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It is demonstrated that the protogalactic perturbations must enter the nonlinear regime before the red
shift z ≈ 1; otherwise they would be destroyed by the antigravity of the vacuum dark energy at the
subsequent epoch of the vacuum domination. At the z < 1 epoch, gravitational instability can develop
only in the nonlinear regime and within areas of size r < rV = {M/[(8π/3)ρV]}1/3, where M is the
mass of a given over-density and ρV is the vacuum density. The criterion provides a new relation
between the largest mass condensations and their spatial scales. All the real large-scale systems follow
this relation definitely. It is also shown that a simple formula is possible for the key quantity in the theory
of galaxy formation, namely the initial amplitude of the perturbation of the gravitational potential in
the protogalactic structures. The amplitude is time independent and given in terms of the Friedmann
integrals, which are genuine physical characteristics of the cosmic energies. The results suggest that
there is a strong correspondence between the global design of the Universe as a whole and the cosmic
structures of various masses and spatial scales.
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1. Introduction

The recent discovery of the cosmic vacuum (≡ cosmological constant ≡ dark energy) [1, 2]
has drastically changed current cosmological concepts. Now we know that the dark energy of
the cosmic vacuum is the major cosmic energy ingredient in the present epoch. It dominates in
the Universe at a red shift of about 1 or for a cosmic age of about 7–8 Gyears. The vacuum has
been discovered in supernova observations at the largest, truly cosmological distances near
the cosmic horizon [1, 2]. Later its existence has also been recognized [3–7] on smaller spatial
scales, inside the cosmic cell of uniformity, down to a distance of about 1 Mpc from us. On
these smaller scales, the vacuum reveals itself clearly in the regular Hubble expansion. Both
results give, in combination, crucial observational evidence for the dark energy of the vacuum
as an omnipresent universal phenomenon in the observed Universe.

In the present paper, the role of the cosmic vacuum in the current theory of galaxy formation
is discussed. For these purposes, the concept of the Friedmann integrals (FINTs) [4] is used as
the basic time-independent physical parameters of the cosmic energy ingredients (section 2).
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206 A. D. Chernin

The significance of the integrals is illustrated by the Dicke problem (section 3). Following
our earlier considerations [8], it is shown that the antigravity of the dark energy terminates
gravitational instability in dark matter and baryonic matter at a red shift of about 1 (section 4).
The difficult problem of the amplitude of the initial perturbations is also studied (section 5).

2. The Friedmann integrals

The FINTs are constant genuine physical characteristics of the four cosmic energies: dark
energy, dark matter, baryons and radiation. Historically, the quantity appeared in Friedmann’s
first paper on cosmological expansion where the length-dimension constant A was introduced
to represent non-relativistic matter in the dynamic equation for the cosmological scale factor.
The FINTs for each of the cosmic energies are obtained from the Friedmann ‘thermodynamic’
equation which is applied to the energy ingredients individually:

ρ̇

ρ(1 + w)
= −3

Ṙ

R
. (1)

Here the constant pressure-to-density ratio w = p/ρ = −1, 0, 0 and 1/3 for vacuum, dark
matter, baryons and radiation respectively; R(t) is the cosmological scale factor. The integral
of the equation may be given in the form [4]

A = (κρR3(1+w))1/(1+3w), (2)

where κ = 8πG/3c2, G is the gravitational constant and ρ is the density of a given energy.
Because of their origin from equation (1) as constants of integration, the values of the FINT

for vacuum, dark matter, baryons and radiation are completely independent of each other
a priori and not restricted by any theory constraints (except for trivial ones). For instance, in the
cold Universe (a model discussed before the discovery of the cosmic microwave background)
the FINT for radiation is zero; in the model with zero dark-energy density (which was standard
a decade ago), the FINT for vacuum is infinity. So the whole interval from zero to infinity is
open for the FINT values, in principle.

In the Friedmann dynamic equation, the four FINT values AV, AD, AB and AR represent
the dynamic effects of the vacuum, dark matter, baryons and radiation respectively:

Ṙ

c2
=

(
AV

R

)−2

+ AD

R
+ AB

R
+

(
AR

R

)2

− K. (3)

Here, K is the constant which is zero in the model of a flat three-dimensional (3D) space.
In the models of a non-zero 3D curvature, the scale factor R(t) is usually identified with
the curvature radius a(t), and then K = 1, −1 in equation (3). In a finite-size Universe with
positive spatial curvature (as in the model proposed by Luminet et al. [9]), the scale factor
R(t) is most naturally identified with the finite size RU(t) of the 3D space; in this case,
K = (R/a)2 = constant > 0.

