components of the deformations are

err = ∂ur

∂r
, eθθ = 1

r

∂uθ

∂θ
+ ur

r
,

eϕϕ = 1

r sin θ

∂uϕ

∂ϕ
+ 1

r
(ur + uθ cot θ),

erθ = 1

2

(
1

r

∂ur

∂θ
− ur

r
+ ∂uθ

∂r

)
,

erϕ = 1

2

(
1

r sin θ

∂ur

∂ϕ
− uϕ

r
+ ∂uϕ

∂r

)
,

eθϕ = 1

2

(
1

r sin θ

∂uθ

∂ϕ
− 1

r
cot θuϕ + 1

r

∂uϕ

∂θ

)
.

(33)

Inserting equations (33) into equation (32), and taking into account the fact that the spherical
harmonics Wn verify the ratio,

∂Wn

∂r
= n

r
Wn, (34)

After some calculations we obtain [10]

eST =
∑
n,m

eSTnm, (S, T = r, θ, ϕ),
∑
n,m

=
∞∑

n=1

n∑
m=0

, (35)

and the coefficients in equation (35) are defined by the following formulae:

errnm = Q1nWnm, eθθnm = Q3n

∂2Wnm

∂θ2
+ Q2nWnm,

eϕϕnm = Q3n

1

sin2 θ

∂2Wnm

∂ϕ2
+ Q2nWnm + Q3n cot θ

∂Wnm

∂θ
,

erθnm = 1

2
Q4n

∂Wnm

∂θ
, erϕnm = 1

2 sin θ
Q4n

∂Wnm

∂ϕ
,

eθϕnm = Q3n

(
1

sin θ

∂2Wnm

∂θ ∂ϕ
− cot θ

∂Wnm

∂ϕ

)
.

(36)

In equation (36) the following new notation was used:

Q1n = n
Ḟn

r
+ n(n − 1)

Fn

r2
+ Ġnr + (n + 1)Gn, Q2n = n

Fn

r2
+ Gn,

Q3n = Fn

r2
, Q4n = Ḟn

r
+ 2(n − 1)

Fn

r2
+ Gn, Ḟn = dFn

dr
.

(37)

In this notation the deformation energy can be presented in the following way:

E =
∑
n,m

∑
n′,m′

Enn′mm′ , (38)
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where

Enn′mm′ = λ

2
(errnm + eθθnm + eϕϕnm)(errn′m′ + eθθn′m′ + eϕϕn′m′) + μ[errnmerrn′m′

+ eθθnmeθθn′m′ + eϕϕnmeϕϕn′m′ + 2(erθnmerθn′m′ + erϕnmerϕn′m′ + eθϕnmeθϕn′m′)].
(39)

After some reduction of equations (38) and (21) the calculations of the energy integral (30)
are reduced to calculations of the series table integrals and some integrals of the standard
combinations of the Legendre associated functions and their derivatives. Also we should point
out that all integrations with respect to the angular variables θ and ϕ are identical with those
in [10, 11].

From the above remarks and using the full series of calculations in [10, 11], we obtain the
final expression for the deformation energy (30) in the following compact form:

Ed =
∞∑

n=2

n∑
m=0

2π

2n + 1
qnm

(
I λ
n + 2Iμ

n

) [
(A∗

cnm)2 + (A∗
snm)2

]
, (40)

where

qnm = (n − m)!
(n + m)! (2 − δ0 m),

and the elastic constants I λ
n and I

μ
n are defined by the following integrals:

I λ
n =

∫ R

r

λr2(n+1)

(
n
Ḟn

r
+ +rĠn + (n + 3)Gn

)2

dr, (41)

Iμ
n =

∫ R

r

μr2(n+1)

[
n(4n3 − 4n2 − n + 1)

F 2
n

r4

+2n(2n2 − n − 1)Fn

(
Ḟn

r3
+ Gn

r2

)
+ 2n(n − 1)

FnĠn

r

+1

2
n(3n + 1)

Ḟ 2
n

r2
+ 3n(n + 1)

ḞnGn

r
+ 2nĠnḞn + 1

2
(3n2

+5n + 6)G2
n + 2(n + 1)GnĠnr + Ġ2

nr
2

]
dr. (42)

Using equations (26) and (40)–(42) now, we obtain a new formula for the energy:

Ed =
∞∑

n=2

2π

2n + 1

(
I λ
n + 2Iμ

n

) n∑
m=0

qnm

[
(A∗

cnm)2 + (A∗
snm)2

]
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= 2

5
π
(
I λ

2 + 2I
μ
2

) [ 2∑
m=0

q2 m

(
−ω2

3
P m

2 (sin δω) cos(mαω)

+G

N∑
σ=1

mσ

r3
σ

P m
2 (sin δσ ) cos(mασ )

)2

+
2∑

m=0

q2 m

(
−ω2

3
P m

2 (sin δω) sin(mαω) +
N∑

σ=1

mσ

r3
σ

P m
2 (sin δσ ) sin(mασ )

)2
⎤
⎦

+
∞∑

n=3

2πG2

2n + 1

(
I λ
n + 2Iμ

n

) n∑
m=0

qnm

⎡
⎣
(

N∑
σ=1

mσ

rn+1
σ

P m
n (sin δσ ) cos(mασ )

)2

+
(

N∑
σ=1

mσ

rn+1
σ

P m
n (sin δσ ) sin(mασ )

)2
⎤
⎦

= 2π

5

(
I λ

2 + 2I
μ
2

) N∑
σ=1

G2

(
mσ

r3
σ

)2 n∑
m=0

q2 m

{[
P m

2 (sin δσ ) cos(mασ )
]2

+ [
P m

2 (sin δσ ) sin(mασ )
]2
}

+ 2π

45

(
I λ

2 + 2I
μ
2

)
ω4

n∑
m=0

q2 m

{[
P m

2 (sin δω) cos(mαω)
]2 + [

P m
2 (sin δω) sin(mαω)

]2
}

− 4π

15

(
I λ

2 + 2I
μ
2

)
ω2G2

N∑
σ=1

mσ

r3
σ

n∑
m=0

q2 m

{
P m

2 (sin δω)

×P m
2 (sin δσ ) [cos(mαω) cos(mασ ) + sin(mαω) sin(mασ )]

}
+ 4π

5

(
I λ

2 + 2I
μ
2

)
G2

N∑
i,j=1
i>j

mi

r3
i

mj

r3
j

n∑
m=0

q2 m

{
P m

2 (sin δi)

×P m
2 (sin δj )

[
cos(mαi) cos(mαj ) + sin(mαi) sin(mαj )

]}
+

∞∑
n=3

2π

2n + 1

(
I λ
n + 2Iμ

n

)
G2

N∑
σ=1

(
mσ

rn+1
σ

)2 n∑
m=0

qnm

{[
P m

n (sin δσ ) cos mασ

]2

+ [
P m

n (sin δσ ) sin mασ

]2
}

+ 2
∞∑

n=2

2πG2

2n + 1

(
I λ
n + 2Iμ

n

) N∑
i,j=1
i>j

mi

rn+1
i

mj

rn+1
j

n∑
m=0

qnm

{
P m

n (sin δi)

×P m
n (sin δj )

[
cos(mαi) cos(mαj ) + sin(mαi) sin(mαj )

]}
. (43)

The additional spherical theorem lets us introduce the very simple relations

n∑
m=0

qnm

{[
P m

n (sin δσ ) cos(mασ )
]2 + [

P m
n (sin δσ ) sin(mασ )

]2
}
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=
n∑

m=0

qnm

{
P m

n (sin δσ )P m
n (sin δσ ) [cos(mασ ) cos(mασ )

+ sin(mασ ) sin(mασ )]} = Pn(cos 0) = 1,

n∑
m=0

qnm

{
P m

n (sin δi)P
m
n (sin δj )

[
cos(mαi) cos(mαj )

+ sin(mαi) sin(mαj )
]} = Pn(cos Sij ). (44)

n∑
m=0

qnm

{
P m

n (sin δω)P m
n (sin δσ ) [cos(mαω) cos(mασ ) + sin(mαω) sin(mασ )]

}
= Pn(cos γσ ).

Here Sij is the angle between the radius vectors of the bodies Pi and Pj with longitudes and
latitudes (αi, δi) and (αj , δj ) respectively. Here γσ is the angle between radius vector of the
body Pσ and the angular velocity vector ω with longitudes and latitudes (ασ , δσ ) and (αω, δω)
respectively.

As a result, we present the full expression for the elastic energy of the planet caused by
rotational and gravitational tides and their mutual coupling in the following form:

Ed = e2

⎛
⎜⎜⎝ω4

9
+ G2

N∑
i=1

m2
i

r6
i

+ 2

3
ω2G

N∑
σ=1

mi

r3
σ

P2(γσ ) + 2G2
N∑

i,j=1
i>j

mimj

r3
i r3

j

P2(Sij )

⎞
⎟⎟⎠

+
N∑

i=1

∞∑
n=3

en

(
mi

rn+1
i

)2

+ 2
N∑

i,j=1
i>j

∞∑
n=3

en

mi

rn+1
i

mj

rn+1
j

Pn(Sij ), (45)

where we have introduced the new elastic parameters

en = 2πG2

2n + 1

(
I λ
n + 2Iμ

n

)
. (46)

Thus equations (28) and (29) determine the elastic energy Ed as a function of the internal
structure of the external shell (through I λ

n and I
μ
n ) and of the mass mσ and the distance rσ of

the perturbing body but not depending, however, on its angular position.
In equation (45) we have especially allocated (in the first line) the main terms of the elastic

energy which combine the following: firstly,

ER = e2
ω4

9

is the elastic energy caused by the rotation of the planet; secondly,

ET =
N∑

i=1

ETi = G2e2

N∑
i=1

m2
i

r6
i
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is the sum ETi = m2
i /r6

i of the elastic energies of the planet caused by the tides produced by
the separate perturbing celestial bodies Pi ; thirdly,

EPP = 2G2e2

N∑
i,j=1
i>j

mimj

r3
i r3

j

P2(Sij )

is the elastic energy caused by the mutual combination of the tides produced by all the pairs
of the perturbing bodies Pi and Pj ; fourthly,

ERP = 2

3
ω2Ge2

N∑
σ=1

mi

r3
σ

P2(γσ )

is the elastic energy caused by the combination of the rotational tide and gravitational tides
from all planets.

