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We present a comparative study of the cosmological ideas and mathematical models in ancient
Greece. We show that the heliocentric system introduced by Aristarchus of Samos was the out-
come of much intellectual activity. Many Greek philosophers, mathematicians and astronomers such
as Anaximander, Philolaus, Hicetas, Ecphantus and Heraclides of Pontus contributed to this. Also,
Ptolemy was influenced by the cosmological model of Heraclides of Pontus for the explanation of the
apparent motions of Mercury and Venus. Apollonius, who wrote the definitive work on conic sections,
introduced the theory of eccentric circles and implemented them together with epicycles instead of
considering that the celestial bodies travel in elliptic orbits. This is due to the deeply rooted belief that
the orbits of the celestial bodies were normal circular motions around the Earth, which was still. There
was also a variety of important ideas which are relevant to modern science. We present the ideas of
Plato that are consistent with modern relativity theories, as well as Aristarchus’ estimations of the size
of the Universe in comparison with the size of the planetary system. As a first approximation, Hip-
parchus’ theory of eccentric circles was equivalent to the first two laws of Kepler. The significance of
the principle of independence and superposition of motions in the formulation of ancient cosmological
models is also clarified.

Keywords: Ancient Greek cosmological ideas; Ancient Greek mathematical models; Aristarchus of
Samos

1. Introduction

Since the prehistoric period the Greeks had developed theoretical views of the (up to that
moment) known world. As early as the fifteenth century BC, Orpheus was teaching such
interesting views to his students. In The Orphics [1] (see also [2, 3]), which are attributed to
Orpheus and his students), we find the following theories (see paragraphs 45–48 and pp. 86–88
of [1]):

(i) The Earth is spherical.
(ii) It is located at the centre of the celestial sphere.

(iii) It rotates around its axis.
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464 A. D. Pinotsis

(iv) The celestial sphere rotates around the axis of the world, which overlaps the rotational
axis of the Earth.

(v) The rotation of the Earth and that of the celestial sphere are synchronized.
(vi) The Sun moves in a daily and yearly manner along the ecliptic (see p. 68 of [1]).

The development of cosmological ideas during the ancient Greek civilization began about
600 BC, with Thales of Miletus being the leader of the school of Miletus, and lasted until 400
AD. During the same period the science was systematically developed and reached its peak.
Science was not independent of philosophy but was considered part of it. Ancient Greeks did
not study the laws of nature in order to take advantage of them; their most important motive was
to advance their knowledge and to become wiser (see p. 276 of [4]). The use of mathematical
methods was necessary in order to explain and understand the celestial phenomena. Ancient
Greek astronomers, mathematicians and philosophers tried to interpret the celestial phenomena
that were being observed by formulating several cosmological ideas, theories and mathematical
models.

The aim of the present paper, which is based on previous work [5, 6], is to perform a
comparative study of the evolution of cosmological ideas and mathematical models in ancient
Greece between the sixth century BC and the second century AD. We can conclude that the
novel theory of heliocentric system, which was introduced by Aristarchus of Samos, did not
arise as a peculiar mathematical model but was the final outcome of long intellectual activity.
Anaximander, the Pythagoreans Philolaus, Hicetas and Ecphantus as well as Heraclides of
Pontus were the predecessors of Aristarchus of Samos. All of these together created a fervent
atmosphere of abundant ideas which influenced Aristarhus’ thinking.

We show that the ideas of Plato about space–time in relation to the existence of matter are
very close to the relativistic theories, such as the cosmological concept of Big Bang. We also
show that Ptolemy was affected by the cosmological model of Heraclides for the explanation
of the apparent motions of Mercury and Venus in his formulation of an equivalent system
explaining the motions of these two planets. It is also interesting that Aristarchus estimated
the size of Universe in comparison with the size of our planetary system.

Finally, we show that ancient Greeks, since the time of Plato, had understood the signifi-
cance of the principle of independence and superposition of motions which was used in the
formulation of their cosmological models.

2. The evolution of the ancient Greek cosmological theories

2.1 Anaximander of Miletus

Anaximander (611–546 BC) introduce, according to certain authors, novel ideas about the
Earth and other celestial bodies. He can, therefore, be considered as the forerunner of the
theories that the Pythagoreans an Aristarchus of Samos would develop later. Theon of Smyrna
(p. 198 of [7]) in his book About Astrology wrote the following: ‘According to what Eudemus
(350–290 BC) narrates in his book The History of Astronomy, Oenopides discovered first
the zodiac circle and the duration of the big year (ὲνιαυτoυ̃) . . .. Anaximander had firstly
considered Earth to be suspended and moving around the centre of the world’. This means
that he was the first who accepted that the Earth moves. Heath (p. 24 of [8]) claimed that
there must be some mistake in the text of Theon. Also, Diogenes Laertius (2, 1 of [9]) (see
also [10]) wrote: ‘Anaximander, who accepts that Infinity is a primary element, considered
Earth to be a spheroid and placed it in the centre of the world and the Moon to be heterophotous
and lightened by the Sun’. He also mentioned that Anaximander was the first cartographer
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Ancient Greek cosmological ideas and mathematical models 465

of the world. According to Plutarch (Γ, 11 of [11]: ‘Anaximander mentions that the Earth
is suspended, is not held down from somewhere, is located at equal distance from all areas
and its shape is circular like the one of a stone column’ (this means that it has the shape of
a cylinder). According to Theon of Smyrna (p. 198 of [7]), Anaximenes considered that the
Moon ‘borrows’ its light from the Sun.

The above information must be adopted with certain circumspection, since it is from
secondary sources. We must point out that Eudemus of Rhodes was one of the two candidates
for the direction of the Lyceum after the death ofAristotle (p. 241 of [12]). Furthermore, he lived
much closer toAnaximander’s time than Diogenes Laertius had (fourth centuryAD) and wrote
among many other things the History of Astronomy and the History of Mathematics. In these
writings the complete (up to that time) knowledge of astronomy and mathematics was included.
However, Diogenes Laertius did not write a specific book on mathematics or astronomy. He
chose to write one of general interest, the biographies of Philosophers, as Plutarch also did.

2.2 Pythagoras of Samos

Pythagoras of Samos (580–490 BC) did not leave behind any written scripts (p. 40 of [13]; p. 86
of [14]) and it is therefore difficult to distinguish with certainty his own astronomical views
from those of his students, because information was from secondary sources. He believed that
numbers are the essence and the beginning of all life and phenomena. He used to teach that
the Earth, the Moon, the Sun, the five (up to that moment) known planets Mercury, Venus,
Mars, Jupiter and Saturn and the fixed stars are spherical and that the Earth remains still in
the centre of the world. According to certain sources (p. 51 of [8]), with the benefit of doubt,
he first discovered that the apparent motions of the Sun and the planets can be analysed into
two normal circular motions. The celestial sphere together with the Sun, the Moon and the
planets rotate daily westwards (retrograde motion or clockwise) around the axis that goes
through the Earth’s centre and, at the same time, rotate from day to day in an easterly direction
(direct motion or counterclockwise) independently around the same axis. Even though the
astronomical ideas of Pythagoras have not been completely verified (p. 86 of [14]), we can
certainly regard him as the philosopher who introduced the geocentric theory. His ideas also
influenced Plato, Aristotle, Eudoxus of Cnidus, Apollonius of Perga, Hipparchus of Rhodes,
Posidonius of Rhodes and Claudius Ptolemy, who contributed towards the improvement and
development of that theory.

