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A brief review of the known models for the description of anomalous X-ray pulsars (AXPs) and
soft gamma repeaters (SGRs) is given. A new model is proposed to explain the main properties of
these objects on the basis of the concept of drift waves in the vicinity of the light cylinder of the
neutron star with a surface magnetic field of about 1012 G. In the framework of this model, the rotation
periods P , their derivatives dP/dt and the magnetic fields B in the regions of generation of emission
observed in AXPs and SGRs are calculated. The intervals for these parameters are P = 11−737 ms,
dP/dt = 3.7 × 10−16−5.5 × 10−12 and log B = 2.63−6.25. A modulation with periods P could be
observed in the sources under consideration. The magnetic fields at the neutron star’s surface calculated
in the framework of the dipole model for AXPs and SGRs have the same order (〈log Bs〉 = 11.90) as
for normal radio pulsars. Pulsars of the types under consideration must have short periods (P ≈ 0.1 s)
and a small angle β between the rotation and magnetic axes (β < 10◦). It is expected that the fraction
of these pulsars in the all-pulsar population must be of the order of 0.01. This estimate is in a good
agreement with the known number of AXPs and SGRs. It is shown that the cyclotron radiation of
electrons near the surface of a neutron star with a magnetic field of about 1012 G enables us to explain
the observed quiescent X-ray emission of AXPs and SGRs. The pulsed emission is generated by
the synchrotron mechanism near the light cylinder. Cataclysms on the neutron star can cause short
gamma-ray bursts with a power exceeding the X-ray power by 2γ 2 times. Here, γ is the Lorentz factor
of the emitting electrons. It is shown that in the magnetar model the electron cyclotron line with an
energy of about 1 MeV must be formed. Its detection provides good evidence for this model. The
drift waves near the light cylinder can cause modulation of the emission with periods of the order of
several seconds in radio pulsars as well. These periods explain the intervals between successive pulses
observed in radio pulsars with long periods P between the observed pulses (P > 4 s). The model
under consideration allows us to calculate the real rotation periods of host neutron stars. They are of
the order of 1 s for the investigated objects. The magnetic fields at the surface of the neutron star are
of the order of 1011–1013 G and equal to the fields usual for normal radio pulsars.

Keywords: Anomalous X-ray pulsars; Soft gamma repeaters; Radio pulsars; Magnetic fields; Drift
waves

*Corresponding author: Email: malov@ppao.psn.ru

Astronomical and Astrophysical Transactions
ISSN 1055-6796 print/ISSN 1476-3540 online © 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/10556790600747474



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:1
6 

30
 N

ov
em

be
r 2

00
7 

8 I. F. Malov and G. Z. Machabeli

1. Introduction

Two classes of astrophysical objects have been studied intensively during the last 10 years but
their nature has been unclear up to now. These are anomalous X-ray pulsars (AXPs) and soft
gamma repeaters (SGRs). Both classes are characterized by pulsed X-ray emission, and we can
suggest that the central objects in these sources are isolated neutron stars because there is no
evidence for the presence of secondary companions in all cases. The AXP group contains five
confirmed sources and several candidates (see table 1 later). All data were taken from [1–8].
The main difference between AXPs and ‘normal’ X-ray pulsars is their monotonic slowing
down with the derivatives dP/dt of the periods equal to about 10−13–10−10. In addition, AXPs
are characterized by the following features:

(i) a fairly narrow range of periods (6–12 s);
(ii) localization near the Galactic plane (|b| = 0.35◦);

(iii) association with supernova remnants (SNRs), in the case of three objects;
(iv) more stable X-ray fluxes than in pulsars belonging to binary systems, and a range of

X-ray luminosities (1034–1036 erg s−1) that is substantially less than for normal X-ray
pulsars (1034–1038 erg s−1);

(v) a considerably softer spectrum than for other objects, which can usually be described by
the sum of a black-body component with energy kT ≈ 0.35–0.6 keV and a power-law
component at higher energies with the exponent 2.5–4.0.

As for SGRs, there are four confirmed objects and one candidate (see table 1 later). Their
pulse periods are in the same range as the periods of AXPs (P = 5–8 s). However, pulsed
components are observed from these objects during quiet stages (SGR 1627-41 and 1806-20)
only or vice versa when gamma-ray bursts occur (SGR 0525-66). Only SGR 1900 + 14 shows
pulsed X-ray emission during all stages. The main distinctions of SGRs are episodic gamma-
ray bursts with the total energy of each burst up to 1044 erg [5]. Sometimes there are more
intensive flares. For example, SGR 1806-20 had a total (isotropic) flare energy of 2 × 1046 erg
on 27 December 2004 [9].

If we use the known formula

B = 6.4 × 1019

(
P

dP

dt

)1/2

(1)

obtained from the model in which the magnetodipole slows down, then the magnetic fields
B at the surface of a neutron star in AXPs and SGRs must be 1014–1015 G, two orders of
magnitude higher than fields in ‘normal’ pulsars. This was the reason why such objects were
named magnetars. The second reason can be understood from the data in table 1. It is known
that the main source of radio pulsar energy is connected with the losses of the rotation energy
of a neutron star with the rate dE/dt = I� d�/dt . Here, I is the moment of inertia of a
neutron star, � = 2π/P is its angular rotation velocity. However, if we take I = 1045 g cm2,
then energy losses for AXPs and SGRs, dE/dt ≈ 1033 erg s−1, are much less than their X-ray
luminosities. To avoid this difficulty it was suggested that X-radiation took its energy from a
magnetic reservoir. Let us consider this possibility.

The total energy of such a reservoir is

E = B2

8π

4πR3

3
= 1.7 × 1045 − 1.7 × 1047 erg, (2)

where R = 10 km is the radius of the neutron star. The X-ray luminosity of SGR 1806-20 is
2 × 1035 erg s−1. For E = 1047 erg this source will exist for 104 years only. The lifetime of
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AXPs, SGRs and radio pulsars with very long periods 9

normal radio pulsars is about 107 years. So, only one magnetar must be observed among 1000
known radio pulsars. This estimate is ten times less than the observed number. In fact, not all
radio pulsars are observed. However, we can say the same about magnetars. We suggest here
that the relative observed parts of these objects are equal to each other. Energy difficulties
become more serious if we take into account the fact that SGR 1806-20 injects relativistic
particles in the ambient SNR remnant with a rate of about 1037 erg s−1 [10]. In this case, the
magnetic reservoir will be exhausted after 360 years. However, the age of SGR 1806-20 is
1400 years.

To avoid this difficulty it is necessary to postulate the existence of magnetic fields B ≈
1016 G inside a neutron star [11].