Here

e2 = 2πG2

5

(
I λ

2 + 2I
μ
2

)
(47)

is the main elastic parameter of the second order.
In equation (47) we have

I λ
2 =

∫ R

r

λr6

(
2
Ḟ2

r
+ rĠ2 + 5G2

)2

dr,

I
μ
2 =

∫ R

r

μr6

[
30

F 2
2

r4
+ 20F2

(
Ḟ2

r3
+ G2

r2

)
+ 4

F2Ġ2

r

+ 7
Ḟ 2

2

r2
+ 18

Ḟ2G2

r
+ 4Ġ2Ḟ2 + 14G2

2 + 6G2Ġ2r + Ġ2
2r

2

]
dr.

(48)

4. The main components of the elastic energy of the Earth and their geodynamic role

In this section we provide an analysis of the different components of the elastic energy of the
Earth caused by the rotational tide, by lunisolar tides and by their mutual contributions.

4.1 The elastic energy of superposition of the Earth’s tides from the Moon and the Sun

We have obtained the formula for the elastic energy of the superposition of lunisolar tides. It
was shown that the full energy is not the additive sum of the elastic energies of the separate
tides and contains additional terms of mutual character, which play a significant role in the
geodynamic life of the Earth. Correlation of the extreme variations in the elastic tidal energy of
the Earth with earthquakes and moonquakes (in the period 1971–1976) was established. This
regularity of the seismic process has been used to predict the dates of some large earthquakes
in 2003. In particular the date of the phenomenal Hokkaido quake of 25 September 2003
(M = 8.3) was predicted with high accuracy [2, 4].

The oceanic and elastic shells of the Earth are deformed owing to lunar–solar attraction,
which is due to the non-inertial rotational effects on pole motion and others. Different types
of tide are observed on the Earth. We have considered also a new class of tides due to the
inner nature of the Earth. They are caused by gravitational attraction of the moving core (rigid
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and liquid). In a classical approximation all these tides are described by the linear theory of
elasticity, and the full effect of the Earth’s deformations is presented as a linear superposition
of all the above-mentioned tides. The tensional state of the Earth is characterized by the elastic
energy stored in the superposition of tides.

We have obtained the formula for the elastic energy of superposition of the tides. The full
energy is not the additive sum of the elastic energies of separate tides; it also contains additional
terms of mutual character. For example the mutual action of the Moon and the Sun on the
Earth’s mantle generates an additional energy with a maximum value of about 91.6% of the
elastic energy EM which is generated by the Moon. The full elastic energy of the lunisolar
tides is changed in diapason: 212.6%EM–75.2%EM. This large change is observed in every
orbital period of the Moon.

These additional terms of energy are very important. They are sufficiently large and lead
to notable, conditionally periodic variations in theelastic energy. So the above-mentioned
variation of 137.4%EM is sufficiently higher than the variation in the energy caused by the
eccentricity of the Moon’s orbit, 67.8%EM. The full variation in the elastic energy reaches
209.4%EM. Also superposition of the rotational tide and the lunisolar tides leads to additional
elastic energy terms.

Some of the elastic energy dissipates and is converted into warm energy and to an ener-
gization of different geodynamic processes in definite rhythms. In this paper we discuss the
correlation of the extreme variations in the elastic tidal energy of the Earth with earthquakes
and moonquakes (in the period 1971–1976). The established regularities of the seismic pro-
cess have allowed us to predict the dates of some large earthquakes including the phenomenal
Hokkaido quake of 25 September 2003 of magnitude M = 8.3.

We discuss here the expression for and the numerical value of the full energy of mantle
deformations caused by lunar and solar attractions. Let us introduce the following geometrical
and dynamic notation.

(i) xM, yM, zM and xS, yS, zS are the Cartesian coordinates of the Moon and the Sun,
respectively.

(ii) rM = (x2
M + y2

M + z2
M)1/2 and rS = (x2

S + y2
S + z2

S)
1/2 are the corresponding distances

between the centre of mass of the Earth and the centres of masses of the Moon and the
Sun, respectively.

(iii) cos SMS = (xMxS + yMyS + zMzS)/rMrS is a cosine of the angle SMS between the
geocentric directions to the Sun and to the Moon.

(iv) aM and aS are unperturbed values of the major semiaxes of the lunar and solar orbits,
respectively.

(v) eM and eS are unperturbed values of the eccentricities of the lunar and solar orbits,
respectively.

(vi) e2 is a elastic coefficient, which can be calculated, for example, on the basis of the
classical solution of the elasticity theory problem of the lunisolar tide deformations for
some models of the Earth [9].

In [9, 10] it was shown that the elastic energies stored in the Earth’s tides caused by solar
attraction are determined by the formulae

EM = e2
m2

M

r6
M

, ES = e2
m2

S

r6
S

. (49)

Previously we have shown that the full elastic energy E of lunisolar tides does not equal the
sum of the above-mentioned energies [3]. This effect is caused by the quadratic structure of
the elastic energy and by the geometry of the deformations of the Earth’s mantle. Calculations
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to prove this statement are not trivial and are not provided in this paper but we do give here the
final expression for the elastic tidal energy of the Earth taking into account only the second
harmonic:

E = e2

(
m2

M

r6
M

+ m2
S

r6
S

+ 2
mMmS

r3
Mr3

S

P2(cos SMS)

)
. (50)

Equation (50) for the elastic energy contains the new additional term

EMS = eMSP2(cos SMS), (51)

where

eMS = 2e2
mMmS

r3
Mr3

S

.

It is easy to see that eMS = EMS when SMS = π/2, 3π/2. In these cases the geocentric direc-
tions to the Moon and to the Sun are orthogonal. eMS is the maximum value of the energy
EMS. Real values of EMS change in the domain (eMS, −eMS/2). It is worth remarking that the
energy (50) presents only the main term (of second order) of the full expression for the elastic
energy. A general equation was also obtained but we omit it in this paper. We confirm and
shall show below that this additional term of energy is significant and plays an important role
in geodynamic and geophysical processes.

Let us assume the following values for the parameters of the Earth–Moon–Sun system:

1 AU = 149 597 870 km, aS = 1.000 001 017 78AU, aM = 384 000 km,

mM

mE
= 0.012 300 038,

mE

mS
= 3.003 489 6 × 10−6, e2 = 3.252 × 1035 c.g.s.

(52)

Also let us note some simple relations between the energies of the Sun and the Moon:

ES = EM
m2

Sr
6
M

m2
Mr6

S

, eMS = 2(EMES)
1/2 = 2e2

mSmM

r3
Sr3

M

, eMS = 2EM
mSr

3
M

mMr3
S

. (53)

Here eMS is a coefficient mutiplied by P2(cos SMS) in the additional term (51) in the full energy.
The unperturbed values of the energies are obtained from the basic values (52) and equations

(53) with rM = aM and rS = aS. Using 1 unit = 1023 c.g.s. we determine the following:

E
(0)
M = 5.473 × 1023 c.g.s., E

(0)
S = 1.148 × 1023 c.g.s., e

(0)
MS = 2(E

(0)
M E

(0)
S )1/2

= 5.0132 × 1023 c.g.s. (54)

The maximum value of the full lunisolar elastic energy of the Earth (the full Moon) is

Emax
SM = E

(0)
S + E

(0)
M + 2(E

(0)
M E

(0)
S )1/2 = 11.6342 c.g.s. (55)

The minimum value of this energy (the Moon in quarters) is

Emin
SM = E

(0)
S + E

(0)
M − 2(E

(0)
M E

(0)
S )1/2 = 4.1144 × 1023 c.g.s. (56)

The variations in the full energy are �ESM = 3(E
(0)
M E

(0)
S )1/2 = 7.5198 × 1023 c.g.s. (every

synodic month).
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Figure 1. Variations in the elastic energy in 2004 (1unit = 1023 c.g.s.).

The lunar and solar eccentricity variations in the Earth’s tidal energy (pericentre–apocentre
positions) are determined by

�EM = E
(0)
M

(
1

(1 − eM)6
− 1

(1 + eM)6

)
= 0.6776E

(0)
M = 3.7084 × 1023 c.g.s., (57)

�ES = E
(0)
S

(
1

(1 − eS)6
− 1

(1 + eS)6

)
= 0.2015E

(0)
S = 0.2314 × 1023 c.g.s. (58)

This means that the full variation in the tidal energy can be evaluated as 11.4596 × 1023 c.g.s.
Figure 1 illustrates the variations in the elastic energy of the Earth due to the influences

of the Moon and the Sun and the variation in the full elastic energy of the Earth taking into
account the mutual additional term (51). For illustration we have restricted the interval of time
to 1 January 2004–1 January 2005. The behaviours of the curves in figure 1 are in accordance
with simple evaluations of the average values and the amplitude of the variations in the elastic
energy given above.

Now we consider and evaluate the other components of elastic energy caused by the Earth’s
rotation.

4.2 The elastic energy caused by the Earth’s rotation and its variation

This energy is determined by equation (45):

ER = e2
ω4

9
. (59)

For e2 = 2.325 × 1050 c.g.s. and e2 = 0.731 × 1050 c.g.s. [10] and the angular velocity of the
Earth given by ω = ω0 we obtain the following corresponding results:

ER = 0.7305 × 1033 c.g.s. = 0.7305 × 1026 Dj

ER = 0.2295 × 1033 c.g.s. = 0.2295 × 1026 Dj.
(60)
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The variation in the elastic energy (59) and (60) is determined by the variation δω in the Earth’s
angular velocity:

δER = 4e2
ω4

0

9

δω

ω0
= 4ER

δω

ω0
. (61)

Here δω is the sum of tidal and non-tidal variations in the angular velocity and, in accordance
with the evaluation (60), we obtain

δER = 2.922 × 1033

[(
δω

ω0

)
t

+
(

δω

ω0

)
nt

]
c.g.s. (62)

Taking into account that relative variations in the angular velocity reach a value of the
order of δω/ω0 ≈ 10−8 − 10−10, we can conclude that the variation (62) can be about δER =
1023 − 1024 c.g.s., and below we show that the variations in the mutual component of the
elastic energy caused by rotational deformation and lunisolar tides are more significant.