2.3 Philolaus the Pythagorian

However, at the end of the fifth century BC, Philolaus, a contemporary of Socrates and one of
the greatest Pythagorian philosophers, formulated the opinion that the Earth, being one of the
stars, the Sun, the Moon and the five planets move eastwards (have a direct motion) around
the Central Fire (′Eστ íα τoυ̃ �αντóς) which he called the Focus. In the centre of the world,
therefore, instead of the Earth, Philolaus places the Central Fire. Plutarch (Γ, 11, 13 of [11])
wrote: ‘Philolaus the pythagorian claims that first comes the Fire which is situated at the centre
of the world, because it is the Focus of the Universe, second comes Antichthon (ὰυτíχθωυ),
counter Earth, third comes the ecumenical Earth which is placed opposite Antichthon and
rotates along with Antichthon around the centre of the world. For that reason those who
live in Antichthon are not viewed from the inhabitants of the Earth. . . . Other philosophers
believe that the Earth is standing still [in the centre of the world]. On the other hand, Philolaus
the Pythagorian believes that the Earth moves within a circular orbit around the Central Fire,
which is slanting, exactly like in the cases of the Sun and the Moon. Heraclides of Pontus’. . .
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466 A. D. Pinotsis

(see section 2.9). Later we mention that an analogous idea about Philolaus was pointed out
by Aristotle in his book On Heaven (XIII, 293α, 18 of [15]). Also Plutarch (H, 1 of [16],
see also [17]); (XI of [18]), (see also [19]) (see section 2.5), Aetius (II, 7.1–7.7, pp. 336, 337
and III, 11, 13, pp. 377, 378 of [20]) and Stobaeus (I, 22.1–3, pp. 336, 337 and I, 33–35,
pp. 377, 378 of [21]) mentioned the same notions. We should mention that Simplicius (II, 13,
229 of [22], see also [23]) considered Philolaus to be the first to introduce the heliocentric
hypothesis.

We make the conjecture that Philolaus meant the Sun. This conclusion can also be deduced
from the following.

(i) From the work of Simplicius (as a whole) and especially in the last paragraph, he wrote:
‘Those who adopt the most genuine among these theories call central fire the creative power
which, coming out from the middle, invigorates the Earth as a whole and heats up again the
part of the Earth that has been chilled [during the night]’. The celestial body that has the
above properties is the Sun. It is known that, since ancient times people believed that
the Sun heats, lightens and invigorates the Earth. They also wrote some hymns for the
Sun. One of those who believed that was the great stoical philosopher and astronomer,
Posidonius of Rhodes (135–51 BC). He believed that the Sun was the centre of the planets
and that its thermogenetic impetus, the spirit (τ ò πνευ̃µα), surges into the world and fills
it (pp. 391, of [24]).

Also, since the prehistoric times, in The Orphics (pp. 68 and 71 of [1]), we find the ideas
of heliocentrism, because in the hymns of Orpheus the key words ‘the Sun is the Master of
the World’ (Koσµoκρὰτωρ "Hλιoς), ‘the Ruler of the World’ (∆εσπóτης τoυ̃ Kóσµoυ)

and its orbit as ‘a burning orbit’ (Πυρı́δρoµoς) are mentioned. Also, the leading position
of the Sun is clarified and the fact that it contains the seal by which ‘the world was printed’.

(ii) Philolaus was afraid of being condemned for ‘not honourable behaviour’ (ὲπı́ ὰσεβεı́αι )
because of his cosmological ideas and for that reason he did not argue directly that ‘the
Earth was moving around the Sun’ (see also p. 56 of [25] and p. 4 of [26]). His fear may
be justified by the following:
(a) the annulment of the school of Pythagoras and the slaughter of the students of

Pythagoras for which the nobleman Cylon was responsible;
(b) the persecution of Anaxagoras and of Diogenes Appoloniatis because of the revolu-

tionary theories that they formulated (Anaxagoras escaped to the city of Lampsacos
with the help of his student Pericles).

Also the astronomer E. Antoniadis shared the opinion that the Central Fire mentioned by
Philolaus was actually the Sun (p. 99 of [31]).

This original idea of Philolaus created therefore a rupture within the scientific thinking of
that period.

2.4 Hicetas and Ecphantus

During the fifth and fourth centuries BC, two more Pythagoreans from Syracuse, namely
Hicetas and his student Ecphantus, modified the system of Philolaus. They believed that the
Earth rotates eastwards around its axis. In that way they could explain the daily rotation of the
celestial sphere and therefore the succession of day and night.

Aristotle in his book On Heaven (XIII, 293α, 18 of [15]) wrote: ‘As far as the position
[of the Earth] is concerned no one shares [not every body has] the same view and, although
most of them say that it is situated in the middle [of the Universe], the Italian Philosophers,
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Ancient Greek cosmological ideas and mathematical models 467

the so-called Pythagoreans, say exactly the opposite. They say that in the centre there is the
Fire and the Earth since it is one of the stars and rotates around the centre creates the day
and the night. They also assume another Earth, opposite to ours, which they call Antichthon.
. . . Furthermore, many others share the belief of the italian Philosophers, that we should not
regard the Earth as being in the centre of the world. . . . therefore in that way of thinking they
did not think that the Earth is found in the centre of the celestial sphere. What they do think is
that there lies the Fire. . . . Some even say that the Earth by occupying the centre oscillates and
moves around the axis of the Universe as it is mentioned in Timaeus . . . As we have already
said, some characterize the Earth as one of the stars and others regard it as being in the centre
of the Universe, eddying (whirling) and moving around its central axis.’Also, Cicero (II, 39,
123 of [27]) mentioned the same for the ideas of Hicetas.

There is an abridgement of Diogenes Laertius (8, 85 of [9]) which said the following:
‘[Philolaus] believed that everything happens harmoniously and because of a need. He also
believed that he was the first to find that the Earth moves in a circular manner. Others, however,
attribute it to Hicetas the Syracusian.’

With regard to the ideas of Pythagoreans, Lloyd (pp. 267 of [4]) noted: ‘. . . it is likely that
Leucippus and Democritus accepted the geocentric system.’However, some Pythagoreans did
not consider the Earth as the centre of the Solar System. Such statements were first expressed
in the late fifth century BC. It is very likely that the theory of Philolaus assumed that both the
Earth and the Sun are moving in the Solar System.

2.5 Plato

Plato (428–347 BC), however, who repeatedly visited the Pythagorian School during his
travels to southern Italy, returned to the views of Pythagoras. He develops his cosmological–
cosmogonical ideas in the dialogue of Timaeus. According to his cosmology, the Sun, the
Moon, the (up to that moment known) five planets and the stars rotate on circular orbits around
the Earth, which, in turn, is placed in the centre of the world.We only mention certain fragments
from Timaeus (38b, c of [28])†: ‘Time was therefore born along with (simultaneously) the sky in
order to disappear together [simultaneously] with it—when [if] they disappear in the future—
since they were created simultaneously and according to the model of the eternal essence, in
order to be as much similar as possible to it concerning the ability. The reason for this is that
the model is eternally a being [exists eternally] and, on the other hand, time existed, exists and
will continue to do so from the beginning until its end. Through such arguments [reasoning]
therefore and such plans of God concerning the creation [birth] of time, the Sun, the Moon and
the other five stars, which are called planets, were created in order to determine and conserve
the numbers [measurement] of time.’

It can be deduced from this fragment that Plato believed that time was born simultaneously
with the creation of the sky, which was the Universe of that time, and will vanish at the same
time with the end of the Universe. He talked about the lifespan of the Universe which is finite
and the fact that time existed, exists and will exist during this period in contrast with the
creator of the Universe, God, the eternal being. Time was therefore born together with matter
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and space and they will vanish together. These ideas are close to modern cosmological theories
and, in particular, to the notion of ‘space–time’, introduced by Einstein in the formulation of
the general theory of relativity at the beginning of the twentieth century. Also, according to
the relevant theory introduced by Friedmann, Lemaitre and Gamow, space–time was created
following the Big Bang. The cosmological views of Plato are consistent with the cosmology
of the Big Bang, but opposite to the steady-state cosmology theory of Bondi, Gold and Hoyle
and the cosmological concept of Dirac.

