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Various ways of solving the relaxation paradox for stellar systems are discussed. They include scattering
on massive wave or material objects (giant molecular clouds, transient spiral arms and halo black
holes), a revision of the Jeans–Chandrasekhar relaxation theory (resonant relaxation, relaxation in
the smoothed field and collective relaxation in a steady non-integrable potential and in a non-steady
(oscillating) mean field (violent relaxation)).
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1. Introduction

We shall consider stellar systems as statistical ensembles of N gravitating point masses.
Real stellar systems are known to be generally in equilibrium. Their present state could be
reached under the action of smoothed or bulk gravitational forces (regular forces according
to the terminology employed by Schwarzschild [1]) and random forces due to close stellar
encounters (irregular forces according to [1]) [2, 3]. The timescale of regular forces is the so-
called crossing time [3, 4] equal to tc = (R3/GM)1/2. Here, G is the gravitational constant,
M is the mass of a system and R is its typical size. According to the classical theory of
stellar encounters by Jeans and Chandrasekhar (constructed by analogies with the gas theory
developed by Maxwell, Boltzmann and Jeans himself ) the relaxation time, i.e. the timescale of
irregular forces [3], is tr = σ 3/(8πG2m2n ln �), where m is the mass of a star, n is the number
density, σ is the typical relative stellar velocity and ln � is the so-called Coulomb logarithm
(and � ≈ N ). It follows from the virial theorem that σ 2 ≈ (1 + γ 2)−1GM/R, with γ = V/σ ,
V being a mean streaming velocity. For flat subsystems of our Galaxy, � ≈ 10 � 1. Then
tr/tc ≈ [N/(ln N)]/6πγ 3. For galaxies the relaxation time tr is of the order of 1014 years and
is much larger than the Hubble time. So, if the Jeans–Chandrasekhar theory is correct, the
evolution of galaxies is governed by regular forces only. It was believed for decades that such
evolution must be deterministic and the observed structure of galaxies reflects their initial
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state. Ogorodnikov [3] called it a fundamental paradox of classical stellar dynamics. Since the
1950s there have been many attempts to solve that paradox, and we shall try to discuss very
briefly their main ideas.

However, first, we must be sure that the paradox exists in reality. It was discussed by
the present author in another paper [5]. The existence of moving clusters is the main
objection against a short timescale of dynamic evolution (Eddington’s [6] consideration,
but see the discussion in [7]). The main arguments in favour of irreversible evolution are
the following: the universality of the galactic structure (which can be approximated by de
Vaucouleurs’ profile for elliptical galaxies, or by Sersic’s more general formula) and the
velocity dispersion–age relation for stars of the Galactic disc (reviewed recently in [8]). Some
observational evidence of a certain kind of relaxation in galaxies, groups and clusters of
galaxies was also summarized in [9]. The results of numerous N -body simulations also show
the exponential divergence of close trajectories, i.e. stochasticity. However, conclusions on
mixing and relaxation can be drawn from such experiments only when using the ‘Maupertuis
parameterization’ [10].

2. Scattering on massive objects and arms

The first idea was proposed by Spitzer and Schwarzschild [11]. It was natural to propose that
relaxation in stellar systems results from star scattering on massive objects. Then the relaxation
time [3] tr = A/m2

cnc, where mc is the mass of such objects, nc is their number density and
A is almost the same as for stellar encounters. We can choose mc and nc and obtain the
desirable order for tr [11]. Usually hypothetical objects of typical mass 106M� are considered
as perturbers. Neglecting the anisotropy of velocities and solving the Fokker–Planck diffusion
equation, Spitzer and Schwarzschild [11] also studied the time dependence of the velocity
distribution and were the first to establish a velocity dispersion–age relation. The same idea
was proposed also by Lebedinsky [12] but he stressed that, if perturbers lie in the Galactic
plane, then the resulting velocity distribution will be triaxial. A more detailed theory of disc
heating and thickening was developed by Gurevich [13]. He studied a flattened system with
epicyclic unperturbed orbits and found that σz/σR ≈ 0.6 (which is close to observations). At
that time the main objection to such theories was the absence of such massive perturbers in
the Galaxy.

