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We carried out numerical experiments on the evaluation of the possibilities of obtaining information
about the brightness distributions for the components of eclipsing variables from the high-precision
photometry data expected to be obtained from the planned satellites COROT and Kepler. We examined
a simple model of an eclipsing binary with spherical components on circular orbits and a linear law of
limb darkening. The solutions of light curves have been obtained both by fitting a nonlinear model by
a number of parameters including the limb-darkening coefficients and by solving the ill-posed inverse
problem of restoration of brightness distributions across the discs of stars using a priori information
about the form of these functions. The obtained estimates show that, if the observational accuracy is
10−4, then the limb-darkening coefficients can be found with a relative error of approximately 0.01.
The brightness distributions across the discs of components can be restored to nearly the same accuracy
as well.
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1. Introduction

A study of eclipsing variable stars is at present the basic information source about the sizes of
stars and brightness distributions across their discs. Information about brightness distributions
is especially important since it allows us to test the models of stellar atmospheres independent
of spectral analysis data. The analysis of the light curve of an eclipsing binary is a classical
problem of astrophysics. The methods of solution of this problem are detailed and connected
with the names of notable researchers: H.N. Russell, D.Ya. Martynov, V.P. Tsesevich, J.E.
Merrill, Z. Kopal, etc. At present there are two basic approaches to the solution of the problem:
by fitting a nonlinear model by the known laws of limb darkening for the components of the
eclipsing variable and by solving the ill-posed inverse problem of the restoration of brightness
distributions across the discs of stars. However, the precision of ground-based photometry
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(with a relative error ε greater than 10−3 in flux measurements) substantially limits the accuracy
of the obtained results.

The planned launches of the special satellites COROT and Kepler make it possible to expect
a considerable increase in the precision of the photometry of bright objects (up to ε = 10−5).
Under these conditions, new possibilities for solving the classical problem of investigating the
eclipsing variable stars have opened up [1].

The purpose of our paper is to estimate the possibilities for determining the geometrical
parameters and brightness distributions for the components of the eclipsing variables from
high-precision photometry data both by the model fitting method and by the method of
restoration of brightness distributions.

2. The model light curve

It is known that, in the case of spherical components with a linear law of limb darkening, the
problem of calculating a light curve for an eclipsing variable has an exact solution, the error
being determined by the precision of the numerical estimates of one-dimensional definite
integrals. Therefore, for further analysis we chose a simple model of an eclipsing variable
with the following parameters: the angle of orbital inclination, i = 89◦.0; the radius of the
first component in units of the orbital radius, r1 = 0.30; the luminosity of the first component,
L1 = 0.30; the limb-darkening coefficient of the first component, x1 = 0.50; the radius of the
second component, r2 = 0.20; the luminosity of the second component, L2 = 0.70; the limb-
darkening coefficient of the second component, x2 = 0.30. The luminosities of the components
are connected by the equation L1 + L2 = 1.

It is known that the light losses in the minima 1 − li are described by the phase functions

(1 − l)i = αi(p, k)(1 − lA), (1)

where 1 − lA is the light loss at the moment of the internal contact of the discs, k = r2/r1,
� = r1(1 + kp) and � is the distance between the centres of the stellar discs in units of
the orbital radius. These phase functions, in turn, can be expressed via the main phases for
the occultations, α′(p, k), and for the transits, α′′(p, k) [2]. The last two main phases are
estimated numerically via calculations of one-dimensional definite integrals which depend on
the parameters p and k.

Figure 1. The calculated light curve for the chosen model of the eclipsing variable.
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We have calculated the definite integrals of the phase functions by application of the
Gauss–Kronrod algorithm using the subroutine DQAGE from the SLATEC FORTRAN pro-
gram library. The precision of calculation of the light curve l(i, r1, L1, x1, r2, L2, x2, θ), where
θ is the light phase (0 � θ � 1), was adopted to be ε = 10−12. The calculated light curve for
our model of the eclipsing variable is shown in figure 1. The primary minimum corresponds
to the total eclipse, and the secondary minimum to the annular eclipse.

