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We present two diagnostic methods based on the ideas of principal component analysis and demon-
strate their efficiency for sophisticated processing of multicolour photometric observations of variable
objects.
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1. Introduction

In the last few decades there has been a much larger volume of an increased common access
to high-quality observational data on variable stars; however, the standard methods used for
data processing and interpretation have lagged behind this progress. One of the steps taken to
overcome this lack of progress is the consequent application of principal component analysis
(PCA) combined with robust regression (RR), factor analysis, wavelet analysis and other
sophisticated approaches to the treatment of observations of variable stars.

The commonly used method for the treatment of astrophysical data is the simple
(unweighted) least-squares method (LSM). As these data usually suffer from outliers and very
different degrees of quality, the method yields questionable and misleading results. RR as an
adequate alternative of the standard LSM is used only seldomly; LSM weights, if introduced
at all, are often used incorrectly.

2. Standard and weighted principal component analysis

PCA is one of the oldest and most elaborate methods employed to treat statistical data. PCA
can be used to simplify a data set without loss of information. It is a linear transformation that
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64 Z. Mikulášek

chooses a new coordinate system such that the greatest variance corresponds to the first axis,
then the residuals to the second axis, etc. PCA is simple and straightforward; it does not need
any model. It reduces the number of uncorrelated parameters necessary for the description
of a data set, helps to reveal hidden relationships and effectively suppresses noise. For more
details see, for example, [1] or [2].

At present, it is profusely used particularly in image techniques, politics, criminal science,
sociology and other human sciences; however, in astronomy it is almost unknown. We shall
demonstrate how to apply standard PCA on routine tasks in the processing of the observations
of variable stars.

Let us assume that we have p photometric measurements obtained in q photometric colours,
which we can arrange in the form of p row vectors with q components: {y1, y2, . . . , yp},
yi = [yi1, yi2, . . . , yiq], or into the p × q matrix Y. Each measurement can be then described
as a point in q-dimensional (q-D) space; all p observations represent the ‘cloud’ of points,
whose global characteristics we shall study by means of standard PCA.

If we want to use PCA as effectively as possible, we must linearly transform the components
of these data vectors into new variables {z1, z2, . . . , zp}:

zij = yij − yj

sj

, (1)

where yj is the mean value of the j th components (j th colour), sj is the estimate of the mean
(typical) error (uncertainty) in the j th component. The purpose of this transformation is to
identify the middle of the data cloud of observations with the origin of the new system of
coordinates and to equalize all coordinates among them. PCA here implicitly hypothesizes
that at least the ratios between the measurements in various colours are roughly constant.
‘Error boxes’ of particular measurements in q-D space should have the form of spheres of
unit radius.

Standard PCA can be easily extended to weighted principal component analysis (WPCA),
introducing the weights of individual data vectors. The weight is put inversely proportional
to the square of εi : wi ∝ ε−2

i , where εi is the expected uncertainty of a component of the
ith data vector zi . Let w = [w1, w2, . . . , wp] be a vector describing the weights of individual
data vectors; the diagonal matrix of weights, W, of size p × p is defined as W = diag(w). In
our q-D representation it corresponds to when error spheres of individual sets of multicolour
measurements are permitted to have various effective radii, proportional to εi . Standard PCA
is then the special case of WPCA with equal weights: W ≈ Ip.

The above-mentioned PCA linear transformation of a vector z to a smoothed vector zs using
the smoothing q × q matrix Â can be written as

zs = zÂ = z(AAT), ys = [zs1s1 + y1, . . . , zsqsq + yq], (2)

where A is the q × r matrix consisting of r columns of normalized eigenvectors of the sym-
metric definite q × q matrix ZTWZ, where Z is the q × p data matrix: Z = [z1, z2, . . . , zq].
As follows from the definition, each eigenvector ai together with the corresponding eigenvalue
λi obeys the relation

(ZTWZ)ai = aiλi . (3)

It can be proved that, for the q × q matrix ZTWZ, just q eigenvalues and q normalized
eigenvectors exist. The total set of q eigenvectors forms an orthonormal vector base. Let us
order the eigenvectors according to their eigenvalues from the largest to the smallest in the
sequence {a1, . . . , aq}. Now we take the first r (r ≤ q) eigenvectors and connect to give the
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Principal component analysis 65

matrix A = [a1, . . . , ar ]. Their eigenvalues then create the diagonal of the r × r diagonal
matrix Λ = diag([λ1, . . . , λr ]):