Remark Evaluations of the powers connected with global rotational deformation have a
formal character here. In reality, in the present epoch we cannot observe this combination of
deformations. As a result of our own evolution the elastic rotational energy has disappeared,
but the finer effects of interaction and superposition of deformations caused by the variations
in the Earth’s rotation of course are real and must be studied.

4.3 The elastic energy caused by the mutual effects of the rotational tide and lunisolar
tides

These mutual terms in accordance with the general formula (45) are determined in the following
form:

ERP = ERM + ERS, (63)

ERM = 2(EREM)1/2

(
aM

rM

)3

P2(cos γM), ERS = 2(ERES)
1/2

(
aE

rE

)3

P2(cos γS). (64)

The elastic energies EM, ES and ER are determined by equations (49), (53) and (59).
The approximate equations (64) are obtained from the unperturbed energy values (49) and

(53) and from their numerical values (54):

ERM = 2(E
(0)
R E

(0)
M )1/2

(
aM

rM

)3

P2(cos γM) = 2.5606 × 1028 c.g.s.

(
aM

rM

)3

P2(cos γM),

ERS = 2(E
(0)
R E

(0)
S )1/2

(
aE

rE

)3

P2(cos γS) = 1.1729 × 1028 c.g.s.

(
aE

rE

)3

P2(cos γS).

(65)

Finally for the discussed terms of the elastic energy we obtain the following expression:

ERM+RS = 1.4765 × 1028

{
1.7343 c.g.s.

[(
a∗

r∗

)3

P2(sin δ∗)

]
Moon

+ 0.7944

[(
a∗

r∗

)3

P2(sin δ∗)

]
Sun

}
. (66)



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
14

:5
4 

13
 D

ec
em

be
r 2

00
7 

180 Yu. V. Barkin et al.

Also for the tidal variation in the angular velocity of the Earth caused by lunar and solar
tides (by second harmonics) we have a similar equation:

(
δω

ω0

)
t

= 10−8

{
1.7343

[(
a∗

r∗

)3

P2(sin δ∗)

]
Moon

+ 0.7944

[(
a∗

r∗

)3

P2(sin δ∗)

]
Sun

}
. (67)

This means that for the elastic energy variations (lunisolar and rotational) we can give a simple
representation:

ERM+RS = 1.4765 × 1036 c.g.s.

(
δω

ω0

)
t

, (68)

δERM+RS = 2.560 69 × 1028 c.g.s.

{[(
a∗

r∗

)3

P2(sin δ∗)

]
Moon

+ 0.458 05

[(
a∗

r∗

)3

P2(sin δ∗)

]
Sun

}
, (69)

The evaluations performed show that the components of the elastic energy (68) and (69) are
more significant and determine the stimulation and activation of the Earth.

The temporal behaviour of this elastic energy for the model of the Earth is analysed
graphically. Later, in figure 5, graphs of the elastic energy (69) of the Earth for 1995–
2005 are presented. The values of the elastic energy are given in conditional units (1 unit =
1.4765 × 1027 c.g.s.).

5. The dates of the extreme values of elastic energy and their correlations with the
dates of large earthquakes

5.1 The dates of the extreme values of elastic energy in the period 1900–2100

In figure 2 the graphs of the temporal dependence of the main component of the elastic energy
(69) for the long period 1890–2010 is presented. The elastic energy is given in conditional
units (1 unit = 1.4765 × 1027 c.g.s.). The decades of years are shown along the horizontal
axis.

5.1.1 Cyclicity of the ‘tops of trees’. The structure of the graph presents a system of ‘trees
with roots’ . The ‘tops of the trees’have a period of about 18.6 years, and the ‘roots of the trees’
have a period of 4.45 years along the horizontal axis. The ‘tops of the trees’ reflect the global
increase in the planetary tension of the rotating Earth under the mutual gravitational action of
the Moon and the Sun. These extremes occur with the period of motion of the nodes of the
lunar perturbed orbit. The maximum values of energy (on the red graph) correspond to the
passage of the Moon through the equinox of the date. These variations can be approximated
by the some average curve which is presented in the top part of figure 2(a) (red curve). We
have calculated these variations for an ideal elastic Earth (here we do not take into account
the dissipation of the elastic energy on the long timescale). They are significant and probably
play an important role in the geodynamic and geophysical planetary processes on the Earth.
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Figure 2. Variations δERM+RS in the elastic energy in the years 1890–2010 (the ‘trees’) and graphs of the average
values of the elastic energy at (a) the ‘tops of the trees’ and (b) the ‘roots of the trees’, with the positions of 25 great
earthquakes of magnitude M � 8.0.

We believe that the above-mentioned variations in the Earth’s state not only determine the
mechanical changes in the Earth’s shells but also cause cyclic and synchronous perturbations
in all geophysical processes including variations in the physical fields, and perturbations and
corresponding changes in the biosphere and noosphere. Our hypothesis is that the extreme
values of elastic energy are more difficult for nature and society in our life. We expect that
they determine the dates of the largest catastrophes such as large quakes, volcanic eruptions,
atmospheric circulations and ecological catastrophes. These extreme dates can be calculated
on the basis of the known theories of the orbital motions of the Moon and the Sun.

In table A2 (appendix A) the dates (years) that the ‘tops of the trees’ form are presented for
the last 2000 years (i.e. the period 100–2100). These dates can be used for an analysis of the
history of all the catastrophic events in the life of the Earth (earthquakes, volcanoes, climate
variations, atmospheric behaviour, etc.), and biosphere and society catastrophes.

5.1.2 Repeated sharp decrease in the elastic energy (the ‘roots of the trees’). On the
other hand, the ‘roots of the trees’ in figures 2(a) and (b) reflect another phenomenon. In
definite periods of time the Earth produces a periodically active sharp decrease in the elastic
energy. These periods are repeated sufficiently frequently (with a period of about 4.45 years).
In these states of low elastic energy the Earth is most subject to every type of possible failure
and decreases in the stored energy. In particular the seismic elastic energy stored in definite
regions of the Earth can be realized in a large earthquake. The last phenomenon is evidently
illustrated in figure 2(b) (the green curve at the bottom of the figure) where it is clearly visible
that the dates of 17 large quakes in the period 1890–2005 (from the list of 25 great earthquakes,
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given in table 1 later) are situated close to the extremes of the graph showing the ‘roots of the
trees’ (i.e. close to the dates of the extreme values of the average elastic energy). This green
curve illustrates the average variation in the elastic energy. On the model graph the larger
earthquakes in this period (of magnitude greater then 8.0; 25 events) are indicated as red full
circles.

5.2 Repeatability and the expected periodicities in the temporal distribution of the quake
events

On figures 2 and 3 we can see also sufficiently clearly that some series of quakes are situated
approximately along concrete horizontal lines. They illustrate an important phenomenon of
repeatability of big earthquakes with base periods 18.6 yr and 4.45 yr and with commensurable
periods k 18.6 yr and k 4.45 yr (k = 1, 2, 3, 4, . . .). Discovered property of big quakes temporal
repetition is very important and let us to give some prognoses on the future about dates of
possible big quakes.

5.3 Intensive increases in the seismic activity in the last 15 years

A more detailed illustration of the elastic energy curves is given in figure 4 where the pheno-
menon of the increasing amplitudes of the monthly variations in the elastic energy (69) in
the period 1991–2006 is illustrated. With a definite cyclicity and rhythms, the maxima of the
variations increase, starting approximately since 1998.

Figure 3. Combination of two long-period graphs from figures 2(a) and (b).
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In figure 4 the earthquakes of magnitudes greater than 7.0 are illustrated as yellow full
circles with a red periphery. At first sight it seems that the distribution of these points is
random but, in fact, we shall show below (see section 5.5) that a definite concentration
of quake events has been observed about the dates of the extreme values and the same
mean value of the elastic energy if we consider the fine structure of this curve, taking into
account its monthly variations. This means that the seismic process (large quakes of mag-
nitude 7.0) are controlled and directed by the Moon and the Sun. Figure 4 also clearly
illustrates the phenomenon of the concentration of large quakes in the time interval 1994–
2002 (with the centre in 1998). A decrease in the elastic energy is necessary in the middle of
this time period, i.e. in 1998. Other quakes also correspond to sharp decreases in the elastic
energy.

In table 2 of Appendix 1 the dates (day, month, years) of sharp damps are presented for
period since 100 till 2100 years. These dates can be used for an analysis of the history of
all the catastrophic events in the life of the Earth (earthquakes, volcanoes, climate variations,
atmospheric behaviour, etc.), and biosphere and society catastrophes.

The observed phenomena allows us to assume that variations in the elastic energy are
connected with seismic activity. Of course, this means that correlation between the orbital
motions of the Moon and the Sun and the planetary seismic process really takes place. The
variation in the mutual term of the elastic energy (69) is sufficiently large that it significantly
controls and dictates the seismic process.

An analysis of the Earth’s catastrophes, and the history of the seismic and volcanic events
in the depth of the Earth therefore is of great interest here.

Figure 4. Variations δERM+RS in the elastic energy in the years 1991–2006 with the positions of 188 large
earthquakes of magnitude M � 7.0.
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5.4 Short-period variations in the elastic energy in 1995–2005

Now we study the temporal variations in the elastic energy on a shorter timescale. Figure 5
shows the annual curves of the elastic energy changes for 1995–2005. All the graphs presented
in figure 5 illustrate the variations in the elastic energy in 1995–2005 with periods of perturbed
orbital motion of the Moon and the Sun. The main cyclicity here is characterized by the synodic
period of the Moon’s orbital motion in 28.3 days. The main seismic events of every year (of
magnitude greater 7.0) are indicated as yellow full circles with a red periphery on the curves
(in this paper, we use data about large earthquakes from the Internet [13]). We can see that
a set of events was realized close to the extreme peaks of the graph and close to some mean
value of the elastic energy equal to approximately −9.5.

