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The motion of a test body in the external gravitational field of binary stellar systems with some slowly
varying physical parameters of the radiating components is considered on the basis of the restricted
non-stationary photogravitational three- and two-body problems with non-isotropic mass flow. The
family of polar and coplanar solutions are obtained. These solutions make it possible to give a dynamic
and structural interpretation of binary young evolving stars and galaxies.
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1. Introduction

At the present time there are intensive investigations of non-stationary dynamic problems
in astronomy [1–3]. The variations in some physical parameters of massive celestial bodies
allows experimental definition.According to this, the formulation and investigation of celestial
mechanical problems incuding the variation in some of those physical parameters with time
appear urgent. Consequently, we can take into account the variations in the gravitational effect
in the motion of a test body. The motion of a test body in the external gravitational field
of a binary star or galaxy system with slowly varying physical parameters (mass, size and
form) is considered as the dynamic model. In addition, we take into account the variation
in the reduction parameters for radiating and gravitating bodies in the photogravitational
formulation of the problem. The motion of particles is investigated in the framework of the
restricted non-stationary photogravitational three- and two-body problems with non-isotropic
mass flow. The results obtained make it possibile to carry out quantitative and qualitative
investigations using an analysis of the effects of variable gravitation in the motion of celestial
bodies.
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2. The motion in the neighbourhood of binary stellar system

Let us consider the motion of a test body in the gravitational field of a binary star or galaxy
on the basis of the restricted non-stationary photogravitational three-body problem. Particular
solutions of the stationary case of the problem have been considered in [4]. For the non-
stationary case, analogous particular solutions of the problem were given in [5]. The particular
solutions of the restricted three-body problem for the isotropic case of mass variation have
been considered by Gelfgat [6], Bekov [7, 8] and Luk’yanov [9]; the non-isotropic case has
been discussed by Bekov [10]. In the scheme of the restricted non-stationary photogravita-
tional three-body problem under consideration here, we assume that the masses and reduction
coefficients of all three bodies vary with time at the same rate in the presence of reactive
forces and are proportional to the rate of mass variation and to the velocity of body motion
(the non-isotropic case of variation in the mass of the bodies when the absolute velocities
of the separated and added particles are equal to zero). The equations of motion for passive
gravitating material in the rotating barycentric coordinate system Oxyz, the x–y plane of which
coincides with the plane of motion of the main bodies, and the x axis of which always passes
through these points, as in the work by Bekov [10], are of the following form:

ẍ − 2ωẏ = ω2x + ω̇y − µ1
x − x1

r3
1

− µ2
x − x2

r3
2

− ṁ3

m3
(ẋ − ωy),

ÿ + 2ωẋ = ω2y − ω̇x − µ1
y

r3
1

− µ2
y

r3
2

− ṁ3

m3
(ẏ + ωx), (1)

z̈ = −µ1
z

r3
1

− µ2
z

r3
2

− ṁ3

m3
ż,

where r1 and r2 are the distances of the test body from main bodies, ω is their angular velocity
of motion, and

µi = GqiMi,
µ̇i

µi

= ṁ3

m3
= ṁ

m
(i = 1, 2), (2)

where the gravitational constant G, the masses Mi of the main bodies and the reduction
parameters qi are functions of time, and also the mass of the test body is a function of time,
which means that the masses of the bodieas vary at the same rate.

We now consider the case when the parameters qi change in the interval of the real scale
for the planet systems:

0 < qi ≤ 1. (3)

Then, as in the case of the restricted three-body problem with non-isotropic mass flow [10],
we can give particular solutions for the problem with variable parameters µi and m3 in the
form of the Eddington–Jeans law with indices n = 3 and n = 6:

µ̇ = αiµ
n
i , ṁ3 = αmn

3 (i = 1, 2) (n = 3, 6). (4)

Using the transformations

r(x, y, z) =
(

µ0

µ

)3

ρ(ξ, η, ζ ), dτ =
(

µ

µ0

)5

dt, ω =
(

µ

µ0

)5

ω0, (5)
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Dynamics of non-stationary stellar systems 313

equations (1) are taken in the autonomous forms

ξ ′′ − 2ω0η
′ = ∂U

∂ξ
,

η′′ + 2ω0ξ
′ = ∂U

∂η
, (6)