After the discovery of giant molecular clouds (GMCs) the situation changed. First, Fujimoto
[14] developed an analytical theory of scattering on short-lived clouds. It was argued that this
assumption is not applicable to GMCs. However, relaxation of unstable fluctuations of star
density (as proposed by Lebedinsky [12], Gurevich [13] and Marochnik [15]) or of fluctuations
of interstellar gas [16] can be studied by a similar theory. The most detailed theory of star
scattering on GMCs was developed by Lacey [17]. He investigated the increase in the velocity
dispersions of stars on epicyclic orbits and found that initially the velocity ellipsoid relaxes
to a steady shape and this is then followed by steady heating. However, Lacey found that
σz/σr ≈ 0.8, i.e. too large a σz/σr value. Also, velocity dispersions increase too slowly for
the observed estimates of GMC masses. The same difficulties were noted also by Kamahori
and Fujimoto [18] and Yasutomi and Fujimoto [19]. The main features of the theory were
confirmed by numerical investigation [20].

So, some other massive perturbers were discussed. Lacey and Ostriker [21], Kamahori
and Fujimoto [18] and Ipser and Semenzato [22] considered relaxation of the black holes of
the Galactic halo. The idea was supported by Fuchs et al. [23]. In that case some problems
arise, both dynamic (the friction of perturbers on stars causes them to spiral to the Galactic
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centre) and astrophysical (no gas accretion on the black hole is observed) [21]. Carr and Lacey
[24] studied relaxation of dark halo clusters that can be composed of ‘Jupiters’, but at present
such objects are unknown.

Most researchers considered scattering on GMCs as only one of the relaxation mechanisms
that must be enhanced by others (see, for example, [25]). Ida et al. [26] revisited a theory
suggested by Lacey and found some drawbacks. According to [26], σz was overestimated,
and then the equilibrium ratio σz/σr is about 0.5 in the solar neighbourhood. Let us recall an
elegant analytical theory described by Kuzmin [27] and in other publications (see, for example,
[28]). The viewpoints of Kuzmin and of Lacey coincide, but Kuzmin found that, if a steady
shape of the velocity ellipsoid exists (this was proved later by Lacey [17]), then (σR/σz)

2 =
1 + (σR/σϕ)2, which is confirmed by observational data. Kuzmin’s theory is abstract. It seems
very desirable to revisit it, taking into account the observational characteristics of GMCs and
to find a timescale of establishing a steady σz/σr ratio.

Many workers have considered spiral arms as alternative perturbers. Barbanis and Woltjer
[29] were the first to consider the increase in the velocity dispersion in a spiral potential.
They generalized the epicyclic theory and averaged squares of the equations of motion. The
equations in [29] are time irreversible (owing to the Coriolis forces), but not statistically
irreversible [30]. However, it would be interesting to check whether very slow collisional
relaxation in a spiral potential provides fast stochastization. It seems very plausible and was
confirmed by simulations in [19].

Relaxation of transient spiral density waves was studied by Sellwood and co-workers in a
number of papers (see, for example, [31–34]) and also by Marochnik [30], Jenkins and Binney
[25], Yasutomi and Fujimoto [19, 35], Fuchs [36], Griv et al. [37] and others. Usually spiral
arms are considered as effective perturbers but they cannot provide increasing σz [4].

Note that scattering on spiral arms cannot solve the relaxation paradox for stars of the
Galactic halo, and also for E and SO galaxies. Star relaxation of both spiral arms and massive
GMCs can be considered as a process intermediate between ‘collisional’ star–star relaxation
and collisionless relaxation. Antonov et al. [38] called it ‘quasidiffusion’, a special kind of
phase–space mixing.