It is well known that the necessary stage to generate pulsar radio emission is the creation
of electron–positron pairs:

γ + B −→ e− + e+ + B. (3)

However, a gamma quantum will convert in very strong magnetic fields (B � 1012 G) into
two other gamma quanta [2]:

γ + B −→ γ1 + γ2 + B. (4)

Therefore AXPs and SGRs must be radio-quiet objects. However, Shitov et al. [12] detected
radio emission from SGR 1900 + 14 and Malofeev et al. [13] recorded pulsed radio signals
from AXP 1E2259 + 586 and 1RXSJ1308 + 21.

So there are the following alternatives: either we do not understand how radio pulsars radiate
or magnetic fields of AXPs and SGRs are much less than 1014–1015 G.

These difficulties compel some researchers to use the accretion model to explain the observ-
able properties ofAXPs and SGRs (see, for example, [14]). The accretion from ambient plasma
gives an additional energy source for Bs ≈ 1012 G and it is not necessary to suggest super-
strong magnetic fields. Moreover, the other mechanism describing the decrease in an angular
moment appears, and large values of dP/dt can be explained without the fact that the magne-
todipole slows down. In this case the braking index must differ from the magnetodipole value
n = 3 (see, for example, [15]). In fact, the observations of SGR 1900 + 14 give n = 0.2 [12].
However, there is a number of difficulties in accretion models too. The accretion from the
interstellar medium can provide luminosities L ≈ 1032 erg s−1, much less than the observable
values (see table 1 later). If accretion is connected with a relic disc, then the lifetime of this
disc is very small and such accretion does not describe the observed slowing down of AXPs
[16]. Plasma from a secondary component could explain the observed luminosities for the
accretion rate dM/dt ≈ 10−11M� year−1 [3]. However, there is no evidence of the presence
of such components in AXPs or SGRs in all cases. An ambient plasma certainly exists around
these objects, and accretion processes can play a role in their slowing down and evolution.
However, the accretion models cannot explain the main properties of AXPs and SGRs.

2. Other models

(i) Paczynski [17] and Usov [18] proposed the model of white dwarfs with B ≈ 108–109 G.
However, reasonable models of white dwarfs give log(dE/dt) ≈ 36. It is not sufficient
to explain the injection of relativistic particles in ambient SNRs. Moreover, white dwarfs
are required to have extremely short periods.

(ii) The existence of strange stars [19, 20] is rather problematic, and possible models have
not been worked out.
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10 I. F. Malov and G. Z. Machabeli

(iii) Free precession of a neutron star can have periods of the order of 10 s [21, 22], but it
is doubtful whether such long-lived precession is realized. Shaham [21] was the first
researcher who said that the pulse period was not equal to the rotation period but was
determined by another periodic process.

We believe also that the interval between two successive pulses is not equal to the rotation
period.

In this report, we discuss a new model for describing the magnetar phenomenon using the
usual values of magnetic fields at the surface of a neutron star, Bs ≈ 1012 G.

3. Basic features of the model

According to the theory [23–29], transverse electromagnetic waves can be generated in a
relativistic electron–positron plasma, filling the magnetosphere of a neutron star. These waves
easily escape the magnetosphere and reach the observer. Their frequency depends on the pulsar
period and can be both in the radio range and at higher frequencies [23, 24]. The radiation
generated in the magnetosphere must be separated into two parts: the eigenmodes and radiation
in a one-particle approximation. The eigenmodes result from interference of the radiation by
an ensemble of particles. In the second case, each particle of the ensemble is an independent
source of radiation. In the first case, the wavelength λ is greater than the mean distance between
the particles of the plasma with density n(λ > n−1/3); in the second case, λ < n−1/3.

As already mentioned above, a necessary stage of the magnetospherical processes is the
formation of an electron–positron plasma near the neutron star surface. When Bs ≈ 1012 G,
the particles lose their transverse momenta almost instantly (during the time t < 10−15 s), so
that their distribution function becomes one dimensional and has the form shown in figure 1.
The plasma has three components:

(i) the bulk of the plasma with density np and Lorentz factor γp;
(ii) a long tail with nt and γt ;

(iii) the primary beam with nb and γb.

The general features of such a plasma have been described, for example, in [31, 32]. Since
this plasma is not gyrotropic, there are three branches that propagate approximately along the
magnetic field. We shall be interested only in the purely transverse t mode, with the spectrum

ωt = kc(1 − δ), (5)

Figure 1. The distribution function of a relativistic plasma in a pulsar magnetosphere [30]. The broken curve is the
positron distribution.
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AXPs, SGRs and radio pulsars with very long periods 11

where

δ = ω2
p

4ω2
Bγ 3

p

, (6)

ω2
p = 4πnpe

2

m
, (7)

ωB = eB

mc
, (8)

and the mixed potential–non-potential lt mode, with the spectrum

ωlt = kφc

(
1 − δ − k2

⊥c2

16ω2
pγp

)
. (9)

There are two basic mechanisms for the generation of the t and lt eigenmodes: the resonance
associated with the anomalous Doppler effect,

ω − kφνφ − kxux = ωB

γr
, (10)

and the drift–Cherenkov resonance,

ω − kφvφ − kxux = 0. (11)

The resonance conditions (10) and (11) and spectrum (9) are written in the cylindrical
coordinate system (figure 2). Here

ux = cvφγr

ρωB
, (12)

where ρ is the radius of curvature of the field line and γr is the Lorentz factor of the
resonant particles.

These modes are generated within a small angle (k⊥/kφ 	 1) near the tangent to a curved
field line in the outer part of the magnetosphere, where the field lines are distorted by the
rotation. The waves propagate along the tangents to the field lines, enter a region between the
closed and open field lines and leave the magnetosphere [33]. The generated t and lt waves
affect the resonant particles and transfer some of the energy to them. The wave field changes the
particle distribution function. In particular, the beam and tail particles acquire non-zero pitch
angles due to quasilinear diffusion. Since the motion of the particles is relativistic, synchrotron

Figure 2. The coordinate system used in this paper.
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12 I. F. Malov and G. Z. Machabeli

radiation is generated in X-rays and gamma-rays [23, 24, 29, 34, 35]. The frequency of this
radiation is

ν = ν0
(1 − V 2/c2)1/2

1 − (V cos α)/c
, (13)

and its power is

Pν = Pν0

1

1 − (V cos α)/c
, (14)

where ν0 is the frequency, Pν0 is the power of the radiation in the rest frame of the particles
(V‖ = 0) and α is the angle between the magnetic field in the region of wave generation and
the line of sight to the observer. When α = 0,