3. The model fitting

One of the basic approaches to the analysis of the light curves of eclipsing variables is
nonlinear-model fitting by the known laws of limb darkening for its components. As the
input data we took our model light curve perturbed by the influence of random noise with
different values of ε. The dispersion of noise was assumed to be constant over the magnitude
scale. Gaussian pseudorandom numbers �li with a zero mean and a standard deviation equal
to unity are used to generate the noise. Thus, the samples of the perturbed light curve can be
written as lo

i = lc
i (1 + ε�li) , where lc

i are the samples of the calculated model light curve.
For both the primary minimum and the secondary minimum we considered N = 100

equidistant samples of the perturbed light curve. The search for the optimal values of the
model parameters leads to the solution of nonlinear minimization problems. In the case of the
primary minimum,

N∑
j=1

[lo(θj ) − lc(i, r1, r2, L2, x2, θj )]2 = minimum (2)

and, in the case of the secondary minimum,

N∑
j=1

[lo(θj ) − lc(i, r1, L1, x1, r2, θj )]2 = minimum. (3)

We have used the DNLS1 subroutine to solve these problems and also the subroutine from the
SLATEC library, which minimizes the sum of squares of nonlinear functions by a modification
of the Levenberg–Marquardt algorithm [3].

The light curve depends nonlinearly on a number of parameters. This nonlinearity can lead
to the presence of local minima of the residual. To check this possibility we carried out a
number of numerical experiments on the solution of the problems of minimization (2) and (3)
with different initial values of the model parameters. In these experiments, the initial values
differed from the precise values upto two times, being half the precise values or less. In all

Table 1. The average values of the model parameters and their standard deviations obtained by the model fitting
from the primary minimum for different values of relative error of the light curve.

Average value of the model parameter for the following relative error values
Precise

Parameter value ε = 10−5 ε = 10−4 ε = 10−3

i 89◦.0 88◦.999 2 ± 0◦.003 4 89◦.001 ± 0◦.035 89◦.09 ± 0◦.41
r2 0.20 0.199 998 9 ± 0.000 008 1 0.200 002 ± 0.000 085 0.200 06 ± 0.000 73
L2 0.70 0.700 000 00 ± 0.000 000 72 0.700 000 2 ± 0.000 007 4 0.700 018 ± 0.000 078
x2 0.30 0.299 98 ± 0.000 24 0.300 1 ± 0.002 7 0.302 ± 0.023
r1 0.30 0.300 000 7 ± 0.000 002 8 0.300 000 ± 0.000 030 0.300 00 ± 0.000 28
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Table 2. The average values of the model parameters and their standard deviations obtained by the model fitting
from the secondary minimum for different values of relative error of the light curve.

Average value of the model parameter for the following relative error values
Precise

Parameter value ε = 10−5 ε = 10−4 ε = 10−3

i 89◦.0 88◦.994 ± 0◦.018 88◦.99 ± 0◦.15 88◦.69 ± 0◦.99
r1 0.30 0.300 001 ± 0.000 029 0.300 00 ± 0.000 26 0.300 2 ± 0.002 8
L1 0.30 0.300 025 ± 0.000 085 0.300 05 ± 0.000 74 0.303 5 ± 0.006 9
x1 0.50 0.499 89 ± 0.000 55 0.499 5 ± 0.005 2 0.487 ± 0.056
r2 0.20 0.199 996 ± 0.000 017 0.200 00 ± 0.000 16 0.199 5 ± 0.001 5

cases the solution converged well to the precise value and, therefore, the local minima were
not discovered.

We carried out the model fitting to perturbed light curves for three values of ε = 10−5, 10−4

and 10−3. In each case, 100 curves were examined with different realizations of the random
noise. The obtained average values of the model parameters and their standard deviations are
given in tables 1 and 2. As can be seen from these tables, the geometrical parameters and the
limb-darkening coefficients are evaluated very accurately from the high-precision photometry
data. As a whole, the standard deviation in estimating a model parameter decreases linearly
with decrease in the relative error in recording the light curve. If the observational accuracy of
the space photometry is 10−4 (higher than the precision of ground-based photometry by one
order of magnitude), then the limb-darkening coefficients can be found with a relative error
of approximately 0.01.