We mention here the ideas of relaxation of ‘tidal streamers’ [39] and moving clusters [40]
and scattering by transient large-scale noise due to discreteness [41, 42]. They are of interest
in principle but cannot solve the problem.

3. Classical theory revisited

The only conclusion that undoubtedly can be drawn from the Jeans–Chandrasekhar theory is
that the theory is not correct. It is based on the following related approximations [43].

(i) The system is assumed to be infinite and homogeneous, and the regular force is neglected.
Kuzmin [44] was the first to try to take regular forces into account.

(ii) With respect to the Markov approximation, a theory given by Prigogine and Severne [45]
is free of this assumption.

(iii) Considering the diffusion approximation and using the Fokker–Planck equation, only
Agekian [46] and Petrovskaya [47] and their few followers considered the action of
irregular forces as a purely discontinuous random process.

(iv) The self-gravity of response is neglected although sometimes it can be significant [41].

The correct theory of relaxation in a gravitational field has not been constructed although
some steps towards this have been made. Stars move along complicated orbits governed by
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regular forces, and the main problem is to take it into account. First we mention resonant
relaxation [48], which has been studied by Genkin [49] for a flattened system. The idea is
that the interaction of stars with close periods of regular motion is the most effective. Using
some formulae from plasma physics, Genkin found that the time of effective relaxation of
directions of motion (Chandrasekhar’s [2] TD) is of the order of (tctr)

1/2 (for simplicity we
assumed that the period of epicyclic oscillations is of the order of tc). A more detailed theory
was developed by Rauch and Tremaine [50]. It seems that their value of relaxation time is of
the same order. Resonant interactions were noticed in some simulations, but they are too slow
to be very effective. Note that they do not influence the relaxation of energies (denoted TE by
Chandrasekhar).

Genkin tried to develope a general theory of relaxation in steady and non-steady regular
fields [51–53]. The idea is that regular forces act as an effective accelerator of slow diffusion in
velocity space. The most convincing example considered by him is relaxation in the field of a
homogeneous system [53]. On the basis of results obtained by Chandrasekhar, Genkin found
an effective relaxation time te ≈ (trt

2
c )1/3. The same expression had been suggested earlier

by Kurth [54] from dimensional analysis. Sementsov [55] stated that, for spherical systems,
te ≈ (trt

4
c )1/5.

Gurzadyan and Savvidi [56] studied the relaxation problem by trying to apply the ergodic
theory and following the method emloyed by Krylov. Using the ‘Maupertuis parameterization’
they found an expression for Riemann curvature but it was too complicated for analysis.
So, they utilized statistical averaging, using the virial theorem (as the system was supposed
to be steady), and applied a truncated Holtzmark distribution for an irregular force (which
was deduced for a homogeneous gravitating system). Finally the models studied in [56] and
in [53] were very similar, and it is not surprising that there the effective relaxation times
coincide. The present author hopes to publish some critical comments on [56] in a special
paper.

4. Encounterless relaxation

Now it is clear that regular forces can produce chaotic orbits, and oscillations of a smoothed
gravitational field can provide stochasticity (an analogy with a pendulum under a periodic
external force is useful) [57]. Both phenomena will cause irreversible evolution of star systems.
The first was called ‘divergent mixing’ in [38], and the second ‘compulsive mixing’. Divergent
mixing has been studied numerically [58, 59]. It is a very fast process but it seems that its real
dynamic significance is doubtful for we do not know the portion of chaotic orbits for realistic
potentials. If it was a main relaxation process, we can expect a great difference between the
structures of galaxies with non-integrable (triaxial?) potentials and the structures of spherical
galaxies.

As for compulsive mixing (including the famous violent relaxation as its special case)
there have been some attempts to develop its formal theory [60], but it is not clear what
physical mechanism will provide stochastization. According to [9], random actions of external
galaxies will trigger initially a large-scale relaxation (Poincaré chaos) and then a transition to
Maxwell–Boltzmann chaos.
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