ν = 2γrν0, Pν ≈ 2Pν0γ
2
r . (15)

4. Mechanism for changing the field line curvature

As was shown in [36–38], together with t and lt waves, transverse electromagnetic drift waves
can be generated in the magnetosphere. These waves propagate almost perpendicular to the
magnetic field (kϕ/kx 	 1). Using the smallness of the parameters γω/ωB 	 1 and u2

dr/c
2 	

1 and assuming that kr = 0, we can obtain the following dispersion relation for these waves:

εϕϕ = k2
xc

2

ω2 − k2
ϕc2

, (16)

where

εϕϕ = 1 +
∑

i

ω2
pi

ω

∫
Vϕ/c

ω − kϕνϕ − kxux

∂f

∂γ
d

(pϕ

mc

)
(17)

is the longitudinal–longitudinal component of the dielectric permittivity and ω2
pi =

4πnpie
2/mi. The summation over i in equation (17) is carried out over the kinds of particle

(i = electrons and positrons of the secondary plasma and electrons of the beam).
Let us assume that

ω0 = kxu
b
x + kϕVϕ + a. (18)

Here, ub
x is the beam drift velocity, which can be fairly large for large γb. Partial integration

of εϕϕ and summation over i taking into account equation (18) results in the expression [36]

1 − 3ω2
p

2γ 3
p ω2

− ω2
p kxu

p
x

2ω3γp
− ω2

b

ωaγ 3
b

− ω2
bkxu

b
x

ωaγb
= k2

⊥c2

ω2
. (19)

It can easily be shown that the third and fourth terms on the left-hand side of equation (19)
are small. When ub

x/c � kφ/kx, it follows from equation (18) that

ω0 = Re ω = kxu
b
x (20)

and, when k2
x 	 ω2

p/c
2γ 3

p , the increment will be

� = Im ω = Im a ≈
(

nb

np

)1/2
γ

3/2
p

γ
1/2
p

kxu
b
x. (21)

This increment is quite small; when γb ≈ 106 and γp ≈ 10, we obtain � ≈ 10−4ω0. However,
since the wave is almost perpendicular to the magnetic field, it propagates around the magne-
tosphere and is located in the generation region for a long time. As a result, the amplitude of
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AXPs, SGRs and radio pulsars with very long periods 13

the drift waves can increase to large values [36] via the kinetic energy of the particles moving
along the magnetic field with velocity Vϕ . These particles cross the generation region in a short
time (less than 10−2 s), but other particles enter the region, while the wave remains in nearly the
same place. Its amplitude increases until nonlinear processes (in particular, induced scattering
by the particles) begin to transfer wave energy to the region with the minimum wave number
k (i.e. the maximum wavelength λmax). The value of λmax depends on the transverse size of the
magnetosphere, which can be identified with the radius of the light cylinder, rLC = cP/2π .

The drift waves are stabilized owing to the rotation of the neutron star and the permanent
injection of relativistic particles in the region of their generation.

The electric field vector of the low-frequency drift wave propagating perpendicular to the
pulsar magnetic field is directed along this field E(Eϕ, 0, 0), and its magnetic field is directed
along the axis r: B(0, 0, Br). It follows from the Maxwell equation

curl E = −1

c

∂B
∂t

(22)

that

Br = Eϕkc

ω
. (23)

As kc/ω ≈ kc/kxux � 1, then Br � Eϕ . Thus, mainly the r component of the magnetic field
is perturbed in this region, and this effect leads to a change in the magnetic field line curvature.
In a Cartesian coordinate system we have

dy

dx
= By

Bx

, (24)

and the curvature of any field line is determined by the formula

K = 1

ρ

[
1 +

(
dy

dx

)2
]−3/2

d2y

dx2
. (25)

Using the equation

div B = 0 (26)

and the condition kr = 0, we obtain in cylindrical coordinates

K = Bϕ

Br
− B2

ϕ∂B/∂ϕ

B3r
. (27)

The change in

K = (B2
ϕ + B2

r )
1/2 ≈ Bϕ

(
1 + B2

r

2B2
ϕ

)
(28)

is negligibly small, and

K ≈ 1 − kϕrBr/Bϕ

r
. (29)

If kϕr � 1, the change in K may be significant. As radiation is emitted along a tangent to
the local direction of the magnetic field, the change in its curvature leads to a change in the
radiation direction.



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:1
6 

30
 N

ov
em

be
r 2

00
7 

14 I. F. Malov and G. Z. Machabeli

5. The model under consideration

Let us consider the case of small angles β between the rotation axis of a neutron star and its
magnetic moment vector µ (figure 3). Radiation from such an object can be recorded during
almost all its period. If a disturbance of field lines takes place owing to the interaction with the
drift waves, an additional emission appears. This part of the emission missed the line of sight
before such an interaction (the broken line in figure 3). Now it goes to the observer (the solid
line in figure 3). This part of the emission has a pulsed character. Its period is Pdr = 2π/ωdr,
and such an emission explains the main properties of magnetars.

It is worth noting that thermal emission from the surface of a neutron star or from its
polar cap can give a contribution to the continuous component of observed radiation. If the
distribution of such an emission has a spatial maximum, we shall observe a modulation in the
received signal with the rotation period of the neutron star.

Let us estimate the thermal luminosity and the non-thermal (synchrotron) luminosity for
such a star. If we suggest that the polar cap has a temperature of 107 K due to bombardment
by the secondary positrons, then its luminosity is

Lth = πr2
p σT 4 = 2π2σR3T 4

cP
. (30)

Here, rp is the radius of the polar cap and σ is the Stefan–Boltzmann constant. We obtain, for
P ≈ 0.1 s, Lth = 3.8 × 1033 erg s−1.

Figure 3. Scheme of the model.
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AXPs, SGRs and radio pulsars with very long periods 15

We can use the results of Malov and Machabeli [39] to calculate the synchrotron luminosity:

L = 31/2π7/2e

32 m1/2c3/2

Iγ
3/2
b dP/dt

P 7/2γ 2
p

, (31)

where I is the moment of inertia of a neutron star. We obtain, for γb ≈ 106–107, P = 0.1–0.2 s,
dP/dt ≈ 10−13–10−12 and γp = 3–10, Ls ≈ 1033–3 × 1035 erg s−1.

As for the main part of emission it is very important to know the location of its generation.
If this region is located at very large distances from the surface of a neutron star, as we suggest
in our model, the observer can see either the continuous emission only or this emission and
emission modulated by the drift waves together. Now we consider the modulated part only.