We should note that it would be inappropriate to try to compare modern ideas and theories
those of with Plato or ancient Greek scientists, since they belong to different eras. However,
modern scientists could use the ideas of Plato or other scientists and philosophers of ancient
times as a philosophical basis for their theories.

According to Simplicius (II, 12, pp. 488 and 493 of [22]), Plato believed that the apparent
motions of the planets could be described via the composition of normal (uniform) circular
motions and that it is apt for geometricians to discover them.

Plato mentioned in Timaeus (40a, b of [28]): ‘God gave two opposite motions to the divine
beings [planets]. One motion is uniform and always takes place in the same area [space],
because God has got the same view [thought] about the same objects, and the other occurs
towards the front and obeys to the rotation of the immutable and invariable essence.’ He then
went on to say (40c of [28]): . . . ‘and the Earth, which nourishes us, which rotates around the
axis of the world and which is the guard and creator of night and day, was created by God first
and superior to all gods created in heaven’. It is obvious that Plato accepted the daily motion
of the Earth around its axis. As we have already mentioned in the previous section, Aristotle
pointed out something relevant in his book On Heaven (293b of [15]). By studying other parts
of the dialogue in Timaeus, however, it seems that Plato considered the Earth as being still in
the centre of the world.

Until the time of Plato an enormous volume of observational data had been accumulated. It
was time for all these data to be used in order to formulate a mathematical model that would
offer a theoretical explanation. Plato seemed to have understood that and, as Simplicius (II,
12 of [22]) said, he managed to foresee the need for the use of mathematics by astronomers,
in order to explain the celestial phenomena. In this way, he conceived a bright idea: to encour-
age the astronomers (his students) to focus their efforts on the theoretical aspects of the
cosmological problem. They needed to study the mathematical relations that lie behind the
observed celestial phenomena in order to suggest mathematical models, which would enact
and explain the motions of the celestial bodies and would subsequently explain (save) the
phenomena.

Eudoxus of Cnidus was the first who responded to the suggestion of his master and formu-
lated a mathematical model in order to interpret the (up to that moment) known world. That
model was the theory of homocentric spheres. Plato adopted the system of Eudoxus in order to
explain the phenomena. His greatest contribution, however, was the incentive that he created
towards the development of certain branches of mathematics and especially geometry.

There are some indications, such as those of Plutarch (H, 1 of [16]; XI, 2, pp. 344 of [18]),
that Plato at the end of his life was not satisfied with the central position of the Earth in the
celestial sphere. Plutarch wrote: ‘Theophrastus additionally points out that in his old age Plato
regretted having attributed to Earth the central position of the world without being deserved
as such . . . but the Universe, the middle of which the Pythagoreans believe consists of Fire
and they call Focus and Unit. Concerning the Earth they say that it is not still or found in
the middle [centre] of the orbit, but it depicts a circular orbit around Fire. . . . Plato, they say,
adopted those theories about Earth in his old age, that it is found at another place . . .’ (and not
in the centre of the world).



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
16

:0
9 

7 
D

ec
em

be
r 2

00
7 
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2.6 Eudoxus of Cnidus

The mathematician and astronomer Eudoxus of Cnidus (408–355 BC) asserted, together with
his teacher Plato, that the Earth was immobile. Motivated by Plato, he invented the first geo-
metric cosmological model. In order to explain the apparent motions of the celestial bodies and
the irregularities of their orbits he formulated the theory of homocentric spheres, which he
described in his book On Velocities (�ερί T αχω̃ν). This book has been lost. References to his
theory are found in the book by Aristotle (XI, 8, 1073b of [29]; see also [30, 31]) and a more
detailed description in the book by Simplicius (II, 12, mainly 221a of [22]), who obtained
information from Eudemus of Rhodes through the philosopher Sosigenes. The geometrical
details of that theory are not mentioned in these ancient sources and that is the reason why
Apelt, Ideler and mostly Schiaparelli tried to explain through their work the basic geometrical
principles of Eudoxus’ system. Heath [8], Dreyer [13], Dicks [14], Neugebauer (pp. 196, 197
and 228 of [32]; pp. 677 of [33]) were based on these studies (especially on the work of Schia-
parelli) in order to describe the theory of Eudoxus in their books. Neugebauer tried to explain
the Eudoxus theory and especially the attributes of the figure-of-eight curve, hippopede.

In order to explain the apparent motions of the Moon, the Sun and the five planets, Eudoxus
replaced the circular orbits that had been formulated before him with a set of 27 revolving
concentric spheres, which consisted of eight subsets of spheres: three for the Moon and the
Sun, four for each planet and one for the fixed stars.

The basic principles of his system were the following.

(i) The spheres were not perceptible from the human senses and the still spherical Earth was
located on their (the sphere’s) common centre.

(ii) The spheres would rotate independently one from the other, each with its own constant
angular velocity (normal circular motion) around its axis, which would pass through the
centre of the Earth.

(iii) The two ends (the poles) of the axis of each sphere in each subset of spheres would
be firmly fixed on the internal surface of the immediately preceding sphere. Thus, each
sphere takes part in the motion of the preceding spheres, i.e. the spheres which were
surrounding it. The description of the motion of each celestial body could therefore be
achieved through an appropriate combination of motions of the spheres. We observe
that Eudoxus had already perceived the principle of independence and superposition of
motions. However, we have also encountered these ideas in Plato’s views in Timaeus.

According to that theory, the outermost sphere, upon which the fixed stars were lying, was
rotating westwards around its axis, which in turn would go through the world poles. The axis
was therefore perpendicular to the plane of the celestial equator. The rotational period of the
sphere was 24 h, depicting the daily celestial motion. Exactly the same motion was performed
by the first (outer) sphere of each subset of spheres, which would describe the daily motion
of the Moon, the Sun and each planet.

In the subset of spheres corresponding to the Moon, the second sphere was rotating eastwards
in an opposite way to the first. The axis of rotation was perpendicular to the middle plane of
the zodiac circle. In that way, the equator of the second sphere was virtually the ecliptic. The
significance of this sphere is not explained clearly in ancient texts. One may conclude that it
describes the motion of the Moon along the zodiac circle, namely its monthly motion. The
same applies to the second sphere of each subset of spheres corresponding to the Sun and the
five planets but with a different period in each case.

The third sphere, on the equator of which the Moon was found, would rotate westwards
with a small angular velocity. Its axis was inclined towards the zodiac axis, which is the axis
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of the second sphere. That sphere aimed to explain the reciprocating motion breadthwise of
the Moon (on both sides of the ecliptic). It is quite possible that it would depict the changes in
its declination. According to what we have already mentioned, that sphere would participate
in the motions of the two spheres that surrounded it. It is not known with certainty which value
of angular velocity Eudoxus adopted for the second and the third sphere or which was the
inclination of the rotational axis of the third sphere. Probably the motion of the third sphere
described one of the Moon’s abnormalities, the regression of the nodes which has a period of
18.6 years. Opposing views concerning these uncertainties have been formulated by modern
authors.

In order to explain the apparent motion of the Sun, Eudoxus considered a mechanism analo-
gous to that of the Moon. The first two spheres would therefore perform motions corresponding
to the two first spheres of the Moon, where in this case the rotation of the second sphere would
be fairly slow, with a period of 1 year. The internal (third) sphere would rotate, like the second
sphere, counterclockwise around its axis, which had a small inclination with respect to the
axis of the second sphere. That sphere would rotate more slowly than the second sphere and its
purpose was to interpret the breadthwise motion (declination from the ecliptic) which Eudoxus
believed that the Sun possessed. That theory was inadequate, since it could not interpret the
already observed motions; for example it could not explain the solstices.