ζ ′′ = ∂U

∂ζ
,

where

U = χω2
0

2
(ξ 2 + η2 + ζ 2) − ω2

0ζ
2

2
+ µ01

ρ1
+ µ02

ρ2
,

ρ2
i = (ξ − ξi)

2 + η2 + ζ 2 (i = 1, 2),

ξ1 = −µ02

µ0
ρ12,

ξ2 = µ01

µ0
ρ12,

(7)

and ρ12 and χ are constants given by

r12µm2 = χC2, ρ12µ0 = χC2(χ > 0). (8)

Here r12 is the distance between main bodies and C is the constant of the area integral.
Equations (7) coincide with the corresponding equations for the isotropic case of mass flow
[3, 8]; consequently, in our non-isotropic case, there exist analogous particular solutions of
the problem. The particular solutions of equations (6) are defined by the system of equations

∂U

∂ξ
= 0,

∂U

∂η
= 0,

∂U

∂χ
= 0. (9)

There are rectilinear solutions Li (I = 1, 2, 3) given by

ξL = αi, η = 0, ζ = 0 (i = 1, 2, 3), (10)

triangular solutions L4 and L5 that are defined by the condition

ρ3
1 = ρ3

2 = ρ3
12 = χ36

µ3
0

. (11)

If we suppose that ζ �= 0 in equation (9), then there are the coplanar solutions L6 and L7

(ξ, 0, ξ) that may be defined, as is also in the case of the restricted three-body problem with
variable masses [8, 9], by the equation

2(ξ + µ20) − 1 −
(

µ10χ

ξ + µ10(χ − 1)

)2/3

+
(

µ20

−ξ + µ20(χ − 1)

)2/3

= 0. (12)

Thus, the considered photogravitational problem has seven particular solutions in the region
of varying parameters given by equation (3), analogous to solutions of the restricted variable-
mass three-body problem. The additional particular solutions for different laws of the mass
and luminosity variation may be determined analogously to the work by Bekov [8].
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3. The motion in the neighbourhood of the massive radiating component
of the star and the galaxy

Let us now investigate the motion near one of the components of the binary stellar system (star
or galaxy); on the assumptions that the gravitational influence from the secondary component
is small and that this influence can be considered as a perturbation, we can neglect this in
comparison with the influence of the main component. Alternatively, we consider the case
when the mass of the secondary component is infinitesimal in comparison with the mass of
the main component of the stellar system. Then, as the dynamic model, we consider the motion
on the basis of the restricted non-stationary photogravitational two-body problem. Particular
solutions of the stationary problem have been considered by Batrakov [11] and Zhuravlev [12].
In our case we additionally take into account the variations in the mass, size and form of the
main component, which is taken as a triaxial radiating and gravitating ellipsoid [13]. Let us
consider the motion of a passive gravitating point in the external gravitational field rotating
with angular velocity 
 and radiating a triaxial ellipsoid with mass M(t), reduction parameter
q (0 < q ≤ 1), size and form that slowly vary with time. We assume the non-isotropic case
of mass variation for the test body (the absolute velocity of separated and added particles is
equal to zero); i.e. we take into account the reactive force, which is proportional to the rate of
mass variation and the velocity of motion for the material point. We suppose also that the slow
variations in the ellipsoid’s physical parameters do not lead to displacement of its centre of
mass. The semiaxes a, b and c of the ellipsoid are all functions of time and, as in the stationary
case, the ellipsoid differs little from a homogeneous sphere of radius R and has a volume equal
to the volume of this sphere. Then

a2 = R2 + α′, b2 = R2 + β ′, c2 = R2 + σ ′, (13)

where α′, β ′ and σ ′ are small quantities in comparison with R2 and which, as a consequence
of the equality of the volumes of ellipsoid and sphere, satisfy with sufficient accuracy up to a
higher order the correlation α′ + β ′ + σ ′ = 0.