(ZTWZ)A = AΛ; ai · aj = δij =⇒ ATA = I, (4)

where δij is the discrete version of the Kronecker delta function, I is the r × r identity matrix.
The vectors {a1, a2, . . . , ar} contained in A represent the orthonormal vector base of the r-D
subspace placed in the q-D space. The arranged set of scalar products of a vector z and vectors
{ai} : {k1, k2, . . . , kr}, where ki = z · ai , defines a vector k:

k = zA; zs = kAT = zAAT, Zs = KAT = ZAAT. (5)

We can introduce the q × r matrix K : K = [k1, . . . , kq].Assuming equation (4), we can write

K = ZA =⇒ AT(ZTWZ)A = KTWK = (ATA)Λ = Λ. (6)

Equation (6) shows us that the eigenvalues correspond to the sum of the weighted variance of
the projections of all vectors zi and provides the reason why we should confine ourselves to
only those components with eigenvalues that are sufficiently large; others do not contain any
true information; they represent only a noise and therefore could be trimmed.

The application of PCA and WPCA should help us to find the number of parameters essential
for the description of variability (the number of mechanisms of variability in action); it enables
us to examine the relative quality of observations in multicolour measurements. Although we
do not know the sj value of individual colours exactly, we could improve them very quickly
using an iterative circle. The convergence of this process is fairly good, because the results
are as a rule insensitive to the sj used.

Figure 1. Smoothing of ‘observational’data (full circles) by the standard PCA method. Smoothed points are denoted
by open circles; the dashed curves represent the original (without noise) light curves in five synthetic colours.
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66 Z. Mikulášek

The above-mentioned methods help us mainly in the preliminary processing of observa-
tional data, when we want to reach an orientation in the nature of the variability of studied
objects, possible relationships between measured quantities and their quality. All this infor-
mation can be gained without using any physical model and time-dependent smoothing,
which can strongly influence finding a priori unexpected types of variability (rapid variations,
trends, etc.).

We demonstrate the PCA treatment of artificial photometric data (50 observations in five
colours), simulating the light variability of a rotating, chemically peculiar (CP) star with
two differently coloured photometric spots. The ‘observed’ points and smoothed points with
suppressed noise for r = 2 for individual colours are displayed in the phase diagram in figure 1.
The treatment does not consider information on the phase.

PCA methods, similarly to LSMs, suffer from outliers, which are quite common in astro-
physical data. The introduction of weights into PCA enables us to eliminate their influence
by means of an iterative process that adjusts the individual weights of entering data (see, for
example, the appendix of [3]).

3. Advanced principal component analysis

The extent of applicability of standard PCA and WPCA methods is rather limited as they are
demanding with regard to the completeness and homogeneity of input data. These confine-
ments were obviously one decisive reason why PCA techniques remain beyond the scope of
the majority of observing astronomers.

Since 2000 we have developed a qualitatively new method that synthesizes WPCA and
RR. We shall call it advanced principal component analysis (APCA). The versatility of APCA
proves it to be quite broad. It has been used several times (see, for example, [4–7]); however,
it has not been fully described until now. We shall briefly present only the method, without its
derivation and strict mathematical proof of lemmas or statements.

3.1 Vector description of light curves

Let the course of a light curve be described by means of a preselected model the parameters
of which are determined by standard regression methods, such as the LSM with weights or its
modification that eliminates the influence of outliers. It is advisable to use a linear model so that
the course of a light curve in a certain colour c, denoted mc(t), would be described by a linear
combination of the ensemble of q so-called elementary functions f1(t), f2(t), . . . , fq(t) which
define the time dependence by a column vector f (t) = [f1(t), f2(t), . . . , fq(t)] of length q

by the relation

�mc(t) = mc(t) − mc =
q∑

i=1

ycifi(t) = yc · f (t), (7)

where yci are the components of a row vector yc, and mc is the mean magnitude in the colour
c. The components of the vector are found from the observational data by standard regression
procedures (weighted LSM and RR).

We should be very particular about the choice of the base of the elementary functions
f1(t), f2(t), . . . , fq(t). The functions should be selected so that they enable us to express all
studied light curves of the object with sufficient accuracy. It is advisable for many reasons
(avoiding problems with multicollinearity, and equality of the uncertainty in the components of
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Principal component analysis 67

the vector yc) to opt for elementary functions so that they would form the base quasiorthonormal
of the set of data, which means that

f 2
i ≈ f 2

j ≈ f 2, fifj � f 2 for i �= j. (8)

In the case when the set of elementary functions does not obey the conditions given above,
it is trivial to transform the system into the orthonormal system by means of the standard
Gram–Schmidt orthonormalization procedure.

Assuming that the observational data are distributed more or less uniformly over the obser-
vational interval, it is recommended that Legendre polynomials are used for the orthonormal
in the interval 〈−1; 1〉. If the object is periodically variable, then the condition of quasiorthog-
onality fulfils any combination of the harmonic polynomials sin(2kπt/P ) and cos(2kπt/P ),
k = 1, 2, . . . ; f 2 = 1/2.