Let us calculate the period of the drift waves. This period determines the interval between
observed pulses:

Pdr = 2π

ωdr
= 2π

kxub
x

= λdr

ub
dr

. (32)

As we noted earlier, the maximum value of the wavelength was λmax = cP/2π. In this case,
taking for the curvature radius value ρ = cP/2π, we can write [40]

P max
dr = eBP2

4π2mcγb
. (33)

To obtain the observed value of the pulse period P max
dr ≈ 10 s we must fulfil the following

equality:

BP2 = 22.45 G s2. (34)

Here we put γb = 106. If magnetic field is dipolar and its value at the surface of a neutron
star is Bs ≈ 1012 G, then B ≈ 1000 G at distances r ≈ 1000R. The rotation period of such a
star must be equal to P = 0.15 s according to the equality (34). Hence, the ‘normal’ magnetic
fields of neutron stars can explain the observed periods Pobs ≈ 10 s of magnetars if there are
drift waves in the vicinity of the light cylinder. If the rotation period P = 2 s and the surface
magnetic field Bs = 1012 G, then P max

dr ≈ P ≈ 2 s at the light cylinder. In this case the drift
of subpulses can be observed [36].

We made the calculations for the maximum value of the drift wave period. In fact, the
spectral energy of the drift waves with smaller periods is much less than that of the mode with
the period P = P max

dr .
The equality (33) gives the possibility of linking the observed derivative (dP/dt)dr of the

period with the real rate dP/dt of the slowing down of the neutron star rotation:(
dP

dt

)
dr

= eBP dP/dt

2π2mcγb
. (35)

We have for the considered values of the parameters

dP

dt
= 7.48 × 10−3

(
dP

dt

)
dr

. (36)

So, (dP/dt)dr ≈ 10−10 will be observed if dP/dt = 7.48 × 10−13. This value is usual for a
number of young radio pulsars such as the Crab pulsar.

The dependences (33) and (35) show that, if there are jumps in the rotation period and its
derivative (‘glitches’), then similar jumps must be observed in the values of Pdr and (dPdr/dt)

as well.
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16 I. F. Malov and G. Z. Machabeli

It is very important to estimate the braking index n of investigated objects in the framework
of our model. This parameter is determined by the formula

n = �d2�/dt2

(d�/dt)2
(37)

or

n = 2 − P d2P/dt2

(dP/dt)2
. (38)

The last formula was used to calculate the n value cited for SGR 1900 + 14 in Section 1.
Using equation (33) we can calculate P , dP/dt and d2P/dt2 and obtain

n = 3 − 2Pdr(d2P/dt2)dr

(dP/dt)2
dr

. (39)

We know of only one magnetar (SGR 1900 + 14) with the measured value of d2P/dt2 [12].
Shitov et al. [12] gave the following results obtained during the period 12 December 1988–30
July 1999:

P = 5.16 s,

dP

dt
= 1.23 × 10−10,

d2P

dt2
= 0.53 × 10−20.

These values give n = −0.61. A similar value of the braking index was obtained for radio
pulsars with short periods (P < 0.1 s) [41]. It requires special slowing-down mechanisms and
cannot be explained by the magnetodipole braking described by the value n = 3. Hence we
cannot use the magnetodipole model for calculating the magnetic fields in AXPs and SGRs.

Values of d2ν/dt2 for 1RXS 1708-4009 and 1E2259.1 + 586 [42] do not describe the
intrinsic braking mechanism but characterize post-glitch recovery.

Let us estimate now the losses of the rotation energy of the neutron star:

dE

dt
= 4π2IdP/dt

P 3
. (40)

The calculated values of P = 0.15 s and dP/dt = 7.5 × 10−13 lead to dE/dt ≈ 1037 erg s−1.
Here we take the value I = 1045 g cm2 for the moment of inertia. The obtained losses are quite
enough to explain observed the X-ray luminosities LX of AXPs and SGRs (table 1) and the
rates of ejection of relativistic particles in ambient SNRs.

The total rotation energy E = I�2/2 for the same values of the parameters is approximately
equal to 1048 erg. Such a reservoir can provide 104 gamma-ray bursts with energies of about
1044 erg.

Taking into account two peculiarities of the objects under consideration, namely the first
group with small angles β between the rotation and magnetic axes (β < 10◦) and the second
group with small rotation periods (P � 0.1 s), we can estimate the expected number of AXPs
and SGRs among the known radio pulsars. The first group contains about 10% of the whole
pulsar population, if neutron stars are formed with an arbitrary angle β. The second group
consists of approximately a tenth of all pulsars. So, we can expect that there are about 1%
of AXPs and SGRs in the whole sample of 1500 radio pulsars. In fact, we observe about 15
such objects.

So, our model can describe all the main characteristics of the known AXPs and SGRs.
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AXPs, SGRs and radio pulsars with very long periods 17

Table 1. Observed parameters of the well-studied AXPs and SGRs.

Number Source Pobs (s) (dP/dt)−11 log[LX(erg s−1)] fpl (%) WX/Pobs

AXPs
1 4U0142 + 61 8.69 0.196 34.52 ≈88 0.53
2 1E1048-5937 6.45 ≈3.81 34.53 ≈80 0.44
3 RXS1709-4009 11.00 1.86 35.83 ≈73 0.67
4 1E1841-045 11.77 4.16 35.36 100 0.64
5 1E2259 + 586 6.98 0.0483 35.00 ≈50 0.48
6 XTEJ1810-197 5.54 1.15 36.20 ≈70 0.41
7 AXJ1845.0-0258 6.97 34.70

SGRs
1 SGR1806-20 7.48 0.083 35.30 ≈2.5 0.65
2 SGR1900 + 14 5.16 11 34.48 ≈5 0.38
3 SGR 0526-66 8.1 36-37
4 SGR 1627-41 6.4? ≈35

We can calculate some parameters of each source under consideration using the observed
values of the periods, their derivatives, the pulse widths WX, the pulsed part fpl of the emis-
sion (table 2) and the formula for the synchrotron luminosity [43] as the third equation (see
equation (31)).