Besides their breadthwise declination the planets exhibit, during their apparent direct
motions, stationary points (stagnations) and retrograde motion. In order to overcome that
difficulty, Eudoxus adopted one extra sphere for each planet. The second sphere, which was
rotating towards the direct direction with a period equal to the stellar or zodiac period of
the planet, moved on the ecliptic plane. The third sphere would rotate around its axis, which
would, have its poles constantly fixed on the ecliptic, meaning the equator of the second
sphere. The points on which the two poles were fixed were different for each planet. On the
other hand, they were the same for Mercury and Venus. Rotation was taking place towards
the direct direction in a period equal to the synodic rotation of each planet. Finally, the fourth
sphere, on the equator of which the planet was found, would rotate at a period equal to that
of the third sphere, but towards the opposite direction. Its rotational axis would exhibit an
inclination with respect to the axis of the third sphere, which would, however, be different for
each planet. The superposition of motions of the last two spheres of each planet could interpret
the stationary points and the retrograde motions as well as the breadthwise declinations of the
planet. The resultant motion of the spheres corresponds to an oscillation of the planet, tracing
out a figure-of-eight curve, which was along the ecliptic and which was bisected by it. Namely,
here we have the superposition of two harmonic oscillations with the same period but towards
opposite direction. That curve was named after Eudoxus hippopede (′�ππoπέδη) and is also
known as the lemniscus (small lake) (figure 1). Also Neugebauer (pp. 677 of [33]) mentioned
that all sources agree that the hippopede is generated by the motion of two concentric spheres
which rotate with constant but opposite angular velocity about two inclined axes. However,
after some calculations, Neugebauer assumed that the actual retrogradations of each planet
are not very large. This means that the latitudes produced by the motion on the hippopede are
almost negligible and the Eudoxus did not associate numerical details with his model.

According to the theory of Eudoxus, the distance of the Moon and of each planet, the
apparent diameter and the brightness should stay constant, as long as the celestial body moves
on a circular orbit around the Earth. The apparent diameter of the Moon together with the
apparent brightness of Mars, Mercury and Venus were, however, changing and this indicates
that their distance from the Earth was changing too. The concentric spheres of Eudoxus could
not therefore explain those observed phenomena.

This problem appeared early. The first who tried to overcome these difficulties wasAutolycus
of Pitane (about 300 BC), but not successfully (pp. 306 of [14]).
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Figure 1. The resultant motion of the third and fourth spheres, the hippopede of Eudoxus of Cnidus.

2.7 Callippus

The model of Eudoxus was adopted and extended by his student the astronomer Callippus
(370–300 BC). Aristotle in his book Metaphysica (XI, 8, 1073b of [29]) (see also pp. 683 of
[33]) mentioned concisely that Callippus, in order to approach better the apparent positions
of the planets, the Moon and the Sun, added two unstellar spheres for both the Moon and the
Sun and one each for Mercury, Venus and Mars. For Jupiter and Saturn he retained the same
spheres as Eudoxus. Callippus therefore increased the spheres of Eudoxus from 26 (27) to 33
(34), making the model of concentric spheres more complicated.

2.8 Aristotle

Similar theories were supported also byAristotle (384–322 BC) in his book On Heaven (mainly
in I, 5, 6, 7, and II, 8, 9, 11, 13, 14 of [15]). He accepted, among other facts, that the Universe
is spherical, that the Earth is spherical and that the celestial bodies move around the Earth
on normal circular orbits. After developing several arguments, he concluded that there is a
need for the Earth to remain still at the centre of the world (XIV, 296b, 22, of [15]). Aristotle
adopted the cosmological model of Eudoxus which he modified. He adopted 56 concentric
spheres instead of the 26 that Eudoxus had suggested. In those numbers the sphere of the fixed
stars has not been added (XI, 8, 1073b–1074a of [29]).

According to certain sources, e.g. Simplicius (II, 12, 226a, pp. 504 and 505 of [22])
Aristotle in his late years doubted the theory of Eudoxus, because he was not totally
satisfied by it regarding its sufficiency to explain the phenomena. According to Theon
of Smyrna (pp. 189 of [7]), Aristotle had already mentioned the idea of eccentricity
about the orbits of the planets. The testimony of Theon coincides with that of Simpli-
cius, because the eccentric circles explain the changes in distances and brightness of
the celestial bodies. On the other hand, the idea of epicycles and eccentric circles was
not probably known up to that day, since otherwise it should have been discussed at
Plato’s Academy or at least it could have been mentioned by Plato, Aristotle or some
other student or partner of Plato. There is a fragment in the book by Geminus of
Rhodes (book I, 19, 21 of [34]; see also [35]), according to which it is possible that,
if one does not pay sufficient attention, to think that Pythagoreans were the first who
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invented eccentric circles and epicycles, but that does not seem to be true (pp. 269 of [8];
pp. 143 of [13]).

2.9 Heraclides of Pontus

A contemporary ofAristotle and partner of theAcademy was a student of Plato and philosopher
called Heraclides of Pontus (388–315 BC), who was distinguished for the breadth of his spirit.
He was called a paradoxologist (8, 72 of [9]) because of his strange and innovative ideas
and therefore his presence was enough to develop a debate in the Academy of Plato. His
paradoxology was due, to a great extent, to the two great spiritual influences that he had been
subjected to, the Pythagoreans on the one hand and Plato on the other. Even though he had
written many books on different subjects, nothing has survived today apart from extract of
some of his work.

Disproving the theory of Eudoxus, together with the perceptions of Plato and Aristotle, he
partially formulated a heliocentric theory. Testimonies of his system are found in the work
of the neoplatonic philosopher Chalcidius who translated Timaeus into Latin, of Vitruvius, of
Martianus Capella and of Cicero. According to his bright and original theory (pp. 255–260
of [8]; i, pp. 316–317 of [36]), Mercury and Venus (the internal planets), which sometimes
seemed to be in front of and at other times behind the Sun and so seem to oscillate from one side
of the Sun to the other, rotate on circular orbits around the Sun, which is found at their centre,
with constant but different angular velocities (epicycles). Simultaneously, the Sun depicts the
circumference counterclockwise of a circle having the Earth as its centre in a period of 1 year
(deferent circle or deferent (see figure 3 later)). He consequently explained first the apparent
motions of the two planets. We can therefore essentially say that Heraclides was the inventor
of the system of epicycles. Later, in section 3.3 we clarify that Ptolemy was influenced by the
theory of Heraclides.

He also adopted the view that the daily retrograde rotation of the celestial sphere around the
Earth was due to the direct rotation of the Earth around its axis, which is the axis of the world,
meaning something similar to what the Pythagorians Ecphantus and Hicetas had formulated
(i, pp. 316–317 of [36]). Plutarch (�, 13 of [11]), as we have already mentioned (section 2.3),
mentioned accordingly: ‘Others [philosophers] on one hand believe that the Earth is still [in
the centre of the world]. Philolaus the Pythagorian on the other hand . . . Heraclides of Pontus
and Ecphantus the Pythagorian believe that the Earth moves, not transitionally within an orbit,
but by rotating around its axis towards direct direction, like a wheel around its own axis.’
Relevant testimonies can be found in the work of Proclus and some extracts of Simplicius (II,
7, 2000b, p. 444, of [22]): ‘ . . . for there are some, among whom Heraclides of Pontus and
Aristarchus, who believe that they explain the phenomena if they consider the celestial sphere
and the stars to be still and that the Earth rotates towards direct direction around the poles of
the equator once a day’.

2.10 Aristarchus of Samos

Aristarchus of Samos (310–230 BC), who was an astronomer and mathematician, formulated
a different cosmological model, namely the heliocentric system. In that system the idea of
the Earth’s immobility was rejected, since the Sun still remained at the centre of the world.
The apparent motion of each planet was a combination of the motion of the Earth and its own
around the Sun. The fixed stars were still.