It is seen from equation (2) that the value of the FINT for vacuum does not depend on the
scale factor and its normalization:

AV = (κρV)−1/2 ≈ �
−1/2
V c

H
≈ 1 × 1028 cm. (4)

On the contrary, the FINT values for non-vacuum energies depend on the scale factor and its
normalization explicitly. If the Universe is really finite in size, we may use the most natural
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Cosmic vacuum and galaxy formation 207

scale-factor normalization for the size of the cosmic space:

R(t) = RU(t) ≈ AV(1 + z)−1. (5)

With this normalization, the FINT non-vacuum values have a clear physical sense. Indeed, the
values AD and AB are determined by the total mass MD of dark matter and the total mass MB

of baryons respectively:

AD = 2κMD, AB = 2κMB. (6)

The FINT value for radiation is determined by the total number NR of the cosmic microwave
background photons (and other possible relativistic particles) in the finite-size Universe:

AR ≈ (κ�c)1/2N
2/3
R , (7)

where � = h/2π and h is the Planck constant.
The normalization of equation (5) may be used as well, if the co-moving space is infinite; in

this case, it may be considered as the normalization to the size of the Metagalaxy, our domain
in the Universe. Then the constant total values MD, MB and NR will be related to the whole
visible space. The quantitative results for the FINT (see below) will be the same in both cases,
since the size of the Metagalaxy is near both ct0 and RU(t0), at the present epoch.

With the current concordance data on cosmic energy densities [1, 2, 10], the FINT non-
vacuum values are

AD = κρDR3 ≈ �DR3H 2 ≈ �Dc

H
≈ 3 × 1027 cm, (8)

AB = κρBR3 ≈ �BR3H 2 ≈ �Bc

H
≈ 5 × 1026 cm, (9)

AR = (κρR)1/2R2 ≈ (�Rα)1/2c

H
≈ 1 × 1026 cm (α ≈ 1). (10)

As we see, all the four FINT values are nearly identical and of the order of magnitude of

AV ≈ AD ≈ AB ≈ AR ≈ 1027±1 cm ≈ 1060±1M−1
Pl . (11)

Here, ‘natural units’ are used in which the speed of light, the Boltzmann constant and the
Planck constant are all equal to unity: c = k = � = 1. The Planck mass MPl = G−1/2 ≈
1.2 × 1019 GeV. Although the FINT identity of equation (11) is found with the data at the
present (special) epoch of cosmic evolution, it is valid for all the epochs whenever the four
energies exist in nature. The FINT identity of equation (11) describes the similarity of the
four cosmic energy ingredients, and this similarity may be referred to as ‘cosmic internal
symmetry’ (COINS) [4].

3. The Dicke problem

To illustrate the significance of the new symmetry, let us address, for instance, a classic problem
in cosmology known as the Dicke problem. It treats the fact that the geometry of the co-moving
space looks nearly flat in observations, and the cosmological expansion proceeds in a nearly
parabolic regime. Both properties are quantified by the dimensionless density parameter �(t)

which is measured to be near unity [1, 2, 10]. Why is this so? The question was first asked by
Dicke [11] in 1970; he mentioned that the Universe must be extremely finely tuned to yield
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the observed balance between the total energy density of the Universe and the critical density.
In the 1970s, the observational constraints on �(t0) were much weaker than now, and it was
considered that this quantity was between 0.1 and 10. Such an apparently wide range implies
a very narrow range at earlier epochs. It was estimated that the density balance quantified by
� must be tuned with an accuracy of about 10−16 or about 10−60, if it is fixed at the epoch of
the Big Bang nucleosynthesis (BBN) or at the Planck epoch respectively. Such a fine tuning
in the ‘initial conditions’ for the cosmological expansion was reasonably considered by Dicke
as unacceptable (see, for instance, [8] for more references).

COINS shows the Dicke problem in quite a different light. Indeed, the correspondence
between vacuum and dark matter described by the symmetry relation AV ≈ AD puts a strong
upper limit on any deviations from the flatness in possible models with non-zero spatial
curvature. The deviations are measured by the quantity |�(t) − 1| and, as may easily be seen
from the Friedmann equation in section 2, this quantity goes to zero in both the limit t → 0
and the limit t → ∞. At earlier epochs, the deviations are restricted by the matter gravity and,
at later epochs, they are restricted by the vacuum antigravity. Extreme deviation takes place
in the era when gravity and antigravity balance each other. The corresponding red shift

1 + z = 1 + zV ≈
(

2AV

AD

)1/3

≈ 1. (12)

At that time,

�(zV) − 1 ≈
[

1 ± 1

2

(
AV

AD

)2/3 (
R

a

)2
]−1

− 1 ≈ ±1

2

(
AV

AD

)2/3 (
AV

a0

)2

. (13)

Here, R(t) is the scale factor normalized as R(t) = AV(1 + z)−1 (see section 2), and a0 is the
present-day space curvature radius.