Radio pulsars with the recorded X-ray pulsed emission are characterized by the mean value
of the parameter γ

3/2
b /γ 2

p = 4.37 × 108 [15]. We take this value for our sample. The estimate
for the synchrotron luminosity can be obtained for AXPs and SGRs from LX, if we take into
account the beam width and the percentage of pulsed emission:

L =
(

WX

Pobs

)2

fplLX. (41)

Then we can calculate P , dP/dt and B from the system (35), (36) and (41):

P(s) = 8.32 × 10−2

(
(dP/dt)obs/−11

(LX)34(WX/Pobs)2Pobsfpl

)2/5

, (42)

dP

dt
= P(dP/dt)obs

2Pobs
, (43)

B(G) = 22.45Pobs

P 2
. (44)

Table 2. Calculated parameters of AXPs and SGRs.

dP/dt log log log[(dE/dt) log
Number Source P (ms) (×10−15) [L(erg s−1)] [B(G)] (erg s−1)] − log η [Bs(G)]

AXPs
1 4U0142 + 61 19.81 2.23 33.91 5.70 37.06 3.15 11.60
2 1E1048-5937 87.22 2.58 33.72 4.28 37.18 3.46 12.10
3 RXS1709-4009 11.84 10 35.35 6.25 38.38 3.03 11.46
4 1E1841-045 22.41 40 34.97 5.72 38.14 3.17 11.77
5 1E2259 + 586 10.75 0.372 34.06 6.13 37.07 3.01 11.22
6 XTEJ1810-197 13.78 14 35.27 5.82 38.33 3.06 11.24
7 1RXSJ130848.6

+ 212708 737 482 30.75 2.63 34.68 3.93 13.24

SGRs
1 SGR1806-20 25.60 1.42 33.32 5.41 36.52 3.20 11.64
2 SGR1900 + 14 520 5545 32.34 2.63 36.19 3.85 12.79
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18 I. F. Malov and G. Z. Machabeli

We put in (42) and further (dP/dt)obs/−11 = (dP/dt)obs/10, (LX)34 = LX/1034 and so on,
and assume that I = 1045 gcm2 and γb = 107.

The results of our calculations can be seen in table 2.
The dependence of LX (table 1) on dE/dt from table 2,

log LX = (0.60 ± 0.28) log

(
dE

dt

)
+ 13.08 ± 7.52, (45)

and the high correlation coefficient (K ≈ 0.8) between LX and dE/dt show that losses of the
rotation energy can be the real energy source of the X-ray emission in AXPs and SGRs. The
relationship between the X-ray luminosity and dE/dt for 41 radio pulsars [44] has rather a
different form

log LX = (1.33 ± 0.09) log

(
dE

dt

)
− 15.28 ± 3.29. (46)

However, in these objects the rotation energy losses is the main source of their X-ray
emission as well.

It is worth noting that the values of dE/dt in table 2 are higher than 1037 erg s−1 for many
objects and they are sufficiently high to explain the observed injection of relativistic particles
into ambient SNRs. Moreover the objects in our sample and radio pulsars with X-ray emission
have, as a rule, short periods. For AXPs and SGRs in table 2, 〈P 〉 = 161 ms and, for 41 pulsars
from [44], 〈P 〉 = 128 ms. The distributions of periods for these objects are identical as well.
Indeed, among 41 sources from [44] there are pulsars with periods P from milliseconds to
dozens of milliseconds (1.56–89 ms) and with P = 0.1–0.53 s. Table 2 contains also AXPs
and SGRs with P ≈ 10 ms (1E2259 + 586 and RXS 1709-4009), with periods of the order of
tens of milliseconds (1E1048-5937) and with P > 0.1 s (1RXS130848.6 + 212708 and SGR
1900 + 14).

The positions of AXPs and SGRs on the dP/dt − P diagram (figure 4) are shown as full
circles. The dP/dt − P relationship can be presented in the following form:

log

(
dP

dt

)
−15

= (1.48 ± 0.43) log[P(s)] + 3.19 ± 0.65, (47)

with the correlation coefficient K = 0.79 ± 0.23.
A similar dependence can be obtained for short-period radio pulsars recycled in binary

systems.
The new pulsar catalogue [46] contains 94 pulsars with dP/dt > 0 and P < 0.1, and

23 sources of these belong to objects such as the Crab pulsar and the Vela pulsar (PSR
B0531 + 21 and PSR B0833-45) with P > 30 ms and (dP/dt)−15 > 1. Excluding these from
the considered sample we obtain

log

(
dP

dt

)
−15

= (1.28 ± 0.21) log[P(s)] − 1.53 ± 0.46,

K = 0.59 ± 0.10.

(48)

The dP/dt (P ) dependence coincides with equation (47) and shows the similarity of objects
in these two samples.

The braking index n determined by the equation

d�

dt
= k�n, (49)

is near to zero for AXPs and SGRs. This means that some other braking mechanisms operate
in these objects [41, 47–50].
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AXPs, SGRs and radio pulsars with very long periods 19

Figure 4. Locations of AXPs and SGRs on the dP/dt − P diagram in the framework of our model (full circles)
and the magnetar model [45].

We must note, however, that the calculated values of dP/dt for AXPs and SGRs differ by
five orders of magnitude from those for radio pulsars with short periods. This difference can
mean that two classes of objects followed different ways of evolution to the modern stages.
For example, recycling of pulsars for periods up to milliseconds occurred and decreases in
their period derivatives and magnetic fields. The braking mechanism can be connected in both
types of object with ambient media and with the realization of a ‘propeller’ regime [48, 50].

The efficiency of the transformation of the rotation energy of AXPs and SGRs into pulsed
X-ray emission, given by

η = L

dE/dt
= LP 3

4π2I dP/dt
, (50)

can be written in the following form:

η = 3.41 × 106 31/2π3/2e

m1/2c3/2P 1/2
= 10−4P −1/2. (51)

This dependence is similar to that for 27 pulsars with P < 0.1 s [51]:

log η = (−1.04 ± 0.49) log P − (6.99 ± 1.03),

K = −0.40 ± 0.19.
(52)

However, the efficiency for AXPs and SGRs is 1000 times higher than for radio pulsars.
The values of magnetic field in the region of observed X-ray emission have been calculated

without any additional assumptions about its structure and the value of Bs at the surface of
a neutron star. If emission is generated at the light cylinder and this field is dipolar, we can
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20 I. F. Malov and G. Z. Machabeli

estimate Bs (table 2):

log Bs = 11 + log B + 3 log P. (53)

The mean value 〈log Bs〉 = 11.90 is equal to the strength of the surface field for normal radio
pulsars.

