This article was downloaded by:[Bochkarev, N.] On: 7 December 2007 Access Details: [subscription number 746126554] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Astronomical & Astrophysical Transactions

The Journal of the Eurasian Astronomical

Society

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713453505

The question of the abundance of metals in stars with

planets

L. N. Knyazeva ^a

^a Fesenkov Astrophysical Institute, Almaty, Kazakhstan

Online Publication Date: 01 August 2005

To cite this Article: Knyazeva, L. N. (2005) 'The question of the abundance of metals in stars with planets', Astronomical & Astrophysical Transactions, 24:4, 335 - 341

To link to this article: DOI: 10.1080/10556790500487031 URL: <u>http://dx.doi.org/10.1080/10556790500487031</u>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

The question of the abundance of metals in stars with planets

L. N. KNYAZEVA*

Fesenkov Astrophysical Institute, Almaty 050020, Kazakhstan

(Received 20 October 2005)

The metal-poor stars with planets were compared with the metal-rich stars also with planets. The high [Fe]/[H] values obtained from the spectroscopic analysis for most stars with planets can be consequence of the fact that the models used are inadequate for real stellar atmospheres.

Keywords: Stars; Metal abundances; Late-type stars; Evolution of stars

The planets discovered thus far, mainly by the radial-velocity technique, differ from the planets of our Solar System. Thus it is clear that the search for the characteristic features of planet-host (PH) stars is of great interest. During the last few years a fair number of different detailed spectroscopic studies of stars with planets have been carried out. One of the results of these investigation is that PH stars are on average more metal rich than dwarf stars in the solar neighbourhood [1–3]. This anomaly is believed to be an indication of the link between high metallicity and the presence of planets. This result has an enormous impact on theories of planetary formation. Mechanisms have already been proposed for an explanation of this correlation and the search for planets has become concentrated towards metal-rich stars.

The goal of the current study is to show that there are no reliable arguments confirming a connection between the presence of planets and the high metallicities of PH stars. Firstly, the PH stars detected to date are not probably a representative sample of all PH stars in our Galaxy. Secondly, high-precision radial-velocity studies have detected small, but periodic, variations in the motion of stars, which is interpreted as indicating the presence of companions with minimum masses ranging from approximately 1 to 10 Jupiter masses M_J . Radial-velocity observations cannot determine the true mass of these companions.

The use of astrometric data from the Hipparcos spacecraft, as well as radial-velocity data allowed us to determine the inclination of the companion orbital planes to the line of sight of the observer and to estimate the preliminary masses for the 30 proposed extrasolar companions. The obtained results showed that some of the companions can be brown dwarfs, double stars or low-mass stars rather than planets [4].

Astronomical and Astrophysical Transactions ISSN 1055-6796 print/ISSN 1476-3540 online © 2005 Taylor & Francis http://www.tandf.co.uk/journals DOI: 10.1080/10556790500487031

^{*}Email: lknyz@nursat.kz

Finally, it is necessary to note that the high metal content of PH stars are based mainly on detailed spectroscopic analysis. Unfortunately, the spectroscopic [Fe]/[H] values for the almost all PH stars were obtained only from two papers [2, 3]. Other researchers [5–7] have defined metal abundances for only some PH stars, therefore it is difficult to estimate the reliability of the [Fe]/[H] values.

High-resolution spectroscopy is believed to provide the most precise method for definitions of metal abundance. Indeed, high-resolution spectroscopy provides a chance for precise definitions of metal abundance. However, the detailed spectroscopic analysis of elemental abundances requires the introduction of atmospheric models. The data obtained from the results depends on the models adopted. Today, most elemental abundance analyses of latetype stars (PH stars belong to these types) rely on very simplified models for the stellar atmospheres and the spectral line formation processes [8, 9]. The detailed spectroscopic analysis of elemental abundances is a differential analysis with respect to the Sun. The use of the solar lines gf values (where gf is the oscillator strength) for all late-type stars may cause systematic errors.

However, not all PH stars show metal excesses, some of these stars were found to be metal deficient. Therefore we decided to compare PH star with metal excesses and those with metal deficiencies. We have gathered together all the physical characteristics of 111 PH stars available in the literature and have divided these stars into two groups according to the values of [Fe]/[H] obtained from spectroscopy (denoted [Fe]/[H]_{spc}). The first group contains PH stars with [Fe]/[H] ≤ 0.10 dex; the second group contains PH stars with [Fe]/[H] > 0.10 dex.