If the functions of the linear regression model are quasiorthonormal, then the uncertainties
in particular components εc of the vector yc are the same:

εc ≈ sc

(Ncf 2)1/2
, wc ∝ ε−2

c ∝ Nc

s2
c

, (9)

where sc is the standard deviation of the light curve fit and Nc is the number of observations
in the particular colour used for the light curve fit. The weight of the corresponding vector of
light curve in the c colour then will be proportional to ε−2

c .
The whole set of vectors describing the light curves in all p colours can be arranged into

the p × q matrix Y, with the weights described by the p × p diagonal matrix W.

3.2 Advanced principal component analysis; reducing free parameters; use of advanced
principal component analysis

Let us allow the variable part �mc of the light curves in all colours to be sufficiently accurately
approximated by a linear combination of only r (r < q) normalized orthogonal (principal)
functions ϕj (t) determined by the linear combination of all q elementary functions fi(t) with
the coefficients forming the q × r matrix B:

ϕj (t) =
q∑

i=1

bijfi(t) = bj · f (t), (10)

�mc(t) =
r∑

j=1

kcjϕj (t) =
r∑

j=1

kcjbj · f (t) = kcBTf (t) = ysc f (t), (11)

ysc = kcBT, (12)

where bj is the normalized vector of the j th principal function and j th column of the matrix
B. The row vector kc (1 × r) represents the semiamplitude components of the light curve
in colour c versus r principal functions {ϕ1(t), . . . , ϕr(t)} and the 1 × q vector ysc contains
parameters of the APCA smoothed light curve in the colour c.

Further we shall assume that the vector base {b1, . . . , br} is orthonormal; then

bibj = δij , BTB = I. (13)
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68 Z. Mikulášek

Minimizing the scalar quantity S(B, kc), which is defined as the the sum of weighted variances
of the differences, �yc = yc − ysc, and given by

S(B, kc) =
p∑

c=1

�yc�yT
c wc =

p∑

c=1

(ycyT
c − kckT

c )wc; grad S = 0, (14)

we arrive after some algebra at the following conclusions:

K = YB, (YTWY)B = B(KTWK) = BΛ. (15)

Ys = YB̂ = Y(BBT). (16)

The results in equations (15) and (16) are formally identical with those in equations (4)–(6);
so we can conclude that the matrix B contains r column vectors which are eigenvectors of
the matrix YTWY corresponding to its first r largest eigenvalues. The smoothing matrix B̂ is
defined identically as Â.

Nevertheless, we have to emphasize that APCA is not identical with standard PCA or
WPCA. APCA and PCA give very similar but not the same results; the smoothing matrix B̂ is
not the duplicate of Â! The main reason is that data treated by PCA have been centred on their
mean, while in the case of APCA we handle the obtained data directly without any centring.
The difference is formulated using the basic suggestion ofAPCA (equation (10)), which seems
to us physically more valid than the postulates of PCA. The correctness of the APCA method
has been verified using several relevant statistical tests and trials with simulated data.

We demonstrate the use ofAPCA on synthetic photometric data, simulating the light variabil-
ity of the same model of the rotating CP star. Figure 2 displays the phase diagram of multicolour
light variations; ‘observed’points are indicated by full circles, and the light curves fitted by the
standard LSM technique are indicated by dashed curves. The light curves found by APCA are
plotted as full curves; they are indistinguishable from the curves fitted by the standard LSM

Figure 2. Fitting of ‘multicolour observational’data by theAPCA method (full curves). The dashed curves represent
the fitting by the LSM.
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Principal component analysis 69

Figure 3. (a) The curves for the first two principal functions. (b) The dependence of the semiamplitude on wave-
length for both principal components: dashed curves, first principal component; dotted curves, second principal
component.
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70 Z. Mikulášek

technique. The first two principal curves are displayed in figure 3(a); the dependences of the
semiamplitudes on the wavelength for both principal light curves are plotted in figure 3(b).
From the diagram for a real object we can obtain information about the light variability.

APCA can be used for reliable prediction of the multicolour behaviour of an object; the
method is very suitable for the quantification and classification of light curves [5, 7], for
multicolour O – C measurements [6] and for improvement in the light ephemeris [5]. APCA
seems to be a very efficient tool for the analysis of spectral variations and radial velocity
measurements [4].

4. Conclusions

PCA and APCA prove to be universal, relatively simple methods with an extremely versatile
range of uses in the processing and interpretation of astronomical data (both photometric and
spectroscopic). The efficiency and applicability of the PCA increase when we combine it with
other sophisticated methods of data treatment, e.g. RR, weighted LSM or wavelet analysis.
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