One of the basic problems in the AXP and SGR investigations is the possibility of the
generation of radio emission by these objects. Here, we have used the model of cyclotron
instability [26]. In this model, the frequency of generated transverse waves is

ω = 4ω3
Bγ 3

p

ω2
pγb

. (54)

Let us estimate the distance where emission at 100 MHz is generated. For the dipole magnetic
field,

r

R∗
=

(
e2B2

s γ 4
p P

π2 m2c2γ 2
b ν

)1/6

=
(

3.1 × 1037
B2

12γ
4
p P

γ 2
b ν

)1/6

= 103(B2
12P)1/6. (55)

Here we suggest that γb = 107, γ
3/2
b /γ 2

p = 4.37 × 108,

nbγb = 2npγp (56)

and

nb = B

ecP
. (57)

It is evident that r ≈ rLC = cP/2π for 1RXSJ130848.6 + 212708 and SGR 1900 + 14 only. It
is worth noting that these objects are recorded as radio emitters [12, 13]. For other AXPs and

Figure 5. Scheme illustrating the possibility of emission generation at distances r > rLC.
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SGRs, r/rLC = 3 − 9. However, the generation of radio emission is possible in these sources
as well, because the scale of their magnetospheres can be much more than rLC (figure 5). In
our model, β < 10◦; hence r can be more than 6rLC.

The increment in the cyclotron instability

�c = πω2
p

ωγT
, (58)

can be rather high (�c�r/c � 1) to provide the required intensification of the waves. Here
γT is the width of the distribution function of resonant particles. We believe that those are the
particles of the primary beam with 〈γb〉 = 106 and γT = 100.

Table 2 shows that, for the known AXPs and SGRs, P = 10 − 740 ms, dP/dt = 3.7 ×
10−16–5.5 × 10−12 and log B = 2.63 − 6.25.

The surface magnetic fields of AXPs and SGRs (〈logBs〉 = 11.90) are equal on the average
to the fields of normal radio pulsars.

In our model we can expect a modulation of observed emission with the rotation period
(P ≈ 0.1 s). The detection of such modulation will be good evidence of the importance of this
model.

6. Quiescent X-ray emission

What is the origin of the quiescent X-ray emission and gamma-ray bursts? It is well known that
near the surface of a neutron star the process described by equation (3) takes place, and newly
generated electrons and positrons populate the Landau levels. Let us consider the following
question: what is the frequency range corresponding to radiation near the surface?

The frequency ν in the observer’s coordinate system depends on the frequency ν0 in the
system where V‖ = 0 [52] and it is determined by equation (13).

If the Lorentz factor of emitting particles is γ = (1 − V 2/c2)−1/2 � 1, and the angle α is
small, equation (13) can be presented in the following form:

ν = 2ν0

1/γ + α2γ
. (59)

If α2γ 	 1/γ , then

ν ≈ 2ν0γ. (60)

In the opposite case,

ν ≈ ν0

γ
. (61)

For

1 � α2γ � 10, (62)

and B ≈ 1012 G, the electron cyclotron frequency

ν0 = eBs

2πmc
, (63)

is in the soft X-ray range (1–10 keV) in the observer’s system. This emission can penetrate
through the e± magnetosphere and arrive at the observer. The diapason of angles α can be very
wide, and the distribution function of the emitting particles is not monoenergetic; therefore
the resulting spectrum must be wide too.
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22 I. F. Malov and G. Z. Machabeli

Figure 6. The cones of X-ray emission in AXPs and SGRs.

The magnetic field of a neutron star decreases with increasing distance, and the frequency
coincides with one of the Landau harmonics [53]:

εm − εn = p2
⊥m − p2

⊥n

2 me
= hν0S,

S = m − n = ±1, ±2, . . . ,

(64)

near the surface only. Lines corresponding to such harmonics have been detected in fact [54].
There have been some attempts (see, for example, [55]) to interpret them as the absorption
lines of non-relativistic protons in magnetic fields of about 1014–1015 G. However, according
to Ho et al. [56], vacuum polarization effects suppress not only proton cyclotron lines but also
any spectral features due to bound species. Therefore spectral lines or features in radiation are
much more difficult to observe when the magnetic field Bs of the neutron star is greater than
1014 G. Moreover in this case the electron cyclotron lines in the range near 1 MeV must be
observed. Their detection will be good evidence for the magnetar model. In our model, such
lines must not be observed in the spectra of AXPs and SGRs.

The emission beam of relativistic particle has the width θ ≈ 1/γ [57].
We believe that this near-surface emission is the main part of the observed quiescent X-ray

radiation of AXPs and SGRs. As we stated, near the light cylinder, pulsed emission was
generated. So, we must observe two emission cones, as shown in figure 6.

7. Irregular gamma-ray bursts

If for any reason (e.g. star quakes) the cone I changes its position so that the angle α becomes
very small (α2γ 2 � 1) for a short time, then the frequency can achieve a high value (ν ≈ 2γ ν0).
This frequency can be in the gamma-ray range. Particles with different Lorentz factors can
take part in this process, and the observed spectrum must be wide. The transformation of the
power into the observer’s system is described by equation (14) and, for α → 0, Pν increases
drastically (Pν ≈ 2Pν0γ

2). So, the power in the gamma-ray range can be 2γ 2 times higher
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than in X-ray range. If the X-ray power is 1036 erg s−1, the Lorentz factor must be γ ≈ 104 to
provide a gamma-ray burst with a power of 1044 erg s−1. In the traditional model, this energy
characterizes the tail of the distribution function for the secondary particles (figure 1). To
achieve the power 2 × 1046 erg s−1 as in SGR 1806-20 we must put γ ≈ 105. There are such
particles in the tail of the secondary plasma as well.

8. Radio pulsars with very long periods

Recently, radio pulsars with long periods were discovered (see table 3 later). They must be
in the radio-quiet zone. PSR J2144-3933, discovered in 1999 [58], has the longest (8.5 s)
pulse period among the known radio pulsars. PSR J2144-3933 is distinguished by some other
characteristics. It has the lowest spin-down luminosity (dE/dt ≈ 3.2 × 1028 erg s−1) of any
known pulsar. The beaming fraction (i.e. the fraction of the celestial sphere swept across by
the beam) is also the smallest, W10/P ≈ 1/300. On the other hand, PSR J1847-0130 [59]
and PSR J1814-1744 [60] are isolated radio pulsars having the largest inferred surface dipole
magnetic fields Bs yet seen in the population: 9.4 × 1013 G and 5.5 × 1013 G, respectively.
These pulsars show apparently normal radio emission in a regime of magnetic field strength
(Bs > Bcr = 4.4 × 1013 G) where some models predict that no emission should occur.

No model explaining the phenomenon of radio emission from all these pulsars and all the
special properties of PSR J2144-3933 exists at present.