Based on the curious book of Archimedes (287–212 BC) Psammites (Sand-Reckoner), we
find the following (I, 4–6 of [37]; see also [38]): ‘Aristarchus of Samos has published some
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theories [scriptures], from which he considers that the world is much greater than it is said to
be. He also assumes that the fixed stars and the Sun remain still and that the Earth moves on
a circle around the sun, which is located in the centre of the Earth’s orbit. The sphere of the
fixed stars, which possesses the same centre with the Sun, is so big, that the ratio of the radius
of the circle which the Earth depicts during its revolution to the distance of the fixed stars is
equal to the ratio of the centre of the sphere to its surface.’

From the previous analogy, we conclude that Aristarchus had grasped the concept of size of
the spherical Universe. He considered the space, which the orbit of the Earth and the planetary
system occupied as a whole, to be a point in comparison with the size of the Universe. This is
what scientists also adopt today.

Plutarch (B, K� of [11]) said: ‘Aristarchus formulated the theory that the Sun and the fixed
stars remain still, the Earth moves around the Sun and when the Moon is near a node [near the
plane of the Earth’s orbit] we observe the eclipse of the solar disc.’ Aetius (II, 24.8 of [20])
and, as we shall see in the following, Plutarch in another book (H, 1 of [16]) mentioned the
ideas of Aristarchus. References to the heliocentric system of Aristarchus can also be found
in the books by Vitruvius, Sextus Empiricus and Cicero.

Based on the arguments presented in the previous sections we conclude that the novel helio-
centric system invented by Aristarchus did not appear suddenly, as a peculiar mathematical
model, but it was the result of a gradual development of astronomical and philosophical ideas as
well as of mathematical knowledge until the time ofAristarchus.Anaximander, Philolaus, Hic-
etas, Ecphantus and Heraclides of Pontus were the predecessors of Aristarchus, who affected
his thinking and contributed to Aristarchus’ discovery.

Heath (ii, pp. 2 of [36]) commented: ‘To Aristarchus belongs the high honour of having
been the first to formulate the Copernican hypothesis, which was then abandoned again until
it was revived by Copernicus himself. His claim to the title of the ancient Copernicus is still,
in my opinion, quite unshaken, . . . .’

The historian of mathematics, Loria (Vol. I, paragraph 65, pp. 114 of [39]) wrote: ‘After
him [he means Philolaus the Pythagorian], the movement towards that direction [helio-
centric system] was fortified quite impressively. During Plato’s time the Greeks had so
enormously advanced, that there wasn’t much for them to do in order to become masters
of the general concept of the heliocentric motion of the planets. It is worthy of all praise
that they managed, after a short period of time, to cover even that final step of the way. The
great honor which corresponds to that memorable achievement was reserved for a mathe-
matician, contemporary with Archimedes, named Aristarchus of Samos, the Copernicus of
antiquity.’

In addition, Loria (Vol. I, paragraph 66, pp. 115 of [39]) said at another point: ‘The system
[of Aristarchus] that was later called Copernican, was abandoned very quickly in order to be
approved the system of eccentric circles and epicyles, something that seems to have been a
figment of Apollonius of Pergi’s imagination. The latter seemed to be more appropriate for the
depiction of the celestial phenomena and the making of the corresponding calculations. The
system of Apollonius fully respected the fundamental principle of all astronomical systems
that had been proposed from Pythagoras to Copernicus: not to offend through these [systems]
all beauty and simplicity of the creation.’

Also, Lloyd (pp. 268 of [4]) in his book wrote: ‘Aristarchus’theory of the heliocentric system
was complete and managed to include both the daily rotation of the Earth around its axis, as well
as the rotation of the Earth around the Sun. However, the theory of the heliocentric system was
unpopular amongAristarchus’contemporaries. In particular, among the astronomers who were
contemporary to Aristarchus, only the babylonian astronomer Seleucus shared Aristarchus
views. The reasons that could account for the unpopularity of this theory are rather complicated
and are properly irrelevant to religious issues.’
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The ideas of Aristarchus were altering the entirely of human thinking during that time and
were opening up new horizons for science. Unfortunately, did not prevail instantly. The revolu-
tionary ideas of Philolaus, Hicetas, Ecphantus, Heraclides and mainly Aristarchus remained in
obscurity until the time of Copernicus. The events that led to the prevalence of the heliocentric
theory were as follows: the invention of the telescope by Galileo in 1610, the explanation of
the aberration of starlight and the stellar parallax, and the discovery of the law of gravity by
Newton in 1686, who proved the three empirical laws of Kepler.

2.11 Seleucus

After Aristarchus of Samos, Seleucus (second century BC), a contemporary of Hipparchus, an
astronomer, a mathematician and a geographer, strongly supported the ideas of Aristarchus.
Plutarch commented (H, 1 of [16]): ‘He imagines [the Earth] rotating and moving forward,
exactly as Aristarchus and Seleucus had showed [mediated] later on.’ The same is mentioned
in the scripts of Sextus Empiricus. In another book, Plutarch also mentioned that Seleucus
followed the theories of Aristarchus (�, IZ of [11]): ‘Seleucus the mathematician, by moving
the Earth [saying that the Earth is moving] as well, claims that due to its rotation and motion
it impedes the rotation of the Moon.’

Hence, until Hipparchus’ time (190–120 BC), two systems had been developed and formu-
lated: the geocentric and the heliocentric. These two theories were totally conflicting, because
they arose from two different and adverse perceptions about the (until then) known world.

3. The theory of epicycles and eccentric circles

3.1 Apollonius of Perga; Heraclldes of Pontus

It appears that the ideas of epicycles and of eccentric circles were first introduced at the time
of Eudoxus of Cnidus after the formulation of his theory on the concentric spheres and were
spread during the third and second centuries BC. The models of epicycles and of eccentric
cycles were purely geometrical models and were developed in order to support the geocentric
hypothesis.

(i) According to the theory of the eccentric circles, a celestial body H, on the one hand, moves
(towards the direct direction) with a constant angular velocity (normal circular motion)
on the circumference of a circle with a centre K and a radius R = KA. On the other
hand, the Earth, which is considered to the observer �, is placed at a distance K� = eR

from the centre of the circle (figure 2). This circle with eccentricity e is the apparent orbit
of the body. In this way the celestial body is moving: firstly, at a different distance from
the observer, which explains the changes in its brightness and, secondly, with a different
angular velocity at each point of the eccentric circle. In particular, the body has a lower
angular velocity around the apogee A, and a higher angular velocity in the region of
the perigee � (figure 2). This motion is essentially equivalent, as a first approximation,
to the motion of a celestial body on an ellipse, one focus of which is occupied by the
Earth. The eccentricity of the motion is, according to the theory of ellipse, e = K�/KA.

(ii) The motion within the system of epicycles is also similar to the previous motion and
constitutes a better approximation. Usually, in this case, a celestial body H moves with a
constant angular velocity ω2 on a small circle of radius r , the epicycle, either clockwise or
counterclockwise. The centre B of the epicycle moves by convention counterclockwise,
with a constant angular velocity ω1 (usually different from ω2) on the circumference of a
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Figure 2. The eccentric motion, which is performed by a celestial body H. The Earth is placed at point � and its
distance from the centre K of the cirle, divided by the radius KA, is equal to the eccentricity of the eccentric motion:
e = K�/KA. If H is the Sun, points E and E′ are summer and winter solstice; and points γ and γ ′ the spring and
autumn equatorial points respectively. A is the apogee and � is the perigee of the eccentric motion.

great circle with a radius R, the deferent, which has the Earth as its centre �. The plane
of the epicycle may be at an angle with the plane of the deferent. This complex motion,
which is a superposition of two simple harmonic oscillations, is called epicycle motion
(section 7.2 of [40]). It is possible that this is equivalent to the motion which takes place
on an eccentric circle. The eccentricity therefore of the apparent orbit of the body is found
by calculating the ratio of the radii of the two circles: e = r/R (figure 3) (p. 264 of [33]).
In general, provided that those two angular frequencies are combined in a suitable way
(their ratio must be a rational number), the resulting motion will be an ellipse (or a helical
curve, etc.).