Let us classify the temporal positions of the all events into three groups: I, the first group
combines all earthquakes which have occurred near the maximum values of the elastic energy
of the appropriate lunar cycle; II, the second group combines all earthquakes which have
occurred near the minimum values of the elastic energy of the appropriate lunar cycle; III,

Figure 5. Monthly variations δERM+RS in the elastic energy with the positions of large earthquakes of magnitude
M � 7.0. in (a) 1995, (b) 1996, (c) 1997, (d) 1998, (e) 1999, (f) 2000, (g) 2001, (h) 2002, (i) 2003, (j) 2004 and
(k) 2005.
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Table 1. Regular distribution of the earthquakes with respect to the extreme values and to the
means of the elastic energy.

Number of Number of Total number Number of irregular
Year maxima minima Mean of earthquakes earthquakes

1995 5 3 4/8 18 6
1996 6 6 2/5 17 3
1997 3 8 0/3 16 5
1998 4 6 1/3 12 1
1999 10 4 1/4 20 5
2000 9 3 2/2 16 2
2001 3 5 2/2 15 5
2002 3 5 2/4 13 3
2003 2 10 1/5 15 2
2004 6 3 2/3 16 5
2005 4 3 3/5 10 0
Sum 55 56 20/44 168 37
Percentage 32.7 33.3 11.9 100 22.0

the third group combines all earthquakes which have occurred near the intermediate values
corresponding to elastic energy values equal to −9.5. Each earthquake will be included in the
group if its representative point is similar to the nearest extreme point or the average value at
a distance of a fifth of the corresponding shoulder of the curve of elastic energy (this distance
is calculated and estimated approximately along this curve). The results of the analysis of the
grouping of earthquakes are presented in table 1 for every year in the period 1995–2005.

From table 1 it follows that only every fifth large quake has an irregular position. 131 quakes,
on the other hand, are characterized by regular positions with respect to the extreme values
of the elastic energy curve and to the mean of −9.5. The results obtained here confirm the
correlation of the seismic planetary process on the Earth with the orbital motions of the Moon
and the Sun.

5.5 Correlations of the extreme value of the elastic energy and their correlations with
the dates of large earthquakes in 2003–2005

5.5.1 A correlation of the dates of large quakes and the dates of the extreme value of the
elastic energy in 2003. Of course, earthquakes are not observed for all the above-mentioned
extreme tidal variations (figure 5). Probably this is caused by the process of accumulation of
seismic energy. However, in any case, we can predict in a definite statistical sense the dates
of future large earthquakes as dates of potential large catastrophes. As a result of the analysis
of the theoretical curves of the components of the elastic energy (69) we have determined the
dates of possible large earthquakes in 2003. These dates are listed in table 2.

As a result of the analysis of the dates of the 15 largest earthquakes in 2003 of magnitude
greater than 7.0, ten earthquakes were observed to correlate with the corresponding dates of
the extreme values of the elastic energy (69). Let us list these earthquakes.

The great earthquake in Hokkaido (Japan) of magnitude 8.3 took place on 25 September
2003 at about 20 h, which is close to the date of the extreme value of the elastic energy, 26
September 2003 (18 h). The difference between the times is 22 h. Another parallel earthquake
in Hokkaido of magnitude 7.4 occurred on 25 September at about 21 h, which is also close to
the same date of the extreme value of the elastic energy, 26 September (18 h). The difference
between the times is 21 h. A third large earthquake in this series happened in southwestern
Siberia (Russia). It had a magnitude of 7.3 and took place on 27 September at about 11.5 h,
which is close to the same date of the extreme value of the elastic energy, 26 September (18 h).
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Table 2. The dates of possible large earthquakes in 2003.

Month Date (time)

January 2 (21 h), 9 (12 h), 16 (19 h), 23 (16 h), 30 (3 h)
February 5 (19 h), 13 (2 h), 19 (21 h), 26 (9 h)
March 5 (1 h), 12 (13 h), 19 (8 h), 25 (17 h)
April 1 (7 h), 8 (23 h), 15 (22 h), 22 (2 h), 28 (12 h)
May 6 (7 h), 13 (12 h), 19 (10 h), 25 (16 h)
June 2 (13 h), 9 (21 h), 15 (1 h), 21 (21 h), 29 (17 h)
July 7 (2 h), 13 (1 h), 19 (4 h), 26 (22 h)
August 3 (4 h), 9 (7 h), 15 (13 h), 23 (5 h), 30 (8 h)
September 5 (14 h), 11 (22 h), 19 (15 h), 26 (18 h)
October 2 (21 h), 9 (5 h), 17 (1 h), 24 (8 h), 30 (6 h)
November 5 (10 h), 13 (9 h), 20 (22 h), 26 (14 h)
December 2 (12 h), 10 (14 h), 18 (8 h), 23 (23 h), 29 (17 h)

In this case the difference between the times is 15.5 h. In other words the dates of the three
greatest earthquakes in Asia in 2003 correlate with the date of the extreme value of the elastic
energy of the Earth (with its perturbed state).

An earthquake off the east coast of Honshu (Japan) of magnitude 7.0 occurred on 31 October
2003 at about 1 h, which is close to the date of the extreme value of the elastic energy, 30 October
2003 (6 h). The difference between the times is only 19 h. Another earthquake of magnitude
7.0 took place on 26 May at 9.5 h near the east coast of Honshu (Japan). This date is close to
the date of the extreme value of the elastic energy, 25 May (16 h) (table 2). The difference
between the correlated times is 17.5 h. A large earthquake in the region of the Scotia Sea of
magnitude 7.5 happened on 4 August at about 4.5 h, which is related to the date of the extreme
value of the elastic energy, 3 August (4 h). The difference between the corresponding times
is 24.5 h. An earthquake in the region of Halmahera (Indonesia) of magnitude 7.0 took place
on 26 November at about 19.5 h, which is close to the date of the extreme value of the elastic
energy, 25 November (16 h). The difference in the times is 27.5 h.

Note also the earthquake in offshore Colima (Mexico) of magnitude 7.6 which happened
on 22 January 2003 at about 2 h, which is close to the date of the extreme value of the elastic
energy, 23 January (16 h). The difference in the times in this case is 38 h. An earthquake in
Amazonas (Brazil) of magnitude 7.1 took place on 20 June at about 6.5 h, which is close to
the date of the extreme elastic energy value, 21 June (21 h). The difference in the times is
38.5 h (about 1.5 days). A parallel earthquake on South Island, New Zealand, of magnitude
7.2 occurred on 21 August at about 12 h, which is close to the same date of the extreme value
of the elastic energy, 23 August (5 h). The difference in the times is remarkable here, 41 h.

It is worth remarking that the above-mentioned dates in general differ from the dates of the
extreme values of variation in another component of the elastic energy (50) studied in [4].

5.5.1.1 Prediction of the dates of Japan quakes in September 2003; the very large
earthquake with M = 8.3. The date of the real Japan quake on 25 September 2003 (at
19:50:06 coordinated universal time (UTC)) of very large magnitude M = 8.3 is close to
the date of the extreme value from table 2, 26 September (18 h). In our previous studies and
electronic publications [2, 4] we pointed out that a large earthquake would occur on 26.1
September 2003. This conclusion was obtained as a result of the analysis of the component
of the elastic energy (50). This phenomenal earthquake took place on Hokkaido island with
the epicentre location at 41◦ 78 N, 143◦ 86 E, and at a depth of 27 km. This earthquake was
accompanied by a tsunami with an estimated wave height of 4.0 m along the southeastern
cost of Hokkaido. At least 589 people were injured, extensive damage, landslides and power
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outages occurred, and many roads were damaged in southeastern Hokkaido. This earthquake
was felt strongly in much of Hokkaido [13].

A second Japan quake on 25 September 2003 with M = 7.0 was closer to the predicted date
of the large earthquake. It took place on 25 September (at 21:08 UTC) with a large magnitude
M = 7.0 at Hokkaido island. The epicentre coordinates were 41◦ 81 N, 143◦ 51 E, and the
depth was 33 km.

Previous extremely large earthquakes in this region ocurred on 4 March 1952 (M = 8.1), 16
May 1968 (M = 7.9) and 15 January 1993 (M = 7.6). The last large earthquake (of magnitude
8 or greater) in the world had a magnitude of 8.4 and occurred on 23 June 2001, near the coast
of Peru.

5.5.2 A correlation of the dates of large quakes and the dates of the extreme values of
the elastic energy in 2004. Table 3 lists the dates of the extreme values of the component
of the elastic energy (69) in 2004.

A simple analysis of dates of the largest quakes in 2004 with a magnitude greater than 7.0
(15 events) has shown that six earthquakes demonstrate correlation with the corresponding
dates of the extreme values of the elastic energy (table 3) (including the very large Sumatra
quake). In reality the phenomenal earthquake off the west coast of northern Sumatra of magni-
tude 9.0 took place on 26 December 2004 at about 1 h, which is close to the date of the extreme
value of the elastic energy, 26 December (14 h) (see table 3). The difference between the pre-
dicted time of the quake (the time when the extreme value of the elastic energy occurs) and the
time of the earthquake is only 13 h. A parallel earthquake on Nicobar Islands (India region)
of magnitude 7.1 also took place on 26 December at about 4.5 h, which is close to the same
date of the extreme value of the elastic energy, 26 December (14 h). The difference between
the times is 9.5 h [6, 7].