The characteristics of these PH are presented in tables 1 and 2. The first column identifies the Henry Draper Catalogue (HD) numbers. For some stars we have added binary letters d and A to HD numbers. The second and third columns give the effective temperatures $T_{\rm eff}^{\rm spc}$ determined by the infrared flux method (IRFM) [10] and the temperatures $T_{\rm eff}^{\rm spc}$ derived from high–resolution spectroscopy [2, 3] respectively. The ranges of effective temperatures are the same for both PH star samples (4700–6400 K). The $T_{\rm eff}^{\rm irfm}$ values are systematically 100–150 K lower than $T_{\rm eff}^{\rm spc}$ (figure 1). Ramierez and Melendez [11] have determined the direct effective temperatures $T_{\rm eff}^{\rm dir}$ for 13 stars, using directly measured stellar diameters and bolometric fluxes and show that the IRFM temperature scale is a very good match to $T_{\rm eff}^{\rm dir}$.

Because of close correlation between the effective temperature and the metal abundance in the spectroscopic analysis, the systematic error of +100 K in the effective temperature for late-type stars will result in an error of about 0.1 dex in the abundance definition [9]. It is necessary to explain the reason for such a discrepancy between these temperature scales.

The fourth to sixth columns contain the [Fe]/[H] values obtained from spectroscopy (denoted ([Fe]/[H])_{spc}) [2,3] and the [Fe]/[H] values derived from two photometric calibrations (denoted ([Fe]/[H])_{MS} [12] and (([Fe]/[H])_{SN} [13]).

The photometric UVBY [Fe]/[H] calibrations are frequently used for the analysis of distribution of metallicity of the F to K stars in the solar neighbourhood, as there are more than 63 600 stars with UVBY-photometry. Schuster and Nissen [13] have published a calibration which uses the standard UVBY indices, B - Y, m_1 , and c_1 to estimate the metallicity of a stars. The m_1 index is believed to be a good indicator of metallicity in late-type stars, if no modification due to chromospheric activity is expected. This calibration is applicable to the dwarf stars of spectral type ranging from F to early K-type stars and covers the metallicity range -3.5 < [Fe]/[H] < 0.4. More recently, Martell and Smith (MS) [12] have presented, as they believed, the improved UVBY [Fe]/[H] calibration. These calibrations are based on the [Fe]/[H] values from detailed spectroscopic analysis collected in the catalogues [14, 15] and by UVBY photometry.

In the seventh and eighth columns the chromospheric activity indices $\log R'_{\rm HK}$ [16] and the rotation periods $P_{\rm rot}$ [16], respectively of the PH stars are listed. As most PH stars are inactive,