In order to make these theories clearer, we shall use modern notation.A mechanical analogue
of the epicycles motion and its equivalence, under certain initial conditions, to a eccentric circle

Figure 3. The epicyclinal motion, which is performed by a celestial body H. H moves on the epicycle with B as its
centre, which in its own turn moves on the deferent with radius R = �B. If H is the Sun then the epicyclic motion
is equivalent to the eccentric circle (dashed circle) with K as its centre and a radius KH. The distance between the
Earth � and the centre K is equal to the radius r(= BH) of the epicycle. Therefore, the eccentricity of the apparent
orbit of H is e = K�/R = r/R.
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arises in the motion of a satellite which goes round the Earth in a stable circular orbit of radius
ro, angular velocity ωo and period To. Let us perturb the satellite’s energy E by a tiny amount
�E, which results in a change in its radius by �r(�r/ro � 1), while maintaining constant
angular momentum. The satellite will then execute as a first approximation a simple harmonic
oscillation around the position ro of equilibrium and between the limits ro − D and ro + D,
where D is the width of oscillation with angular frequency ω1 and period T1. The satellite will
therefore execute simultaneously two harmonic oscillations. As a result of the superposition
of these two oscillations, the satellite changes slightly its initial orbit. In the case of the Earth’s
gravitational field, the ratio of the angular velocities (or the ratio of the corresponding periods)
for the two harmonic motions is a rational number and, in particular, ωo/ω1 = T1/To = 1 (we
omit the mathematical calculations) (see also p. 284 of [40]). It can be deduced from this
relation that the resultant motion is a new circular orbit shifted from the initial orbit and of
the same period. The centre O′ of the new orbit does not coincide with the centre O of the
initial circular orbit (i.e. the centre of the Earth) but is shifted to the direction of greater radial
deviation. Hence, the resultant motion is an eccentric circle (figure 4).

As far as the inventor of the system of epicycles and the eccentric circles is concerned,
it seems that the first who implemented the epicycles was Heraclides, as we mentioned in
section 2.9, while the great geometrician Apollonius of Perga (265–190 BC) first applied
eccentric circles.

Apollonius studied the theory of eccentric circles and proved that it applies only to the three
exterior planets Mars, Jupiter and Saturn, since it interprets to a certain extent their apparent
motions, while it could not be implemented for the interior planets. He also studied the cases
of equivalence between the epicycles and the eccentric circles. It is obvious therefore that
Apollonius was the first who introduced eccentric circles. This assumption also coincides with
the fact that Apollonius introduced conic sections (he is the author of a relevant book) since,
as we have already mentioned, the motion on an eccentric circle is, as a first approximation,
a motion on an ellipse, where the Earth possesses one of its foci with eccentricity e = KΓ/KA
(figure 2).

Figure 4. The orbit shown as a dashed circle is the epicyclic orbit (perturbed orbit) which is almost the circumference
of circle; however, the centre O′ is shifted from the centre O of the Earth in the direction of the maximum radial
deviation that is outside the circumference of circle of radius ro.
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We do not know, however, for sure whether a complex theory of the planets was developed in
ancient Greece and who its inventor was. Some historians such as the astronomers Schiaparelli,
Heath and Tannery tried to do that and studied the corresponding fragments of ancient authors.
Thus, some final arguments have been given by modern authors, which coincide to a certain
degree. After a thorough study of certain ancient writers and modern historians, one can
conclude that the theory of Heraclides was also implemented for the three exterior planets.
Hence, a system similar to the system that became known in the fifteenth century, namely
the system of Tycho Brache, was developed in ancient times. According to that system the
five planets move on epicycles or eccentric circles around the Sun, which simultaneously
moves around the Earth. The inventor of this system is not known with certainty. It is possible,
however, that the authorship of this system belongs to Apollonius, without of course excluding
the possibility that it belongs to some other contemporary or previous astronomers, who lived
between Heraclides and Apollonius (pp. 113 of [5]). This problem, however, is still being
discussed. The development of that system, although it retained the immobility of the Earth
at the centre of the world together with normal circular motions, consisted of one important
step towards the evolution of cosmological ideas and geometrical models.

In the context of the geocentric system, the geometrical models of the epicycles and the
eccentric circles were novel and created new horizons towards its mathematical interpretation.
These geometrical models were invented and dominated thereafter because of the deeply rooted
belief that the Earth was still at the centre of the world and that the orbits of the celestial bodies
were normal circular motions. They consequently provided a first satisfactory explanation
of the apparent orbits of the planets. This must be the reason why Apollonius introduced
eccentric circles and implemented them together with the epicycles instead of considering
that the celestial bodies depict elliptic orbits.

3.2 The adoption of the geocentric system by Hipparchus of Rhodes

During the following century, based on arguments analysed in previous work (pp. 115 of [5]),
Hipparchus adopted the geocentric theory and rejected the heliocentric theory. In order to
explain the geocentric system by using a mathematical model, he first used for the planets
and especially for the Sun and the Moon the model of eccentric circles and later the model of
epicycles, which, he claimed, belonged to him (pp. 188 of [7]). About the theory of epicycles,
Hipparchus said that it was more preferable than the theory of the eccentric circles because
the celestial bodies move symmetrically with respect to the centre of the world, the Earth.
Hipparchus also used the observations that were available at that time in order to interpret the
apparent orbit of the Sun. He knew that the four seasons of the year and especially the arcs
Eγ , γE′, E′γ ′ and γ ′E (figure 2) were not equal. This inequality led him to the formulation of
two models about the motion of the Sun.

(i) During one tropical year, the Sun H moves, within a constant angular velocity, along one
circle around the Earth with radius R = KA a centre K, which is placed at a distance
KΓ = eR from the observer Γ (from the Earth), where e is the eccentricity of the orbit
(figure 2).

(ii) During the tropical year, the Sun H moves on an epicycle with a radius r = eR westwards.
The centre B of the epicycle, depicts a direct direction (eastwards) and during the same
period the deferent circle with radius R and centre Γ, the Earth (figure 3).

He proved that these two theories are equivalent, meaning that the motion on an epicycle is
identical with the motion along an eccentric circle. Each of these two theories could interpret
(determine) fairly well the apparent motion of the Sun with an error of 1 minute of the arc
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(pp. 163 of [13]) That inaccuracy was so small that it remained acceptable for 1700 years.As we
have already mentioned, Apollonius seems to be the first who tried to prove the equivalence
of the two motions for certain planets. According to Ptolemy (Γ, 4 of [41]; see also [42]).
Hipparchus correctly made the assumption that the orbit of the Sun was an eccentric circle.
In order to interpret the differences between the lengths of the seasons, he placed the centre
of the eccentric circle towards the direction of the arc which is found meaning between the
spring equinox γ and the summer solstice E, meaning the direction of the apogee A, and chose
the right values for the eccentricity e and the length of the apogee (p. 41 of [43]). Hipparchus
first talked about the apogee and perigee � of the Sun’s orbit and found that its eccentricity
was e = 1/24 = 0.0416, which was very satisfying, since its current value is approximately
e = 0.0167. He also found that the length of the apogee, which is the arc between the spring
equinox and A, is the angle (γΓA) = 65◦30′, also a very good value. In that way he explained
the inequality of the four seasons of year, since the Sun was moving with different angular
velocities along the eccentric circle (slower towards the apogee and faster in the region of the
perigee). Additionally, he proved that the orbit of the Sun coincided with the ecliptic, while
previous astronomers considered that the orbit was inclined towards the ecliptic.

Consequently, as a first approximation, the theory of Hipparchus was equivalent to the first
two laws of Kepler.

As far as the orbit of the Moon is concerned, Hipparchus knew that its motion is more
complex than the Sun’s motion and that it includes many abnormalities. He also formulated
two models about the motion of the Moon.