4. The restoration of brightness distributions

An alternative approach to the analysis of the light curves of eclipsing variables, namely the
restoration of brightness distributions across the stellar discs without rigid model constraints on
the form of these functions, was developed by Cherepashchuk et al. [4]. Let I (ξ) (0 � ξ � r1)
and I (ρ) (0 � ρ � r2) be the brightness distributions across the discs of the first and the second
components, respectively. It can be shown that the light losses in the first minimum and the
second minimum are described by the integral equations

1 − l1(�) =
∫ r1

0
K1(ξ, �, r2)I (ξ)dξ (4)

and

1 − l2(�) =
∫ r2

0
K2(ρ, �, r1)I (ρ)dρ. (5)

Expressions for the kernels of these integral equations can be found in the paper by
Cherepashchuk et al. [4] and the monograph by Tsesevich et al. [2].

Equations (4) and (5) are integral equations of Fredholm’s first kind. The solution of these
integral equations is an ill-posed problem in Hadamard’s sense and requires utilization of a
priori information about the sought function. It is possible to assume that for the majority of
stars with thin photospheres the brightness distributions are non-negative, monotonically non-
increasing convex-upward functions. It is known that the sets of functions of these types are
compact. The search for the solution of an ill-posed problem on the compact set of functions
gives a unique and stable result [5]. This a priori information is qualitative and imposes no
rigid model constraints on the form of the brightness distribution. Nevertheless, this guarantees
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that the obtained brightness distributions will approach their exact values while the errors
in recording the observed light curve approach zero, with the exception of the points of
discontinuity of the functions [5, 6]. The use of a large amount of a priori information about the
possible form of the brightness distribution in accordance with the physics of the phenomenon
enables us to achieve a solution with a high degree of stability against the effects of random
noise.

Thus, as the solution of our problem can be taken in the form of non-negative, monoton-
ically non-increasing convex-upward functions I (ξ) and I (ρ) that minimize the following
functionals, the norms in the L2 function space are

�1[I (ξ), r1, r2, i] =
∥∥∥∥
∫ r1

0
K1(ξ, �, r2)I (ξ)dξ − [1 − l1(�)]

∥∥∥∥
L2

(6)

and

�2[I (ρ), r1, r2, i] =
∥∥∥∥
∫ r2

0
K2(ρ, �, r1)I (ρ)dρ − [1 − l2(�)]

∥∥∥∥
L2

. (7)

The problem of restoration of the brightness distributions depends also on three free
parameters: i, r1 and r2. Their values can be found by minimizing the summary residual.

We carried out a numerical experiment on the restoration of brightness distributions from
our perturbed model light curve for the value ε = 10−4. The special estimates showed that the
choice of the number of points, M = 1001, of a uniform grid along a radius with the integration
for Simpson’s formula makes it possible to ensure a relative error in the calculation of integrals
(4) and (5) below 10−6. These grids were used later to minimize the functionals. We minimized
the summary residual for both minima,

�1[I (ξ), r1, r2, i] + �2[I (ρ), r1, r2, i] = minimum, (8)

and searched for the global minimum of the residual sum of squares by varying three geo-
metrical parameters: i, r1 and r2. To minimize equations (6) and (7) on the compact set of
non-negative, monotonically non-increasing convex-upward functions for various values of the
geometrical parameters we used a modified version of the PTISR code written in FORTRAN

Figure 2. The dependence of the summary residual (in units of 10−9) on the orbital inclination angle i (in degrees)
for optimal values of the radii r1 and r2.
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Figure 3. The samples of the perturbed light curve for the primary minimum (open circles) and the light curve
corresponding to the restored brightness distribution (solid curve).