The equations of motion for a material point in a rotating Cartesian coordinate system Îxyz

with the origin at the centre Î of mass of the ellipsoid, with the axes Îx, Îy and Îz coinciding
with the main central inertia axes of the ellipsoid, and with the direction of the angular velocity

 of the ellipsoid rotation coinciding with the Îz axis direction have the following forms:

ẍ − 2
ẏ − 
̇y − 
2x = ∂Ṽ

∂x
− ṁ3

m3
(ẋ − 
y),

ÿ + 2
ẋ + 
̇x − 
2y = ∂Ṽ

∂y
− ṁ3

m3
(ẏ + 
x), (14)

z̈ = ∂Ṽ

∂z
− ṁ3

m3
ż,

where

Ṽ = GqM

r
+ 3

10
GqM

α′x2 + β ′y2 + σ ′z2

r5
+ · · · (15)

represents the external potential of the ellipsoid at small α′, β ′ and σ ′ and where m3 is the
mass of the material point. Using the transformations

r(x, y, z) = l(t)ρ(ξ, η, ξ), dτ = 
 dt, (16)
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where l3
2κ = µ(t), κ = constant, µ(t) = GqM(t) and G is the gravitational constant,
equations (14) result in the autonomous forms

ξ ′′ − 2η′ = ∂V

∂ξ
, η′′ + 2ξ ′ = ∂V

∂η
, ζ ′′ = ∂V

∂ζ
, (17)

where

V = κU,

U = ρ2

2
− 1

κ

ζ 2

2
+ 1

ρ
+ ε

αξ 2 + βη2 + αζ 2

ρ5
+ · · · , (18)

ρ2 = ξ 2 + η2 + ζ 2.

Here ε is the parameter (0 < ε � 1), α, β and σ are constants that are defined by the
correlations

3

10

α′(t)
l2(t)

= εα,
3

10

β ′(t)
l2(t)

= εβ,
3

10

σ ′(t)
l2(t)

= εσ. (19)

We find the functions l(t) and 
(t) that determine the transformation (16) from the correlations

l2
m3 = l2
0
0m3 = C0, l̈ + ṁ3

m3
l̇ + (κ − 1)
2l = 0. (20)

Because of the adiabatic invariant

lµm2
3 = κC2

0 = constant (21)

and taking into account that the masses vary at the same rate, i.e.

µ̇

µ
= ṁ3

m3
= ṁ

m
, (22)

where m is a function of the time, meaning that it has the same rate of mass variation, we
found the particular solutions for mass variation with the time for the parameters µ and m3 in
the form of the Eddington–Jeans law with the indices n = 3 and n = 6:

µ̇ = α0µ
n, ṁ3 = β0m

n
3 (n = 3, 6). (23)

The autonomous equations (17) have the same meanings as in the case of the isotropic mass
flow [3, 13]; consequently, in our non-isotropic case there exist analogous particular solutions
to the problem. The system (17) has particular solutions in the form

ξ = constant, η = constant, ζ = constant, (24)

analogous to the equatorial and polar solutions of the stationary problem. Equatorial solutions
Pi are determined from the expressions

P1(P3) : ξ = ±1 ± εα + · · · , η = 0, ζ = 0,

P2(P4) : ξ = 0, η = ±1 ± εβ + · · · , ζ = 0.
(25)

The polar solutions are determined in the form

P5(P6) : ξ = 0, η = 0, ζ = ±
(

κ

κ − 1

)1/3

± ε

(
κ − 1

κ

)1/3

+ · · · . (26)

Besides these solutions there are other classes of polar solutions, namely z solutions in the
neighbourhood of the gravitating and radiating ellipsoid, which lie along the rotation axis of
the ellipsoid [13].
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4. Conclusion

The results of investigation of the dynamics of binary stellar systems on the basis of the
photogravitational three- and two-body problems with variable mass and radiation pressure of
the system’s components with non-isotropic mass flow are presented as important, because we
can investigate the new properties of conforming homographic solutions and build surfaces
analogous to the Hill surfaces in order to obtain quantitative and qualitative analyses of the
dynamic problem [14]. The particular solutions obtained may be used in difference problems
in stellar dynamics, e.g. in the investigation of the motion of gas and dust particles in the
neighbourhood of a binary or single forming variable star or the motion of stars and of gas and
dust particles in the external gravitational field of a binary galaxy with slowly changing physical
parameters of the galaxy’s nucleus, and also to obtain supplementary astrophysical data for
possible interpretation of transient structural peculiarities originating in the neighbourhood of
such evolving stars and galaxies.
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