Initially, he considered that an eccentric circle could depict the apparent orbit of the Moon.
He then calculated first abnormality of the Moon’s orbit (which in first approximation is an
ellipse), namely its eccentricity and found it equal to e = 0.0875. This is a very good value,
since its current value is e = 0.055.

Hipparchus (E 7 of [41]; p. 265 of [33]) observed that the orbit of the Moon appears to be
a great circle on the celestial sphere and is totally found within zodiac zone. He additionally
calculated that the inclination of the Moon’s orbit in relation to the ecliptic is 5◦ and therefore
its greatest declination is 23◦ 51′ + 5◦ = 28◦ 51′ approximately. At the time of Hipparchus,
the inclination, the obliquity of the ecliptic, was not 23◦ 27′, like today, but 23◦ 43′ and
according to Eratosthenes’ calculations 23◦ 51′ approximately (i, 22, 67 of [41]; p. 40 of [44];
pp. 3–14 of [45]; pp. 134–136 of [46]). He also knew that the advance of the perigee, i.e.
the line of apsides, was being shifted from west to east and performed a complete rotation
in a period of approximately 9 years. We now know that the rotation of the line of apsides
on the plane of the Moon’s orbit is 40◦ 40′ 35′′ per year and so it has a period of 8.85 years.
This result together with other abnormalities of the Moon’s motion is due to the tidal forces
(the attractions by the Sun and the planets) acting upon the Moon. He therefore understood
that the theory of the eccentric circle was inadequate because it could not possibly explain
the observations, meaning the other abnormalities of the Moon’s orbit. This is exactly the
reason why he was led to the conclusion that he should implement the theory of epicycles.
He was then able to determine the second abnormality of the Moon’s orbit, which is due
to the regressive motion of the line of apsides around its average position. Hence the Moon
is shifted on both sides of its average position up to a width of 1◦.25 and with a period
equal to the time between two transitions of the Sun through the line of apsides of its orbit.
The latter abnormality is due to the change in the curvature of the orbit and therefore in the
eccentricity.

Hipparchus thus accepted that the Moon rotates clockwise on an epicycle, the centre of
which moves on the deferent counterclockwise around the Earth. The plane of the deferent
coincides with the ecliptic. The plane of the epicycle forms an angle of 5◦ with the plane of the
deferent circle and therefore intersects the ecliptic at an angle of 5◦. Hence, the nodes move
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from east to west and perform a complete rotation around the axis of the ecliptic in a period
of 18(2/3) = 18.6 years. This abnormality is called ‘the regression of the nodes’. Hipparchus
calculated the length of the radius r of the Moon’s epicycle and the position of the apogee.
For the radii of the deferent circle and the epicycle he used the following values: R = 60
and r = 5(1/4), respectively; therefore e = 5(1/4): 60 = 0.0875. The angular velocity of the
deferent circle was ω1 = 13◦ 10′ 35′′ per day and that of the epicycle ω2 = 13◦ 3′ 54′′ per
day (pp. 240 and 243 of [32]) did not completely coincide because of the direct motion of the
line of apsides in approximately 9 years. As a consequence, the difference in these angular
velocities justifies the draconitic or nodical month.

Because of the few and simple astronomical instruments that Hipparchus had at his disposal
he could not possibly determine or interpret all the abnormalities of the motion of our satellite.
These abnormalities were explained only after the invention of the telescope and of the law
of gravity by Newton. Despite all this, however, the calculations and results that he provided
about the motion of the Moon and the theory that he formulated in order to interpret some of
the abnormalities of its orbit are remarkable.

As far as the study of the motion of the five known planets is concerned, Hipparchus assumed
that each planet would move on the epicycle, the centre of which would turn around the Earth
on the deferent. In this way, Hipparchus laid the foundations of planetary theory. He did not,
however, have at his disposal sufficiently accurate observations that would help him to form
a complete theory. The great astronomer Claudius Ptolemy undertook later the shaping and
perfecting of Hipparchus’s ideas.

3.3 Claudius Ptolemy

Claudius Ptolemy (about 100–170 AD) accepted the geocentric system. Based on the ideas
and theories of Heraclides, Apollonius and mostly Hipparchus, meaning the theories of epicy-
cles and eccentric circles, he formulated his own cosmological model. In order to overcome
some imperfections of the geocentric theory, Ptolemy relied upon the mathematical model of
Hipparchus, which he modified and enlarged upon the motions of the planets. This system was
called the Ptolemaic system. All the details of his system are mentioned in his well-known
treatise Syntaxis or Almagest (Megale Syntaxis tes Astronomias see [41], [42]), which consists
of 13 volumes. This treatise contributed to the spreading of knowledge of the ancient Greek
astronomers to the Arabs and the western world.

Together with the previous mathematical-cosmological models, the Ptolemaic system relied
upon the superposition of normal circular motions, i.e. oscillations, which arose from the
combination of epicycles and eccentric circles. This system interpreted and predicted the
apparent positions of Moon, the Sun and planets.

According to that system, each planet was rotating around the Earth by performing simul-
taneously two normal circular motions. It was therefore moving on an epicycle, the centre of
which was moving eastwards on the deferent circle. Each planet had its own deferent circle
with centre K, which would not coincide with the Earth Γ, since it would be placed outside
the Earth. Each deferent circle was therefore an eccentric circle. The eccentric circles would
increase their radius as one goes from the Moon to Mercury, Venus, Sun, Mars, Jupiter and
Saturn (figure 5).Also, Ptolemy considered that the constant angular velocity (uniform angular
motion) by which the centre of each epicycle moves on the deferent circle should be measured
not from the Earth, but rather from the third point E, the equant point. This point should be
placed at the other end of the diameter joining the Earth to the centre of the deferent circles,
which is placed in the middle of the line ΓE. Therefore, the retrograde motions of Mars, Jupiter
and Saturn could be quite easily and accurately explained.
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480 A. D. Pinotsis

Figure 5. The cosmological model of Ptolemy. K is the centre of the deferent circles, E is the equal point and Γ is
the centre of the Earth.

As far as the interior planets are concerned, they never stay far from the Sun as seen from
the Earth, because these planets oscillate from one side of the Sun, to the other. The greatest
elongation of Mercury never exceeds 28◦ and that of Venus never exceeds 48◦ approximately.
For this reason, Ptolemy considered that the centres of the epicycles of different radii corre-
sponding to the two planets are always found along the same straight line which connects the
Earth to the Sun, as the centres of the epicycles move around the corresponding deferent circle.

The resultant motion that the two planets perform is then equivalent to that contained in the
theory of Heraclides about Mercury and Venus. This conclusion can be obtained as follows:
firstly, the centres of the epicycles of the two planets are projected always on the centre of
the Sun and, secondly, as the two planets rotate on their epicycles, with angular velocities
arranged in such a way that their apparent positions could be described in an optimal way,
their orbits are projected on the celestial sphere. As a result, each planet appears on either one
or the other side of the solar disc, i.e. they seem to oscillate from one side of the Sun to the
other. We may therefore make the conjecture that Ptolemy invented this system based on the
existence of the theory of Heraclides of Pontus.

The Moon and the Sun were moving around the Earth on their own eccentric circle, eastwards
within a period of a month for the Moon and a year for the Sun. Ptolemy considered, in contrast
with Hipparchus’ ideas, that epicycles were not needed because the motions of the Moon and
of the Sun are always direct. At the same time they participated in their daily motion.

Regarding the motions of the fixed stars, Ptolemy supposed that the stars are found to be
riveted in a sphere, which surround the deferent circles of all planets. The rotation of that
sphere around the Earth in 24 h was initiating the rises and sets of the stars.