As we see, there is an upper limit for any possible non-flatness at present, and also in the
past and future of the Universe:

|�(z) − 1| � |�(zV) − 1| ≈ 1

2

(
AV

AD

)2/3 (
AV

a0

)2

. (14)

Non-flatness is fixed by the constant parameter y ≡ 1/2(AV/AD)2/3(AV/a0)
2 ≈ (AV/a0)

2

which might be fixed by initial conditions, say, at the teraelectronvolt temperature epoch, at
the BBN epoch, at the Planck epoch or at any other epoch equally, because the parameter is
time independent.

Any cosmological model of non-zero spatial curvature fits the 1970s observational
constraints, if the parameter y � 1. The modern Wilkinson Microwave Anisotropy Probe
(WMAP) constraints [10] are met if the parameter y � 0.02. For the Luminet et al. [9] model
with � = 1.013 we have y ≈ 0.1. To see the contrast with the fine-tuning argument, modest
numbers such as 1 or 0.02–0.01 may be compared with the enormous numbers 10−16 and 10−60.

Thus, the balance between vacuum antigravity and dark matter gravity actually causes the
observed near-flatness of the 3D co-moving space. This balance is controlled by COINS which
rules out any significant deviations from flatness at any time [12].A similar result has also been
found in a complementary treatment [13, 14]. Note that no special hypothesis (about, say, an
enormous vacuum density at enormously large z) is required to clarify and eliminate the Dicke
fine-tuning problem. The vacuum density actually observed and the standard cosmology at
modest z are quite sufficient to clarify why the observed space is nearly flat and the cosmic
expansion is nearly parabolic.
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4. Initial perturbations

A fine-tuning problem which is similar to the Dicke argument is well known in the theory
of cosmic structure formation. Indeed, the perturbations must be extremely finely tuned in
amplitude to exist in the nonlinear regime between the red shifts, say, z ≈ 3–10 (when the
oldest galaxies are observed) and z = zV ≈ 1 (when the vacuum antigravity terminates the
linear perturbation growth [8]). Consider, for example, the large-scale adiabatic perturbations
which always increase before z ≈ 1. Using the standard theory of weak perturbations [15],
we may easily see that the perturbation generated at the BBN epoch must increase 1016–1017

times, so that their initial amplitudes must be tuned with the accuracy better than 10−16 to
guarantee nonlinearity in the appropriate red-shift range. If perturbations are generated at the
Planck epoch, the accuracy must be better than 10−60.

The numerical similarity with the Dicke considerations is not purely accidental. It has long
been known as a result of Zeldovich’s [16] work that the time rate of the perturbation growth
could be obtained in a simple picture in which a perturbation over-density is treated as a part
of a universe of positive curvature on the unperturbed background of a flat space. The relative
amplitude of density perturbation is given in this case by the deviation of the density parameter
� from unity:

δ ≡ δρ

ρ
≈ �(t) − 1. (15)

It is because of this relation that the perturbation growth resembles the evolution of
non-flatness. We shall now show that this analogy may help us to understand the nature of the
initial perturbation amplitude, which is a key quantity in the theory of structure formation.

Following Zeldovich [16], it may be generally assumed that various perturbation areas
are described by models with different curvature parameters K > 0, K = 0 and K < 0 (see
section 2) and different curvature radii a(t), but with the same spatial size and the same
set of FINT values as in the background model. If, for instance, K = 0 in the background
model, then areas with K > 0 and K < 0 correspond to over-density perturbations and
under-density perturbations respectively. The local perturbation areas of various sizes r(t)

develop independently of each other (even if they spatially overlap) in the linear approximation.
In such a simple example, the parabolic (K = 0) solution with the scale factor normalized

as R(t) ≈ AV(1 + z)−1 will be used to describe the unperturbed background expansion. Then
a protogalactic over-density perturbation may be described by a model with K > 0 normalized
in the same manner. In accordance with equation (15) and the results of the section above,
the density contrast δ in dark matter reaches its maximum when the red shift z = zV ≈ 1.
At that time,

δ(zV) ≡
∣∣∣∣δρD

ρD

∣∣∣∣ = |�zV − 1| ≈
∣∣∣∣∣∣
[

1 ± 1

2

(
AV

AD

)2/3 (
AV

a0

)2
]−1

− 1

∣∣∣∣∣∣ . (16)

Here, a0 is the present-day value of the curvature radius corresponding to a given perturbation
area.