We proposed a model [61] that provides a natural explanation of the peculiarities of pulsars
under consideration. We believe that the observed interval between successive pulses is not
equal to the rotation period but is determined by the period of drift waves as in AXPs and
SGRs. The variation in the field line curvature can be estimated as

�ρ

ρ
≈ kϕr

�Br

Bϕ

. (65)

It follows that even the drift wave with a modest amplitude Br ≈ �Br ≈ 0.01Bϕ alters the
field line curvature substantially: �ρ/ρ ≈ 0.1. Since radio waves propagate along the local
magnetic field lines, such curvature variations cause changes in the emission direction.

There is unequivocal correspondence between the observable intensity and α (the angle
between the observer’s line of sight and the emission direction (figure 7)). The maximum of
the intensity corresponds to the minimum of α. The period of the pulsar is the time interval
between neighbouring maxima of observable intensity (minima of α). Because of this, we can
say that the observable period is the representative value of α and, as will be shown below, it
might differ from the spin period of the pulsar. Figure 7 shows that

cos α = A · K. (66)

Here, A and K are unit guide vectors of the observer’s axis, and the emission axis,
respectively. In the spherical coordinate system (r, ϕ, θ), combined with plane of pulsar

Table 3. Radio pulsars with long periods.

Number Pulsar P (s) dP/dt (10−15) Bs(1012 G) dE/dt (1032 erg s−1)

I PSR J2144-3933 8.5 0.48 2 0.00032
II PSR J1847-0130 6.7 1275 94 1.7
III PSR J1814-1744 4.0 743 55 4.7



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
13

:1
6 

30
 N

ov
em

be
r 2

00
7 

24 I. F. Malov and G. Z. Machabeli

Figure 7. The geometry under consideration. K is the emission axis; A is the axis of the observer. The angles δ and
θ are constant, while β and α oscillate with time.

rotation, these vectors can be expressed as

A = (1, 0, δ), (67)

K = (1, �t, β), (68)

where � = 2π/P is the angular velocity of the pulsar, δ is the angle between the rotation axis
and the observer’s axis, and β is the angle between the rotation axis and the emission axis
(see figure 7).

From equations (66)–(68) it follows that

α = arc cos[sin δ sin β cos(�t) + cos δ cos β]. (69)

In the absence of the drift wave, β = β0 = constant and consequently the period of α

equals 2π/�.
According to equation (65), in the case when the drift wave is present, the fractional variation

�ρ/ρ is proportional to the magnetic field Br of the wave, which changes periodically.
So β = β(t) is harmonically oscillating about β0 with an amplitude �β = �ρ/ρ and rate
ωdr = 2π/Pdr. So, we can write

β = β0 + �β sin(ωdrt + �). (70)

According to equations (69) and (70), we obtain

α = arc cos{sin δ sin[β0 + �β sin(ωdrt + �)] cos(�t)

+ cos δ cos[β0 + �β sin(ωdrt + �)]}. (71)

The parameters of the pulse profile (e.g. the width and the maximum intensity) significantly
depend on what would be minimum angle between the emission axis and the observer’s axis
while the emission axis passes the observer’s axis (during 1 rev). If the emission cone does
not cross the observer’s line of sight entirely, i.e. the minimum angle between them is more
than the cone angle θ ,

αmin > θ, (72)

then pulsar emission is unobservable for us. Contrary to this, the inequality

αmin < θ (73)

defines the condition that is necessary for emission detection (figure 8). In this case, the
observed pulses must be quite narrow, as seen in the pulsars under consideration. Sometimes
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Figure 8. The oscillating behaviour of α with time for β0 = δ ≈ 0.12, �β = 0.12, ωdr = 2π/17 s−1,
� = 2π/0.85 s−1 and � = 0.

we can see several subpulses as a result of subsequent neutron star rotations. Our model
predicts the detection of such objects in the future.

Hence for some values of the parameters �, ωdr, β, �β, δ, ϕ and θ (as the zero point of
time reckoning is taken as the detection moment of any pulse) it is possible to accomplish
the following regime: after every k = m turn the minimum value of α, denoted αm

min, satisfies
condition (73) while, for intervening values of k (1 ≤ k ≤ m − 1, where k and m are positive
integers), it satisfies condition (72). In that case the observable period Pobs does not represent
the real pulsar spin period but is divisible by it:

Pobs = mP. (74)

It follows from this that (
dP

dt

)
obs

= m
dP

dt
. (75)

From equations (1), (74) and (75) it follows that

B = Bobs

m
. (76)

After inserting equations (74) and (76) in the equation of the death line of a sunspot
configuration field [62] (figure 9),

7 log Bs − 13 log P = 78, (77)

we obtain

7 log B − 13 log P = (7 log Bobs − 13 log Pobs) + 6 log m ≥ 78. (78)

Then

6 log m ≥ 78 − 7 log Bobs + 13 log Pobs. (79)

It can be verified that there exists a value for m which satisfies equation (78) and simultaneously
the condition

B = Bobs

m
< Bcr. (80)
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Figure 9. Lines A, B and C are ‘death’ lines for the dipole magnetic field, the sunspot configuration and the
multipolar magnetic field respectively [62]. The broken line represents B = Bcr . The values of the parameters are
taken from table 3.

So, it is possible that there is fulfilment of the conditions necessary for (e+e−) pair production
for some values of m.

For better estimation of m we can use the observational data for beaming fractions. From
figure 7 it appears that the pulse width can be expressed as

W = P
2 sin θ

2π sin δ
. (81)

After inserting equation (74) in equation (81), we obtain

mW

Pobs
= sin θ

π sin δ
. (82)

As was mentioned above, to accomplish the described regime (equation (74)), α1
min (the angle

between the observer’s line and the emission direction after 1 rev from that moment when
they were coincident, α = 0 (figure 7)) must be less than θ :

α1
min = �β sin

(
2πP

Pdr

)
. (83)

If we assume that β0 = δ, then we obtain Pdr = 2Pobs = 2mP and

θmax = �β sin
(π

m

)
. (84)

If we substitute this equation in equation (82), we obtain

W

Pobs
= �β sin(π/m)

mπ sin δ
. (85)

Here, the left-hand side is known from observations. Equation (85) gives us the ability to
estimate the angular parameters of pulsars for a given m.

If we consider all pulsars in the framework of our model, their parameters (spin, magnetic
fields, etc.) will obtain new ‘real’ values, shown in table 3.
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Figure 10. Real positions of the considered pulsars on the Bs − P diagram (table 3).

If we use the observed values of parameters (table 3), the location of pulsars under
consideration in the Bs–P diagram are presented in figure 9.

According to the obtained results, the considered pulsars will be placed in the Bs–P diagram
as shown in figure 10.