[5, 6]. This code minimizes a residual by the method of projection of the conjugate gradients
on the selected set of functions. To reduce the effect of round-off errors, we transformed all the
real variables used in the PTISR and its auxiliary subroutines into double-precision variables
with 16 significant digits in their floating-point mantissas. Zero initial approximations for
brightness distributions were used in all cases with the minimization of equations (7) and (8).

Figure 4. The samples of the perturbed light curve for the secondary minimum (open circles) and the light curve
corresponding to the restored brightness distribution (solid curve).
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Figure 5. The samples of the restored brightness distribution for the second component (open circles) and the
precise distribution (solid curve).

The numerical experiments showed that the global minimum of equation (8) can indeed be
found. Figure 2 presents the summary residual depending on the orbital inclination angle i for
optimal values of the radii r1 and r2. The values of the geometrical parameters corresponding
to the global minimum of the residual are as follows: i = 89◦.16 ± 0◦.02, r1 = 0.299 90 ±
0.000 02 and r2 = 0.200 05 ± 0.000 02. The values of the errors are formal and equal to the
steps of the grids used in carrying out the variation in the geometrical parameters.

The samples of the perturbed light curve are indicated by open circles for the primary
minimum in figure 3, and for the secondary minimum in figure 4. The solid curves in these
figures show the light curves, which correspond to the restored brightness distributions. The
samples of the restored brightness distributions are indicated by open circles in figures 5
and 6, where also the solid curves show the precise distributions. To avoid superposition,
every tenth sample is shown. As can be seen from figures 5 and 6, the accuracy of restoration

Figure 6. The samples of the restored brightness distribution for the first component (open circles) and the precise
distribution (solid curve).
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of the brightness distribution proves to be sufficiently high over almost the entire disc of
star. Unfortunately, on the edges of discs, at the points of discontinuity of a function, the
solutions are noticeably different from the precise values. This is explained by the absence of
the convergence of solution of an ill-posed problem at the points of discontinuity of a function.

5. Conclusion

We carried out numerical experiments to evaluate the possibilities of obtaining information
about the brightness distributions of the components of eclipsing variables from the high-
precision photometry data expected to be obtained from the planned satellites COROT and
Kepler. We investigated both approaches to the analysis of light curves: by fitting a nonlinear
model by changing the number of parameters including the limb-darkening coefficients, and
by solving the ill-posed inverse problem of restoration of brightness distributions across the
discs of stars using a priori information about the form of these functions. It is shown that in
both cases the analysis of high-precision space photometry data makes it possible to obtain
results that agree well.

The standard deviations in the estimates of the model parameters decrease linearly with
a decrease in the relative error of recording the light curve. If the observational accuracy of
the space photometry is 10−4 (higher than the precision of ground-based photometry by one
order of magnitude), then the limb-darkening coefficients can be found with a relative error of
approximately 0.01. This accuracy will make it possible to distinguish the linear law of limb
darkening easily from the nonlinear law and to use for its estimate the fitting of more complex
models of brightness distributions.

The accuracy of restoration of the brightness distribution without rigid model constraints
on the form of this function proves to be sufficiently high over almost the entire disc of star.
Unfortunately, on the edges of discs, at the points of discontinuity of a function, the solutions
are noticeably different from the precise values. The geometrical parameters of an eclipsing
variable, found by the search for the global minimum of a residual in the case of restoration
of brightness distributions, also prove to be close to the precise values.

References
[1] C. Maceroni and I. Ribas, Astrophys. and Space Sci. 304 383 (2006).
[2] V.P. Tsesevich (Editor), Eclipsing Variable Stars (Nauka, Moscow, 1971) (in Russian).
[3] J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations

(Prentice-Hall, Englewood Cliffs, New Jersey, 1983).
[4] A.M. Cherepashchuk, A.V. Goncharskii and A.G. Yagola, Soviet Astron. 11 990 (1968).
[5] A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov et al., Regularizing Algorithms and A Priori Information

(Nauka, Moscow, 1983) (in Russian).
[6] A.M. Cherepashchuk, A.V. Goncharsky and A.G. Yagola, Ill-posed Problems in Astrophysics (Nauka,

Moscow, 1985) (in Russian).