The value of the amplitude δ(zV) is approximately unity, δ ≈ 1, provided that the constant
parameter y = 1/2(AV/AD)2/3(R0/a)2 = 1/2(AV/AD)2/3(AV/a0)

2 ≈ 1.
No fine tuning of the amplitude is needed, as can be seen; the order-of-unity constant

parameter y guarantees the quantitatively correct perturbation evolution. This parameter
may be fixed by the ‘initial conditions’ at any epoch in the past, because the parameter is
time independent.
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5. The perturbation amplitude

Recall that the result relates to the perturbations which grow all the time in the past when
z � zV. The spatial scales of these perturbations are sufficiently large; they are always not
less than the Jeans critical length RJ(t) for gravitational instability The Jeans length has a
maximum at the moment z = z∗ when the matter density ρD + ρB is equal to the radiation
density ρR (see, for instance, [17]). At this moment, z∗ ≈ AVAD/A2

R and

RJ(t∗) ≈ ct∗ ≈ 0.4A3
R

A2
D

. (17)

The minimal spatial scale L(t∗) for ever-growing perturbations is near the Jeans length at
this moment: L(t∗) ≈ RJ(t∗). At z = zV , this scale is L(zV) = RL(t∗)(1 + z∗)/(1 + zV) ≈
0.2AVAR/AD.

With this relation, we can estimate the amplitude of the perturbation of the gravitational
potential ∆ on this scale. In accordance with the general theory [15],

∆ = δ(zV)

[
L(zV)

ctV

]2

≈ 0.2δ(zV)

(
AR

AD

)2

, (18)

where tV = t (zV) ≈ 0.5AV/c.
Since δ(RL, zV) ≈ 1, the value ∆ turns out to be expressed in terms of the FINTs only:

∆ ≈ 0.2

(
AR

AD

)2

≈ 10−4. (19)

The general theory indicates that this value does not depend on time: ∆ = constant(t).
Moreover, this value is scale independent initially, if the initial perturbations have the Harrison–
Zeldovich (HZ) spectrum: δ ∝ r−2. The HZ spectrum is in good agreement with the WMAP
data [10].

Thus, the key quantity of gravitational instability comes in quite a natural and simple way
as a universal dimensionless constant ∆ of cosmology. Together with the HZ spectrum, this
constant gives a complete quantitative description of the initial adiabatic perturbations that
seed the large-scale cosmic structure.

No fine tuning for the amplitude is needed at all. Since the quantity ∆ is a constant, the
initial conditions for the perturbations do not need to be fixed at any specific ‘initial’ moment.

6. Conclusions

The vacuum-dominated Universe that emerges from the supernova observations [1, 2], the
Hubble flow analysis [3–7], the WMAP figures [10] and other concordance data reveals
a new simplicity and order which are clearly revealed by the internal (non-geometrical)
time-independent symmetry. The COINS results in a number of the physical properties of
the real Universe, e.g. the cosmic vacuum, the symmetry control and such seemingly unre-
lated features as the observed near-flatness of the cosmic space and the time behaviour of the
weak protogalactic perturbations.

In this paper, it is demonstrated that the perturbations must enter the nonlinear regime
before the red shift z ≈ 1; otherwise they would be destroyed by the antigravity of the vacuum
dark energy at the subsequent epoch of the vacuum domination. At the z < 1 epoch, gravi-
tational instability can develop only in the nonlinear regime and within areas of the size
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r < rV = {M/[(8π/3)ρV]}1/3, where M is the mass of a given over-density. The later criterion
comes from the requirement ρD + ρB > 2ρV, which guarantees that the gravity of matter is
stronger than the antigravity of dark energy in the over-density area. A typical cluster or
supercluster of galaxies with the mass M ≈ 1015–1016 solar masses meets this condition, if
its size is less than approximately 10–20 Mpc. The criterion gives a new relation between the
largest mass condensations and their spatial scales. All the real large-scale systems follow this
relation definitely.

The considerations of this paper show also that a simple relation is possible for the key quan-
tity in the theory of galaxy formation which is the initial amplitude of the perturbation of the
gravitational potential in the protogalactic structures. The amplitude is time independent and
given in terms of the FINTs which are genuine physical characteristics of the cosmic energies.

To conclude, the results of the paper suggest that there is a strong correspondence between
the global design of the Universe as a whole and the cosmic structures of various masses and
spatial scales. This correspondence is recognized at the phenomenological level, and its true
physical meaning remains almost completely obscure, mostly because the real nature of the
cosmic vacuum and its microscopic structure are as yet completely unknown.
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