It should be noted that the effect caused by the drift wave (increasing the observational
period; see equation (74)) is accomplished only in the case when Pdr is divisible by P to a
high accuracy (while meeting other additional conditions). In other cases, some interesting
effects appear [38]. Thus, we developed the theoretical model of pulsar emission, in the
framework of which we explained the main specific features of pulsars presented in table 4.

It should be noted that this model is applicable to all populations of pulsars, but there is
a difference in the effects caused by drift waves depending on the values of the parameters.
In the case of large �β(�β > θ) the most interesting effect is the increase in the observable
period (see equation (74)) which is accomplished only when Pdr is divisible by P to a high
accuracy.

In the case of small �β(�β < θ) there is no increase in the observable period, but some
other interesting effects appear, such as drifting subpulses [38], and the period and period
derivative oscillation phenomenon, which is observed in PSR B1828-11 [63] and PSR B1642-
03 [64]. Some researchers [65–67] have proposed different models to explain this phenomenon
within the framework of the free precession of neutron stars. However, as shown by Shaham
[21] and Sedrakian et al. [22], the existence of free precession in a neutron star is in strong
conflict with the superfluid models for the interior structure of a neutron star. Therefore we
can state that there no self-consistent explanation of this fact existed.

If Pdr is not divisible by P , then the observed intensity must be modulated with the period
of the drift wave. It is impossible to obtain such variations with integrated pulse profiles.

Table 4. Revised values of pulsar parameters.

Pdr P Bs dE/dt �β β0 ≈ δ θ

Pulsar m (s) (s) (dP/dt)−15 (1012 G) (1032 erg s−1) (deg) (deg) (deg) W10/P

PSR J2144-3933 10 17.0 0.85 0.048 0.2 0.032 7 7 1.5 0.1
PSR J1847-0130 6 13.4 1.12 210 16 61 5 5 3 0.3
PSR J1814-1744 8 8.0 0.5 190 6.9 300 5 5 2 0.2
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Deviations of the integrated pulse intensities damp each other. The only possible way to
prove this consideration is single pulse observations. Such observations really show intensity
variations [68]. Even though they do not have a harmonic nature (this is due to various noises
and insufficient resolution), it benefits our model. So, if it is handled so that the oscillating
component evolves, this will be one of the best confirmations of our theory.

Let us consider pulsars with very short periods. As was mentioned, drift waves arise in
the vicinity of the light cylinder. The shorter the pulsar spin period, the smaller is the radius
of the light cylinder and consequently the larger is the magnetic field value in the wave
generation region (Bϕ ≈ B = Bs(R∗/r )

3). So, if we take into account this consideration, from
equation (65) it follows that the amplitude of oscillation of the emission direction will be so
small (�β < 1◦) for those pulsars whose period is less than 0.1 s that the presence of the drift
wave does not cause any significant effect.

Generated at different altitudes, radio and higher-frequency synchrotron emissions propa-
gate in different directions. There might be a case such that these two frequencies could be
observed with different periodicities. More precisely, the period of X-ray pulsations will be
equal to the pulsar spin period, while the radio emission will be modulated with the drift wave
period. Even though there are several dozens of known pulsars with multiple wavelengths,
none of these has a long period. For this, it seems the other effects mentioned above have to
exist. This fact is not surprising if we consider that in all the populations (more than 1000) the
number of long-period radio pulsars is only three (see table 3). The discovery of such a pulsar
would be another good test of our model.

From these considerations we can divide radio pulsars into the groups listed below, together
with their main requirements.

(i) Rapidly rotating pulsars, for which �β is too small: none of the above-mentioned effects
should exist for these.

(ii) Pulsars with �β < θ and (Pdr − P)/Pdr 	 1: in this case, oscillations in the period,
period derivative and pulse shape should appear. In the case of low accuracy of equality
between Pdr and P , subpulse drift can be observed.

(iii) Pulsars with �β < θ : they should show observed intensity variations, which are
modulated with the period of the drift waves.

(iv) Pulsars with �β > θ and (Pdr − mP)/P 	 1 (m is a positive integer): there are
differences from the real long observable rotation period.

Thus, long-period radio pulsars represent one of the branches of usual pulsars and must be
considered in the framework of traditional theories for the specific values of the parameters.

Recently discovered transient radio pulsars [69] may belong to the population of objects
described by our model. Indeed, five of these have rather long visible periods (P > 4 s) and one
has a surface magnetic field obtained in the magnetodipole model: Bs = 5 × 1013 G > Bcr.
Precession, star quakes or other reasons can lead to the fulfilment of the condition (73) for a
short time and to the appearance of a number of visible pulses.

9. Discussion

One of the main characteristics of the observed emission is the stability of the pulse periods.As
we have stated already, the drift waves are stabilized owing to the rotation of the neutron star
and the permanent injection of relativistic particles in the region of their generation. Moreover,
as was shown by Gogoberidze et al. [70], the nonlinear induced scattering leads to a transfer
of waves from higher to lower frequencies. As a result, one eigenmode becomes dominant.
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So the wave energy accumulates in waves with a certain azimuthal number m, characterizing
the lowest frequency. This means that the period of the modulation and the interval between
observed pulses must be rather stable.

We have used the suggestion about the small angles between the rotation axes and magnetic
moments of neutron stars in AXPs and SGRs. In fact, observed X-ray pulses in these objects
are quite wide, and this indicates that they are nearly aligned rotators.

10. Conclusions

(1) It is shown that there are many difficulties in the magnetar model.
(2) The drift model is proposed to explain the main peculiarities of AXPs and SGRs.
(3) In the framework of the drift model, the rotation periods P, their derivatives dP/dt and

magnetic fields B in the region of emission generation are calculated forAXPs and SGRs:

P = 10–740 ms, 〈P〉 = 161 ms,

dP

dt
= 3.7 × 10−16–5.5 × 10−12,

log B = 2.63–6.25.

(4) The magnetic fields at the surface of AXPs and SGRs are estimated:

log Bs = 11.22–13.24,

〈log Bs〉 = 11.90.

(5) In the drift model, modulation of the emission with periods of the order of 0.1 s should
be observed.

(6) The persistent X-ray emission in the range 1–10 keV can be explained by cyclotron
radiation at the surface with magnetic fields Bs ≈ 1012 G.

(7) Cyclotron lines can be observed in this diapason.
(8) If the magnetar model is realized, an absorption line with an energy of the order of 1 MeV

must be observed.
(9) Any cataclysms at the surface of a neutron star in AXPs or SGRs should cause bursts

of emission in the X-ray or gamma-ray range with power 2γ 2 times higher than the
persistent X-ray value.

(10) Radio pulsars with observed periods P > 4 s can be described in the framework of the
drift model too.
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