An earthquake near the west coast of Colombia of magnitude 7.2 ocurred on 15 November
2004 at 9 h. This date is close to the date of the extreme value of the elastic energy, 15 November
(17 h) (table 3). The difference between the times is only 8 h.An earthquake in the Fiji region of
magnitude 7.1 took place on 15 July at about 4 h, which is very close to the date of the extreme
value of the elastic energy, 15 July (19 h). The difference between the corresponding dates is
15 h. A Hokkaido (Japan) quake of magnitude 7.0 took place on 28 November at about 18.5 h,
which is close to the date of the extreme value of the elastic energy, 29 November (11 h). The
difference between these times is 17.5 h. An earthquake off the west coast of South Island,
New Zealand, of magnitude 7.1 occurred on 22 November at about 20 h, which is close to the

Table 3. The dates of the extreme values of the elastic
energy of the Earth in 2004.

Month Date (time)

January 6 (18 h), 14 (11 h), 20 (6 h), 26 (2 h)
February 2 (23 h), 10 (12 h), 16 (13 h), 22 (13 h)
March 1 (8 h), 8 (18 h), 14 (21 h), 20 (23 h), 28 (18 h)
April 5 (4 h), 11 (4 h), 17 (6 h), 25 (4 h)
May 2 (18 h), 8 (12 h), 14 (10 h), 22 (11 h), 30 (6 h)
June 4 (20 h), 10 (13 h), 18 (15 h), 26 (15 h)
July 2 (4 h), 7 (18 h), 15 (19 h), 23 (18 h), 29 (11 h)
August 4 (4 h), 12 (0 h), 19 (19 h), 25 (19 h), 31 (16 h)
September 8 (9 h), 16 (0 h), 22 (2 h), 28 (3 h)
October 5 (18 h), 13 (10 h), 19 (10 h), 25 (11 h)
November 2 (4 h), 9 (23 h), 15 (17 h), 21 (14 h), 29 (11 h)
December 7 (11 h), 13 (1 h), 18 (17 h), 26 (14 h)
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date of the extreme value of the elastic energy, 21 November (14 h). The difference between
the times is 30 h.

5.5.3 A correlation of the dates of large quakes and the dates of the extreme values of
the elastic energy in 2005. The dates of the extreme values of the elastic energy of the
Earth for 2005 are given in table 4.

The dates of six earthquakes (out of ten earthquakes) of magnitude greater than 7.0 which
occurred in 2005 (before November) demonstrate correlations with the corresponding dates
of the extreme values of the elastic energy. An earthquake of magnitude 7.3 in the Honshu
(Japan) region took place on 16 August 2005 at about 3 h, which is very close to the date of
the extreme value of the elastic energy, 15 August (23 h). The difference between the times is
only 4 h. An earthquake of magnitude 7.1 in the Celebes Sea region occurred on 5 February
at 12 h, which is very close to the date of the extreme value of the elastic energy, 5 February
(18 h). The difference between the times is only 6 h.

An earthquake in the region of the Nicobar Islands (India region) of magnitude 7.3 occurred
on 24 July 2005 at about 16 h, which is very close to the date of the extreme value of the
elastic energy, 25 July (7 h). The difference between these times is 15 h. Another earthquake
of magnitude 7.5 happened on 26 September at about 2 h in the region of northern Peru. This
date is close to the date of the extreme value of the elastic energy, 25 September (10 h). The
difference between the times is 16 h.

Two other earthquakes should be noted. The first of these took place on 15 June 2005 at
3 h in northern California and had a magnitude of 7.0. This date differs from the date of
the extreme value of elastic energy (16 June (11 h)) by 32 h. The second of these was an
earthquake in Pakistan of magnitude 7.6 on 8 October at about 4 h, which is close to the date
of the extreme value of the elastic energy, 9 October (15 h). The difference between the times
is 35 h.

For November 2005 and December 2005 and for the whole of 2006 the possible dates of
large earthquakes are specified from the data on the dates of the extreme values of the elastic
energy in tables 4 and 5 respectively.

5.5.4 The dates of the extreme value of the elastic energy in 2006. These dates are listed
in table 5.

Table 4. The dates of the extreme values of the elastic energy
of the Earth in 2005.

Month Date (time)

January 3 (18 h) , 9 (9 h) , 14 (23 h) , 22 (18 h) , 30 (20 h)
February 5 (18 h) , 11 (10 h) , 19 (1 h) , 26 (22 h)
March 5 (2 h) , 11 (0,h) , 18 (10 h) , 26 (4 h)
April 1 (9 h) , 7 (11 h) , 14 (21 h) , 22 (14 h) , 28 (16 h)
May 4 (18 h) , 12 (5 h) , 20 (1 h) , 25 (23 h) , 31 (21 h)
June 8 (11 h) , 16 (11 h) , 22 (7 h) , 28 (0 h)
July 5 (15 h) , 13 (17 h) , 19 (15 h) , 25 (7 h)
August 1 (19 h) , 9 (19 h) , 15 (23 h) , 21 (18 h) , 29 (1 h)
September 5 (22 h) , 12 (7 h) , 18 (8 h) , 25 (10 h)
October 3 (3 h) , 9 (15 h) , 15 (20 h) , 22 (20 h) , 30 (12 h)
November 5 (22 h) , 12 (3 h) , 19 (5 h) , 26 (22 h)
December 3 (4 h) , 9 (6 h) , 16 (11 h) , 24 (6 h) , 30 (11 h)
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Table 5. The dates of the extreme values of the elastic energy
of the Earth in 2006.

Month Date (time)

January 5 (9 h) , 12 (14 h) , 20 (11 h) , 26 (19 h)
February 1 (17 h) , 8 (20 h) , 16 (14 h) , 23 (4 h)
March 1 (5 h) , 8 (3 h) , 15 (18 h) , 22 (13 h) , 28 (20 h)
April 4 (13 h) , 12 (0 h) , 18 (21 h) , 25 (7 h)
May 1 (23 h) , 9 (7 h) , 16 (3 h) , 22 (14 h) , 29 (6 h)
June 5 (14 h) , 12 (8 h) , 18 (16 h) , 25 (12 h)
July 2 (21 h) , 9 (15 h) , 15 (19 h) , 22 (17 h) , 30 (3 h)
August 5 (22 h) , 12 (3 h) , 18 (22 h) , 26 (8 h)
September 2 (8 h) , 8 (15 h) , 15 (5 h) , 22 (12 h) , 29 (16 h)
October 6 (5 h) , 12 (15 h) , 19 (17 h) , 27 (0 h)
November 2 (18 h) , 9 (0 h) , 15 (22 h) , 23 (6 h) , 30 (1 h)
December 6 (8 h) , 13 (4 h) , 20 (11 h) , 27 (3 h)

5.6 Variations in the Earth’s seismic activity in 1998–2004

Here we shall study the correlation of the times of the earthquakes with the times of the
extreme values of the Earth’s elastic energy (or its components). Prefiously we have studied
the theoretical curves of the change in the elastic energy of lunar-solar deformations of the
Earth’s mantle and terrestrial-solar deformations on the Moon in the period 1971–1976 [4]. It
was shown that the times of quakes are usually sufficiently close to the times of the extreme
values of the elastic energy caused by the mutual lunar and solar tides of the Earth. The times
of large earthquakes (of magnitudes 7 and 8 and greater) and moonquakes in the considered
period of time correlate with the times of the elastic energy extremes.

On this basis we can assume that the variations in the elastic energy are connected with
seismic activity. Of course, this means that the correlation between the orbital motions of the
Moon and the Sun and the planetary seismic process really occurs. The mutual term of the
elastic energy is sufficiently large and significantly controls and dictates the seismic process.
This seems natural. Some of the elastic energy with every orbital cycle of the Moon (and the
Sun) dissipates to inner geodynamic processes.

In this paper we study first the role of other components of the elastic energy, namely the
correlation of the dates of the extreme values of the variation δERM+RS with the dates of large
earthquakes. Then we compare the dates of large earthquakes Tσ of magnitude not less than
7.0 with the corresponding closest dates T1σ (minimum) and T2σ (maximum) of the extreme
values of the variation in the elastic energy. As a result we have determined the factors of
deviation by means of the formula (table 6)

Kσ = min

{
T2σ − Tσ

T2σ − T1σ

,
Tσ − T1σ

T2σ − T1σ

}
, kσ ∈ (0, 1),

for all the above-mentioned quakes in the period 1998–2004. We take into account 101 large
quakes. The regions of the quakes are given in table 6.

A histogram of the distribution of the parameter k in figure 6 reflects the non-random
character of the distribution of the above-discussed quakes with respect to the dates of the
extremes values of the variations in the elastic energy. Practically this histogram illustrates the
dependence of the number of earthquakes on the values of the factors kσ for various intervals
of its value.

From the obtained histogram it follows that about 15% of quakes occur in the first 8.2 h
before and after the extreme values of the tidal variation in the angular velocity of the Earth.
About 30.7% of large earthquakes happen in a period of 16.4 h before and after the extreme
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Table 6. Relative deviations kσ in the dates Tσ of earthquakes of magnitude Mσ not less than 7.0 in the period
1998–2004 from the dates of the extreme values of elastic energy.