Using the observations that had been collected until his time, Ptolemy could always improve
his system so that his statements coincided with the future apparent positions of the planets.
The radii of the deferent and the epicycle, the orientation of the plane of the epicycle relative
to the deferent circle, the angular velocities of the planet on the epicycle and of the centre of
epicycle on the deferent circle could be modified and combined in such a way that the resultant
motion of the planet could fit fairly well to its apparent position. The Ptolemaic system was
therefore a very flexible system and that is the reason why it prevailed and remained the only
acceptable planetary system for 1400 years after Ptolemy, until Copernicus laid the foundations
of the heliocentric system. Galileo achieved the first proof of the heliocentric system in 1610
after the invention of the telescope. Later, having many observations at his disposal, Kepler
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discovered and formulated the three laws of motion of the planets around the Sun. Finally,
Newton, after the discovery of the law of gravity in 1686, proved theoretically the three laws
of Kepler.

4. Conclusions

The use of mathematics and, in particular, geometry led to significant contributions towards
the development of cosmological ideas and theories. The models of epicycles and of eccentric
circles were complex geometrical models and created new horizons in the mathematical inter-
pretation of the geocentric system. These geometrical models were invented and dominated
thereafter because of the deeply rooted belief that the Earth was still at the centre of the world
and that the orbits of the celestial bodies were normal circular motions. This could be the
reason why Apollonius, who wrote the definitive work on conic sections, introduced eccentric
circles and implemented them together with epicycles instead of considering that celestial
bodies travel in elliptic orbits.

A thorough study of ancient sources and modern authors implies that the heliocentric hypoth-
esis of Aristarchus of Samos was an innovative idea that created new horizons not only in
astronomy but also in human thought in general. However, the heliocentric theory did not
arise as a peculiar mathematical model but was the product of a long and fervent intellectual
activity created by the precursors of Aristarchus, namely Anaximander, Philolaus, Hicetas,
Ecphantus and Heraclides of Pontus, who influenced Aristarhus’ thinking. On the other hand,
Simplicius considered that it was Philolaus who introduced the heliocentric system. In order
to explain this consideration of Simplicius, we assume that, when Philolaus mentioned the
Central Fire, he implied the Sun.

Despite the importance of Aristachus’ hypothesis the geocentric system finally became the
dominant cosmological model until the time of Copernicus.An explanation of this fact requires
a detailed analysis, which will be presented elsewhere. This was because it was supported by
the eminent intellects of Pythagoras, Plato,Aristotle, Eudoxus,Apollonius, Hipparchus as well
as Ptolemy. Also, the models of epicycles and of eccentric cycles contributed to this. Kuhn
(p. 140, 141 and 148 of [47]) noted among others: ‘If the solution to a problem appears at a
time when there is not much dispute in the relevant science field, then new ideas may be not
become widely known and be forgotten. The heliocentric model of Aristarchus was ignored
because the geocentric model was the dominant theory at the time. This model [geocentric]
seemed not to have any weak point that a new model could overcome.’

We have concluded that Plato believed in a simultaneous beginning of time and space (he
named it ‘sky’) in connection with the existence of matter and that they will vanish at the same
time. These views of Plato are close to modern cosmological ideas introduced by Einstein in
the formulation of the general theory of relativity and are in accordance with the Big Bang
model. On the other hand, they are not consistent with the cosmology theories of Gold, Bondi
and Hoyle and that of Dirac. We should note that it would be inappropriate to try to compare
modern ideas and theories with those of Plato or ancient Greek scientists, since they belong
to different eras. The ideas of Plato or other ancient scientists and philosophers could be used
as a philosophical basis by modern scientists.

The principle of independence and superposition of motions was introduced in the formula-
tion of cosmological models as early as Plato’s time. According to Simplicius, Plato believed
that the apparent motions of planets could be described by the superposition of normal circular
motions or, in other words, by the superposition of simple hannonic oscillations.

Based on a fragment of Timaeus we conclude that Plato accepted the daily motion of the
Earth around its axis. Something similar is also mentioned in Aristotle’s book On Heaven.
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In a different chapter of Timaeus, Plato seems to consider the Earth as the fixed centre of the
world.

Simplicius noted that Plato could foresee the need to use mathematics in astronomy and
especially in the formulation of mathematical models in order to explain celestial phenomena.
He also emphasized this need to his students.

After studying the theory of homocentric spheres we conclude that Eudoxus had also realized
the principle of superposition of motions. For example, the motion resulting from the motions
of the two last spheres of each planet is a superposition of two harmonic oscillations that
resembles a figure of eight.

Heraclides of Pontus was the first to explain the apparent motions of Mercury and Venus.
Heraclides was therefore the inventor of the theory of epicycles. According to the theory of
Ptolemy, the resultant motion executed by each of these two planets is equivalent to the motion
resulting from the theory of Heraclides. We may therefore conjecture that Ptolemy’s ideas were
based on the theory of Heraclides of Pontus in order to formulate his system describing the
motions of Mercury and Venus.

A mechanical analogue of the epicyclical motion and its equivalence, under certain initial
conditions, to an eccentric circle arises in the motion of a satellite which goes round the Earth
in a stable circular orbit, if we perturb the satellite’s energy E by a tiny amount �E while
maintaining the angular momentum constant.

Hipparchus’ theory of eccentric circles is, as a first approximation, equivalent to the first
two laws of Kepler.

Aristarchus formulated an analogy between the dimensions of the planetary system and those
of the celestial sphere. From this analogy we conclude that Aristarchus conceived the actual
size of Universe. He considered the space occupied by the orbit of the Earth and the planetary
system as a point in comparison with the space occupied by the stars. This is equivalent to an
estimation of the size of the Universe. Today, astronomers make similar considerations.
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[28] Aristotle, Metaphysics, edited by S. Edmunsdsbury (Harvard University Press, Cambridge, Massachusetts, 1933,

1935).
[29] W. Christ (Teubner, Leipzig, 1886).
[30] O. Neugebauer, The Exact Sciences in Antiquity (Greek translation) (Brown University Press, Providence, Rhode

Island, 1970).
[31] O. Neugebauer, A History of Ancient Mathematical Astronomy (Springer, Berlin 1975).
[32] Geminus, Introduction aux Phenomenes, Texte et Traduit par Germaine Augac (Les Belles Lettres (Budé),

Guillaume, Paris, 1975).
[33] K. Manitius (Teubner, Leipzig, 1898).
[34] T.L. Heath, A History of Greek Mathematics, Vols I, II (Oxford University Press, Oxford, 1921) (Dover

Publication, New York, 1981).
[35] Archimedes, Psammites (�αµµı́της ), volume B, edited by E. Stamatis (Technical Chamber of Greece, Athens,

1973).
[36] J.L. Heiberg (Teubner, Leipzig, 1913).
[37] G. Loria, Storia Delle Matematiche, volume I (Greek translation) (Ulrico Hoepli, Milano, 1971).
[38] A.D. Pinotsis, A Mathematical Introduction to Theoretical Mechanics (Stamoulis, Athens, 2002).
[39] Ptolemy Claudius, Syntaxis Mathematica, translated by J.L. Heiberg (Teubner, Leipzig, 1898, 1900).
[40] Ptolemee Claude, Composition Mathematique, translated by P.M. Halma (Ch.H. Grand, Paris, 1813).
[41] M. Crowe, Theories of the World from Antiquity to the Copernican Revolution (Dover Publications, New York,

1990).
[42] D.R. Dicks, The Geographical Fragments of Hipparchus (Athlone Press, London, 1960).
[43] B.R. Goldstein, Archs Int. Hist. Sci. 33 3 (1983).
[44] A.D. Pinotsis, Astron. Astrophys. Trans. (to be published) (2005).
[45] T.S. Kuhn, The structure of Scientific Revolutions (Greek translation) (Chicago University Press, Chicago,

Illinois, 1962).
[46] S. Plakides, The Geocentric and Heliocentric Theory, J. of Parnasos, volume 16, Athens 1974.
[47] E. Stamatis, Aristarchus of Samos, on the Sizes and Distances of the Sun and Moon (Athens, 1980).