σ Mσ Tσ Year Region of the quake T1σ (minimum) T2σ (maximum) kσ

1 7.5 04.3 January 1998 Loyalty Islands 04.75 January 10.89 January 0.16
2 7.1 30.5 January 1998 Near the coast of northern

Chile
22.97 January 1.43 February 0.62

3 8.1 25.1 March 1998 Balleny Islands 20.85 March 27.35 March 0.68
4 7.2 29.8 March 1998 Fiji 27.35 March 04.27 April 0.63
5 7.0 01.8 April 1998 Southern Sumatra, Indonesia 27.35 March 04.27 April 0.64
6 7.5 04.0 May 1998 Southeast of Taiwan 04.60 May 07.12 May 0.49
7 7.0 16.5 July 1998 Santa Cruz Islands 15.28 July 21.45 July 0.40
8 7.0 17.4 July 1998 Near the north coast of New

Guinea
15.28 July 21.45 July 0.68

9 7.2 04.8 August 1998 Near the coast of Ecuador 05.18 August 11.75 August 0.12
10 7.1 20.3 August 1998 Bonin Islands 19.90 August 26.40 August 0.12
11 7.0 09.2 November 1998 Banda Sea 02.45 November 08.95 November 0.09
12 7.7 29.6 November 1998 Ceram Sea 22.00 November 29.09 November 0.10
13 7.0 19.2 January 1999 New Ireland 16.92 January 24.67 January 0.58
14 7.3 06.9 February 1999 Santa Cruz Islands 03.27 February 11.98 February 0.84
15 7.1 04.4 March 1999 Celebes Sea 04.46 March 10.50 March 0.03
16 7.4 05.5 April 1999 New Britain 29.68 March 08.50 April 0.56
17 7.1 08.6 April 1999 Eastern Russia-northeastern

China border
29.68 March 08.50 April 0.0

18 7.1 10.9 May 1999 New Britain 06.26 May 13.48 May 0.73
19 7.1 16.0 May 1999 New Britain 13.48 May 18.40 May 0.96
20 7.0 15.9 June 1999 Central Mexico 09.84 June 16.41 June 0.17
21 7.6 17.0 August 1999 Turkey 15.9 August 20.60 August 0.44
22 7.7 20.7 September 1999 Taiwan 17.17 September 26.45 September 0.77
23 7.5 30.7 September 1999 Oaxaca, Mexico 26.45 September 01.98 October 0.87
24 7.2 16.4 October 1999 Southern California 16.40 October 24.40 October 0.00
25 7.2 12.7 November 1999 Turkey 11.94 November 20.35 November 0.18
26 7.0 15.2 November 1999 South Indian Ocean 11.94 November 20.35 November 0.79
27 7.0 19.6 November 1999 New Britain 11.94 November 20.35 November 0.18
28 7.5 26.6 November 1999 Vanuatu Islands 20.35 November 26.60 November 0.00
29 7.0 07.0 December 1999 Kodiak Island 01.00 December 09.60 December 0.60
30 7.3 11.8 December 1999 Luzon, Philippines 09.60 December 18.56 December 0.48
31 7.2 08.7 January 2000 Tonga Islands 08.27 January 14.71 January 0.13
32 7.1 25.1 February 2000 Vanuatu Islands 21.73 February 29.40 February 0.87
33 7.6 28.5 March 2000 Volcano Islands, Japan 27.77 March 04.71 April 0.15
34 7.0 23.4 April 2000 Santiago del Estero province,

Argentina
17.03 April 25.69 April 0.53

35 7.6 04.2 May 2000 Minahassa peninsula,
Sulawesi

02.55 May 08.19 May 0.58

36 7.2 12.8 May 2000 Jujuy province, Argentina 08.19 May 14.14 May 0.46
37 7.9 04.7 June 2000 Southern Sumatra, Indonesia 04.70 June 04.70 June 0.00
38 7.9 18.6 June 2000 South Indian Ocean 09.39 June 19.20 June 0.12
39 7.4 06.3 August 2000 Bonin Islands (Japan) region 03.63 August 11.01 August 0.71
40 7.0 04.7 October 2000 Vanuatu Islands 27.85 September 05.06 October 0.09
41 7.0 29.4 October 2000 New Ireland region 25.98 October 02.06 November 0.84
42 8.0 16.2 November 2000 New Ireland region 16.28 November 22.55 November 0.00
43 7.8 16.3 November 2000 New Ireland region 16.28 November 22.55 November 0.00
44 7.6 17.9 November 2000 New Ireland region 16.28 November 22.55 November 0.51
45 7.0 06.7 December 2000 Turkmenistan 27.95 November 07.40 December 0.13
46 7.5 01.3 January 2001 Mindanao, Philippines 27.14 December 04.30 January 0.66
47 7.1 09.7 January 2001 Vanuatu Islands 04.30 January 10.11 January 0.14
48 7.0 10.7 January 2001 Kodiak Islands region, Alaska 10.11 January 15.24 January 0.22
49 7.7 13.7 January 2001 El Salvador 10.11 January 15.24 January 0.59
50 7.7 26.1 January 2001 India 22.95 January 29.86 January 0.92
51 7.4 13.8 February 2001 Southern Sumatra, Indonesia 12.56 February 18.52 February 0.42
52 7.1 24.3 February 2001 Northern Molucca Sea 18.52 February 28.00 February 0.78
53 7.2 03.1 June 2001 Kermadec Islands, New

Zealand
31.10 May 08.18 June 0.88

54 8.4 23.9 June 2001 Near the coast of Peru 22.95 June 28.21 June 0.46
55 7.6 07.4 July 2001 Near the coast of Peru 05.90 July 13.71 July 0.38

(Continued)
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Table 6. Continued.

σ Mσ Tσ Year Region of the quake T1σ (minimum) T2σ (maximum) kσ

56 7.1 21.3 August 2001 East of North Island, New
Zealand

15.76 August 21.81 August 0.17

57 7.0 12.6 October 2001 South of Mariana Islands 08.95 October 16.00 October 0.96
58 7.5 19.2 October 2001 Banda Sea 16.00 October 22.64 October 0.95
59 7.0 31.4 October 2001 New Britain region 30.00 October 06.18 November 0.34
60 7.8 14.4 November 2001 Qinghai-Xinjiang border,

China
12.72 November 19.18 November 0.52

61 7.1 12.6 December 2001 South of Australia 09.80 December 16.09 December 0.89
62 7.2 02.7 January 2002 Vanuatu Islands 30.40 December 05.25 January 0.74
63 7.4 03.5 March 2002 Hindu Kush region,

Afghanistan
01.80 March 09.27 March 0.46

64 7.5 05.9 March 2002 Mindanao, Philippines 01.80 March 09.27 March 0.91
65 7.1 31.3 March 2002 Taiwan region 28.47 March 04.67 April 0.69
66 7.1 26.7 April 2002 Mariana Islands 25.85 April 02.62 May 0.21
67 7.3 28.7 June 2002 Eastern Russia-northeastern

China border
24.95 June 02.74 July 0.86

68 7.7 19.5 August 2002 Fiji region 19.15 August 26.74 August 0.05
69 7.7 19.5 August 2002 South of the Fiji islands 19.15 August 26.74 August 0.05
70 7.6 08.8 September 2002 Near the north coast of New

Guinea
02.05 September 09.13 September 0.10

71 7.6 10.5 October 2002 Irian Jaya region, Indonesia 06.50 October 12.45 October 0.67
72 7.4 02.1 November 2002 Northern Sumatra, Indonesia 27.85 October 02.83 November 0.22
73 7.9 03.9 November 2002 Central Alaska 02.83 November 10.30 November 0.30
74 7.3 17.2 November 2002 Northwest of Kuril Islands 16.04 November 23.40 November 0.32
75 7.3 20.4 January 2003 Solomon Islands 17.12 January 23.71 January 0.98
76 7.6 22.1 January 2003 Offshore Colima, Mexico 17.12 January 23.71 January 0.49
77 7.1 17.7 March 2003 Rat Islands, Aleutian Islands,

Alaska
12.10 March 19.20 March 0.43

78 7.0 26.4 May 2003 Near the east coast of Honshu,
Japan

24.97 May 03.44 June 0.27

79 7.0 26.8 May 2003 Halmahera, Indonesia 24.97 May 03.44 June 0.35
80 7.1 20.3 June 2003 Amazonas, Brazil 15.71 June 21.90 June 0.53
81 7.6 15.9 July 2003 Carsberg Ridge 12.75 July 19.15 July 0.97
82 7.5 04.2 August 2003 Scotia Sea 03.04 August 09.17 August 0.38
83 7.2 21.5 August 2003 South Island, New Zealand 16.05 August 23.37 August 0.51
84 8.3 25.8 September 2003 Hokkaido (Japan) region 19.27 September 26.10 September 0.08
85 7.4 25.9 September 2003 Hokkaido (Japan) region 19.27 September 26.10 September 0.06
86 7.3 27.5 September 2003 Southwestern Siberia, Russia 26.10 September 02.34 October 0.38
87 7.0 31.1 October 2003 Off the east coast of Honshu,

Japan
30.30 October 05.38 November 0.21

88 7.8 17.3 November 2003 Rat Islands, Aleutian Islands,
Alaska

11.87 November 21.54 November 0.88

89 7.3 27.7 December 2003 Southeast of the Loyalty
Islands

23.75 December 28.80 December 0.45

90 7.1 03.7 January 2004 Southeast of the Loyalty
Islands

02.09 December 05.60 January 0.91

91 7.0 05.9 February 2004 Papua, Indonesia 03.94 February 10.99 February 0.55
92 7.3 07.1 February 2004 Near the south coast of Papua,

Indonesia
03.94 February 10.99 February 0.90

93 7.1 15.2 July 2004 Fiji region 07.65 July 15.57 July 0.10
94 7.3 25.6 July 2004 Southern Sumatra, Indonesia 24.00 July 29.14 July 0.63
95 7.2 05.4 September 2004 Near the south coast of

western Honshu, Japan
31.30 August 08.43 September 0.66

96 7.4 05.6 September 2004 Near the south coast of
Honshu, Japan

31.30 August 08.43 September 0.62

97 7.5 11.9 November 2004 Kepulauan Alor, Indonesia 10.06 November 15.83 November 0.63
98 7.2 15.4 November 2004 Near the west coast of

Colombia
10.06 November 15.83 November 0.16

99 7.1 22.9 November 2004 Off the west coast of South
Island, New Zealand

15.83 November 21.07 November 0.00

100 7.1 26.1 November 2004 Papua, Indonesia 21.07 November 28.85 November 0.71
101 7.2 28.8 November 2004 Hokkaido (Japan) region 21.07 November 28.85 November 0.02
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Figure 6. Histogram of earthquakes of magnitude M > 7.0 in the period 1998–2004 (the number of events in the
time intervals (Tmax − Tmin)/2n, n = 1, 2, 3, 4, 5).

values. About 35% of quakes take place in a time interval of 32.8–57.4 h (or 1.4–2.4 days)
before and after the times of the extreme values of the variation. In both cases there are peaks
of concentration of natural events.

Of course, our conclusions are of a preliminary character. Here we have used a rather
restricted list of data about large earthquakes (from the last 7 years). Possible tendencies must
be studied for longer intervals of time and for fuller basic data about earthquakes, volcanoes
and geysers (in the last few centuries).

6. Conclusions

The dates of the extreme values of the elastic energy are very interesting for all-round analy-
sis of the temporal redistribution of the various catastrophic events on the Earth and their
possible correlations with the variations in the elastic energy of the Earth. The analysis can
involve all the known data about natural processes, ecological catastrophes and also about
the biosphere and noosphere processes. Of these, the first to be studied must be large earth-
quakes, large volcanic eruptions, geyser eruptions, flooding of rivers, periods of droughts
and severe atmospheric disturbances (tornadoes, typhoons and large cyclones). The analy-
sis of large fluctuations in the behaviours of physical fields of the Earth (magnetic field,
warm ocean currents and others) is also of present interest. We predict also some possi-
ble correlations between social, demographic and epidemiological catastrophes, man-made
accidents and the extreme values of the variations in the elastic energy determining the gen-
eral tension state of the full Earth including all its shells. The data given here allow us
to carry out important research on the possible correlations between catastrophic histori-
cal events in the life of society (wars, revolutions, political conflicts, displays of terrorism,
etc.) and the dates of the extreme values of the variations in the general elastic state of the
Earth.

This paper is restricted to the analysis of one of the more important components of the
elastic energy caused by the mutual combination of the rotational deformations of the mantle
and its lunisolar tides. Also we point out that the variations in the elastic energy of the Earth
discussed here practically describe the variations in the second harmonics of the force functions
of the systems of the axisymetric Earth with the Moon and the Sun (considered as material
points). In accordance with Barkin’s geodynamical model developed in [14], some of this
energy is spent on realizing large endogenous processes. This means that the mechanism of
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the shell dynamics (perturbed relative oscillations of the core and mantle) has an influence on
the elastic state of the Earth in the same rhythms as the tides studied above. Which of these
two mechanism is more effective energetically? This fundamental problem must be studied
in future.
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Appendix 1

In the table A1 of Appendix the Julian dates and Calendar dates of the extreme values of
elastic energy in 2005 and 2006 years are given (in conditional units with respect to some
conditional level). We have named their as crisis days of the Earth as these days the planet is
or in the intensive tension state (surplus elastic energy) or is in the weakened state (at dump
of excessive elastic energy). These states must be directly reflected in the all natural planetary
processes.

In next table A2 the dates of maximums of the curve “trees tops” which can be interpreted as
approximating average curve of variations of elastic energy caused by interaction of rotational
and orbital luni-solar tides are given.

In the table A3 dates of minimums of the curve “tree roots” for period 100–2100 years
are given. These dates correspond to average curve of variations of elastic energy caused by
interaction of rotational and orbital luni-solar tides.

These dates present definite interest for all-round analysis of the temporal redistribution
of the various catastrophic events on the Earth and their possible correlations with variations
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Table A1. Crisis days of the Earth in 2005 and 2006 years. Julian day 1827.0 corresponds to 1.00 January 2005.

Crisis days of the Earth in 2005 year Crisis days of the Earth in 2006 year

Month Extreme 2005 Julian dates Calendar dates Extreme 2006 Julian dates Calendar dates

January min −1.299 1829.992 2.992 Jan. min −2.305 2197.222 05.222 Jan.
max 3.457 1835.816 8.816 Jan. max 4.907 2204.507 12.507 Jan.
min −1.956 1841.982 14.982 Jan. min −0.547 2212.213 20.213 Jan.
max 4.780 1849.761 22.761 Jan. max 3.480 2218.089 26.089 Jan.
min −1.720 1857.314 30.314 Jan.

February max 2.862 1863.071 5.071 Feb. min −3.215 2224.581 01.581 Feb.
min −2.912 1869.361 11.361 Feb. max 4.035 2231.846 08.846 Feb.
max 3.770 1877.082 19.082 Feb. min −1.154 2239.470 16.470 Feb.
min −2.406 1884.563 26.563 Feb. max 2.793 2245.363 22.363 Feb.

min −4.139 2251.939 28.939 Feb.

March max 2.310 1890.403 4.403 Mar. max 3.141 2259.198 08.198 Mar.
min −3.553 1896.701 10.701 Mar. min −1.591 2266.621 15.621 Mar.
max 3.126 1904.389 18.389 Mar. max 2.586 2272.708 21.708 Mar.
min −2.726 1911.787 25.787 Mar. min −4.356 2279.278 28.278 Mar.
max 2.296 1917.789 31.789 Mar.

April min −3.402 1923.991 6.991 Apr. max 2.917 2286.517 04.517 Apr.
max 3.362 1931.668 14.668 Apr. min −1.451 2293.753 11.753 Apr.
min −2.357 1939.053 22.053 Apr. max 3.074 2300.092 18.092 Apr.
max 2.864 1945.167 28.167 Apr. min −3.709 2306.599 24.599 Apr.

May min −2.624 1951.262 4.262 May max 3.507 2313.778 01.778 May
max 4.278 1958.925 11.925 May min −0.803 2320.973 08.973 May
min −1.543 1966.396 19.396 May max 3.894 2327.456 15.456 May
max 3.567 1972.482 25.482 May min −2.737 2333.913 21.913 May
min −1.901 1978.555 31.555 May max 4.398 2341.005 29.005 May

June max 5.127 1986.188 08.188 Jun. min −0.137 2348.315 05.315 Jun.
min −0.895 1993.791 15.791 Jun. max 4.396 2354.756 11.756 Jun.
max 3.841 1999.728 21.728 Jun. min −2.247 2361.235 18.235 Jun.
min −1.875 2005.892 27.892 Jun. max 4.840 2368.250 25.250 Jun.

July max 5.217 2013.480 05.480 Jul. min 0.029 2375.712 02.712 Jul.
min −0.874 2021.169 13.169 Jul. max 4.183 2381.997 08.997 Jul.
max 3.480 2026.950 18.950 Jul. min −2.655 2388.573 15.573 Jul.
min −2.630 2033.262 25.262 Jul. max 4.450 2395.551 22.551 Jul.

min −0.401 2403.050 30.050 Jul.

August max 4.471 2040.805 01.805 Aug. max 3.448 2409.229 05.229 Aug.
min −1.415 2048.467 09.467 Aug. min −3.652 2415.921 11.921 Aug.
max 2.806 2054.215 15.215 Aug. max 3.525 2422.905 18.905 Aug.
min −3.610 2060.630 21.630 Aug. min −1.027 2430.245 26.245 Aug.
max 3.483 2068.142 29.142 Aug.

September min −1.995 2075.676 05.676 Sep. max 2.815 2436.510 01.510 Sep.
max 2.403 2081.554 11.554 Sep. min −4.447 2443.269 08.269 Sep.
min −4.062 2087.969 17.969 Sep. max 2.787 2450.268 15.268 Sep.
max 3.035 2095.457 25.457 Sep. min −1.308 2457.319 22.319 Sep.
max 2.833 2463.860 28.860 Sep.

October min −2.075 2102.861 02.861 Oct. min −4.405 2470.610 05.610 Oct.
max 2.646 2108.94 08.940 Oct. max 2.794 2477.588 12.588 Oct.
min −3.652 2115.276 15.276 Oct. min −0.996 2484.396 19.396 Oct.
max 3.466 2122.726 22.726 Oct. max 3.531 2491.241 26.241 Oct.
min −1.530 2130.107 30.107 Oct.

November max 3.374 2136.311 05.311 Nov. min −3.564 2497.944 01.944 Nov.
min −2.745 2142.571 11.571 Nov. max 3.492 2504.843 08.843 Nov.
max 4.403 2149.965 18.965 Nov. min −0.326 2511.603 15.603 Nov.
min −0.751 2157.449 26.449 Nov. max 4.369 2518.596 22.596 Nov.

min −2.603 2525.274 29.274 Nov.

December max 4.011 2163.619 02.619 Dec. max 4.274 2532.064 06.064 Dec.
min −2.110 2169.881 08.881 Dec. min 0.162 2538.953 12.953 Dec.
max 5.068 2177.214 16.214 Dec. max 4.679 2545.889 19.889 Dec.
min −0.328 2184.848 23.848 Dec. min −2.298 2552.604 26.604 Dec.
max 4.050 2190.862 29.862 Dec.
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Table A2. Dates of maximums of approximating average curve of “tops of trees” in period 100–2100 years.

4 December 107 21 June 610 5 January 1113 3 August 1615
15 July 126 30 January 629 18 August 1131 14 March 1634
23 February 145 11 September 647 29 March 1150 24 October 1652
6 October 163 23 April 666 7 November 1168 5 June 1671
17 May 182 2 December 684 20 June 1187 14 January 1690
26 December 200 14 July 703 29 January 1206 27 August 1708
8 August 219 23 February 722 9 September 1224 8 April 1727
19 March 238 4 October 740 22 April 1243 17 November 1745
28 October 256 16 May 759 1 December 1261 29 June 1764
10 June 275 26 December 777 12 July 1280 8 February 1783
19 January 294 6 August 796 22 February 1299 20 September 1801
30 August 312 18 March 815 3 October 1317 2 May 1820
12 April 331 27 October 833 14 May 1336 12 December 1838
21 November 349 8 June 852 25 December 1354 23 July 1857
22 July 368 18 January 871 5 August 1373 4 March 1876
12 February 387 29 August 889 16 March 1392 14 October 1894
23 September 405 10 April 908 27 October 1410 26 May 1913
4 May 424 20 November 926 7 June 1429 6 January 1932
15 December 442 1 July 945 17 January 1448 17 August 1950
26 July 461 11 February 964 29 August 1466 28 March 1969
6 March 480 22 September 982 9 April 1485 8 November 1987
17 October 498 3 May 1001 19 November 1503 19 June 2006
28 May 517 14 December 1019 1 July 1522 28 January 2025
7 January 536 25 July 1038 9 February 1541 10 September 2043
19 August 554 5 March 1057 21 September 1559 21 April 2062
30 March 573 16 October 1075 2 May 1578 30 November 2080
9 November 591 27 May 1094 22 December 1596 13 July 2099

Table A3. Dates of minimums of the approximating average elastic energy on curve of “three
roots” (Fig. 3) in period 100–2100 years.

29 October 95 31 January 600 9 May 1104 30 August 1608
1 April 100 4 July 604 11 October 1108 1 February 1613
2 September 104 6 December 608 14 March 1113 6 July 1617
4 February 109 9 May 613 16 August 1117 8 December 1621
9 July 113 11 October 617 18 January 1122 11 May 1626
10 December 117 15 March 622 22 June 1126 13 October 1630
14 May 122 16 August 626 23 November 1130 17 March 1635
15 October 126 18 January 631 27 April 1135 18 August 1639
19 March 131 21 June 635 29 September 1139 20 January 1644
21 August 135 23 November 639 1 March 1144 23 June 1648
22 January 140 26 April 644 3 August 1148 25 November 1652
25 June 144 27 September 648 5 January 1153 28 April 1657
26 November 148 1 March 653 8 June 1157 30 September 1661
30 April 153 3 August 657 10 November 1161 4 March 1666
2 October 157 4 January 662 14 April 1166 5 August 1670
5 March 162 8 June 666 15 September 1170 7 January 1675
7 August 166 10 November 670 17 February 1175 11 June 1679
8 January 171 13 April 675 22 July 1179 13 November 1683
12 June 175 15 September 679 23 December 1183 15 April 1688
14 November 179 17 February 684 26 May 1188 17 September 1692
16 April 184 20 July 688 28 October 1192 19 February 1697
18 September 188 22 December 692 31 March 1197 25 July 1701
19 February 193 25 May 697 2 September 1201 26 December 1705
24 July 197 27 October 701 4 February 1206 30 May 1710
26 December 201 31 March 706 8 July 1210 1 November 1714
29 May 206 1 September 710 10 December 1214 4 April 1719
31 October 210 3 February 715 14 May 1219 6 September 1723
3 April 215 8 July 719 15 October 1223 8 February 1728
5 September 219 9 December 723 18 March 1228 12 July 1732
7 February 224 12 May 728 20 August 1232 13 December 1736

(Continued)
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Table A3. Continued.

10 July 228 14 October 732 22 January 1237 17 May 1741
12 December 232 17 March 737 25 June 1241 19 October 1745
15 May 237 19 August 741 27 November 1245 22 March 1750
17 October 241 21 January 746 1 May 1250 24 August 1754
21 March 246 24 June 750 2 October 1254 26 January 1759
22 August 250 26 November 754 6 March 1259 30 June 1763
24 January 255 30 April 759 8 August 1263 1 December 1767
27 June 259 1 October 763 9 January 1268 4 May 1772
29 November 263 4 March 768 12 June 1272 6 October 1776
2 May 268 5 August 772 14 November 1276 10 March 1781
3 October 272 7 January 777 17 April 1281 11 August 1785
7 March 277 11 June 781 19 September 1285 13 January 1790
9 August 281 12 November 785 21 February 1290 17 June 1794
10 January 286 16 April 790 25 July 1294 18 November 1798
14 June 290 18 September 794 27 December 1298 23 April 1803
15 November 294 19 February 799 31 May 1303 25 September 1807
19 April 299 24 July 803 2 November 1307 27 February 1812
21 September 303 26 December 807 4 April 1312 30 July 1816
22 February 308 28 May 812 6 September 1316 1 January 1821
26 July 312 30 October 816 8 February 1321 5 June 1825
27 December 316 3 April 821 12 July 1325 7 November 1829
31 May 321 4 September 825 14 December 1329 10 April 1834
2 November 325 6 February 830 18 May 1334 12 September 1838
5 April 330 11 July 834 19 October 1338 14 February 1843
7 September 334 12 December 838 23 March 1343 19 July 1847
9 February 339 16 May 843 25 August 1347 20 December 1851
13 July 343 18 October 847 27 January 1352 23 May 1856
15 December 347 20 March 852 29 June 1356 25 October 1860
17 May 352 22 August 856 1 December 1360 28 March 1865
19 October 356 24 January 861 5 May 1365 30 August 1869
23 March 361 27 June 865 6 October 1369 1 February 1874
24 August 365 29 November 869 10 March 1374 6 July 1878
26 January 370 2 May 874 12 August 1378 7 December 1882
29 June 374 4 October 878 13 January 1383 11 May 1887
1 December 378 8 March 883 17 June 1387 13 October 1891
5 May 383 9 August 887 19 November 1391 16 March 1896
6 October 387 11 January 892 21 April 1396 18 August 1900
9 March 392 14 June 896 23 September 1400 20 January 1905
11 August 396 15 November 900 25 February 1405 24 June 1909
12 January 401 19 April 905 30 July 1409 26 November 1913
16 June 405 21 September 909 31 December 1413 29 April 1918
17 November 409 22 February 914 4 June 1418 1 October 1922
21 April 414 27 July 918 6 November 1422 5 March 1927
23 September 418 29 December 922 9 April 1427 7 August 1931
24 February 423 1 June 927 11 September 1431 8 January 1936
29 July 427 3 November 931 13 February 1436 11 June 1940
30 December 431 6 April 936 16 July 1440 13 November 1944
2 June 436 7 September 940 18 December 1444 17 April 1949
4 November 440 9 February 945 22 May 1449 18 September 1953
7 April 445 14 July 949 24 October 1453 20 February 1958
9 September 449 15 December 953 27 March 1458 25 July 1962
11 February 454 19 May 958 29 August 1462 27 December 1966
15 July 458 21 November 962 31 January 1467 30 May 1971
17 December 462 24 March 967 4 July 1471 1 November 1975
20 May 467 26 August 971 6 December 1475 4 April 1980
22 October 471 28 January 976 9 May 1480 5 September 1984
25 March 476 30 June 980 11 October 1484 7 February 1989
26 August 480 2 December 984 14 March 1489 12 July 1993
28 January 485 6 May 989 16 August 1493 14 December 1997
2 July 489 7 October 993 18 January 1498 17 May 2002
3 December 493 11 March 998 21 June 1502 19 October 2006

(Continued)
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Table A3. Continued.

7 May 498 13 August 1002 23 November 1506 23 March 2011
9 October 502 14 January 1007 27 April 1511 25 August 2015
12 March 507 18 June 1011 28 September 1515 26 January 2020
14 August 511 20 November 1015 1 March 1520 29 June 2024
15 January 516 22 April 1020 3 August 1524 1 December 2028
18 June 520 24 September 1024 5 January 1529 5 May 2033
20 November 524 26 February 1029 8 June 1533 6 October 2037
23 April 529 30 July 1033 10 November 1537 10 March 2042
25 September 533 1 January 1038 14 April 1542 12 August 2046
27 February 538 5 June 1042 15 September 1546 14 January 2051
31 July 542 6 November 1046 17 February 1551 17 June 2055
2 January 547 10 April 1051 22 July 1555 19 November 2059
5 June 551 12 September 1055 24 December 1559 22 April 2064
7 November 555 13 February 1060 26 May 1564 24 September 2068
10 April 560 17 July 1064 28 October 1568 25 February 2073
11 September 564 19 December 1068 1 April 1573 30 July 2077
13 February 569 22 May 1073 2 September 1577 1 January 2082
18 July 573 24 October 1077 4 February 1582 5 June 2086
19 December 577 28 March 1082 19 July 1586 6 November 2090
23 May 582 29 August 1086 21 December 1590 10 April 2095
24 October 586 31 January 1091 24 May 1595 12 September 2099
28 March 591 5 July 1095 26 October 1599
30 August 595 6 December 1099 29 March 1604

of elastic energy of the Earth. For analysis can be involved all known data about natural
processes, ecology catastrophes and also about biosphere and noosphere processes. From
them in first must be studied big earthquakes, grandiose volcanic eruptions, geyser eruptions,
flooding floods of the rivers, periods of droughts, atmospheric accidents (tornados, typhoons,
the big cyclones). The analysis of big fluctuations in behavior of physical fields of the Earth
(magnetic field, warm stream and others) presents important interest. We predict also some
possible correlations of social, demographic, epidemiology catastrophes, man-made accidents
with extremes of variations of the elastic energy determining of the general tension state of
the full Earth including all its shells. The data given here allow to carry out the important
research of possible correlations of catastrophic historical events in the life of society (wars,
revolutions, political conflicts, displays of terrorism etc.) with variations of the general elastic
state of the Earth, its physical fields with dates of extreme states.

Figure A1 illustrates the main tendencies in variations of the full numbers of earthquakes
with definite magnitudes (with step 0.5 from 4.0 to 8.5) in last century. The fundamental
phenomenon which is presented by figure A1 is the existence of close correlation of the dates
of extreme values of elastic energy (approximating curve) of the earth and the dates (periods)
of its extreme seismic activity in the last century (for earthquakes with magnitude 8 and 8.5).
We can see that the “buildings – skyscrapers” of zones of earthquakes (with amplitudes 8 and
8.5) are marked by vertical arrows corresponding to extreme values of elastic energy of the
Earth. It is worth to remark also that all arrows correspond to "roots of trees"from the figure 3
in p. 5.1.2. Exception here can be connected only with two extreme values of elastic energy
for dates 1954 and 1967 years (from the full list of 23 dates). It means that predicted dates
of seismic activization of the Earth in 21th century from the tables A2 and A3 in reality will
correspond in the majority by catastrophic earthquakes in this century with largest magnitudes
in 8 and more. In other words practically we approximately know positions of all "seismic
skyscrapers"in next century. Unfortunately to them there will correspond the heaviest events
in life of the Earth and a society. The dates of future seismic catastrophic activization of the
Earth are given in last column of the table A3.
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Figure A1. The annual numbers of earthquakes of magnitude 4.0–8.5 in the last century [13]. The positions of the
peaks of the extreme values of the elastic energy (arrows). Correlation of ‘skyscraper’ positions of earthquakes with
magnitudes 8.0–8.5 and elastic energy peaks.