337

HD	T _{eff} (K)	T _{eff} (K)	([Fe]/[H]) _{spc}	([Fe]/[H]) _{MS}	([Fe]/[H]) _{SN}	$\log R'_{\rm HK}$	P _{rot} (day)	B - V	Spectral type	Age (G years)	Estimated mass of planetary companion
1424	6152	6312	0.00			4.05		0.52	GIIV	4	
142u 2651	5264	5172	0.09			-4.95	45	0.52	KOV	68	
4208	5586	5626	-0.24	_0.23	_0.22	-4.95	45 26	0.65	G5V	5 0	
6434	5741	5835	-0.24	-0.23	-0.22	-4.95	10	0.60	GIV	1 13	206M-
8574	5942	6151	0.06	-0.10	-0.24	-5.07	18	0.58	E8	4-13	290MJ
10647	J J J 42	6143	-0.03	-0.10	-0.23	-3.07 -4.72	7	0.55	F8V	4-0 5_7	
13445d	5128	5163	-0.24	0.11	0.10	_4.72	31	0.33	K1V	6_8	
22049	5012	5073	-0.13	_		-4 51	17	0.88	K2V	1_2	
22049	5961	5050	-0.13	0.14	_0.11	_1 01	17	0.58	F8/G0V	1-2	
33636†	5811	6046	_0.08	-0.21	_0.20	-4.85	15	0.50	GOV	3_8	
37124	5424	5546	-0.38	-0.38	-0.37	-4.90	25	0.67	G4V	4_12	119 <i>M</i>
39091	6022	5991	0.50	0.07	0.09	-4 97	25	0.60	GIV	4-6	119101
50554	5907	6026	0.10	-0.08	-0.14	-4.97	16	0.00	E8		
65216	5561	5666	0.01	-0.08	-0.14	-4.95	10	0.58	C5V	5	
80207	5072	5000	-0.12	-0.20	-0.19	4.05	18	0.07	GOV	5.0	
05128	3912	5054	-0.10	-0.10	-0.13	-4.95	22	0.59	GOV	5-9	2.0 M.
106252	5007	5800	0.00	-0.00	0.02	-3.02	23	0.02	GOV	0-9	2.9 <i>1</i> 1
111222	5480	5404	-0.01	-0.13	0.13	4.97	23	0.04	G5V	5 0	
11/232	5480	1834	-0.50	-0.45	-0.41	-4.96	51	0.70	K3V	5-9	
114300	5783	5886	-0.00	0.43	0.56	5.05	10	0.98	COV	> 10	
1147624	5824	5884	-0.25	-0.43	-0.50	-5.05	19	0.53	EOV	>10	145 M-
1147020 114783	5020	5080	-0.70	-0.75	-0.75	4.06	_	0.55	F9V K0	14	14 <i>51</i> / <i>M</i> J
117618	5048	6012	0.09	0.02	0.02	-4.90		0.52	G2V	4-5	
128211	1812	4825	0.00	-0.02	-0.02	-3.01		0.00	U2V K2V	051	
120311	5222	5202	0.03			-4.49	0	0.97	KOV	2.0	
141027	5808	5000	0.03	0.24	0.24	-4.78	21	0.78	C2 3V	2-9	10 <i>M</i> -
141957	5754	5052	0.10	0.24	0.24	-4.94	21	0.05	$G_{2}=3V$	7 12	10 <i>M</i>
145701	5852	5883	-0.21	-0.24	-0.27	-5.08	5	0.61	G_{2}^{-2}	1 8	115141
14/313	5702	5061	0.00	0.00	0.02	4.52	5	0.02	G0-5 V	2 8	
162020	1578	1858	-0.01	-0.20	-0.18	-4.51	_	0.01	KOV	2-0	13 <i>M</i> -
168746	5/68	4000 5601	-0.04	0.15	0.00	5.05	24	0.90	K2 V G5	7 10	1 <i>31</i> / 1
1864274	5622	5772	-0.08	-0.13	-0.09	-5.05	20	0.71	G3V	/-10	14M-
102263	1888	4047	0.08	0.03	0.07	-5.08	29	0.00	KOV	07	14MJ 82M-
192205	4000	4947 6071	-0.02			-4.30	15	0.94	KZ V EQIV	6	82 <i>M</i> J
19080JA	6028	6141	-0.05	0.08	0.07	-3.01	15	0.50	G2V	7	
200467	50028	6117	0.00	-0.08	0.07	-4.90	10	0.57	G0V	- 5	
2094380	5702	58/2	0.02	-0.08	-0.08	-5.00	25	0.59	G5	5 11	50 M-
222362	5702	5645	0.05	-0.09	-0.08	-5.00	23	0.05	05	5-11	<i>391W</i> J
Stars outs	ide the	main	sequence								
11964A	5142	—	-0.10	-0.10	-0.02	-5.16	45	0.82	G5	9	
72659	5789	5995	0.03	-0.07	-0.10	-5.02	21	0.61	G0V?	4–7	
117176	5328	5560	-0.06	-0.18	-0.10	-4.99	32	0.71	G5V	5–7	$27M_{\rm J}$
136118"	6059	6222	-0.04	-0.08	-0.20	-4.97	13	0.53	F9V	4–5	$11.9 M_{\rm J}$
154857	5594	5610	-0.23	-0.32	-0.28	-5.14	_	0.70	G5V	4	
168443	5491	5617	0.06	-0.16	-0.06	-5.12	38	0.72	G5	2-10	$17M_{\rm J}$
190228	5081	5327	-0.26	-0.40	-0.27	-5.18	47	0.79	G5IV	5-10	$45M_{\rm J}$
195019d	5506	5842	0.08	-0.13	-0.11	-5.09	29	0.64	G3IV-V	7–10	713 <i>M</i> _J

Table 1. The physical characteristic of stars with planets and with $([Fe]/[H])_{spc} \leq 0.10$ dex.

[†]Minimum masses of companions in the range from 10 to 15 M_{Jup} .

we used two photometric calibrations to estimate the distribution of the metallicities in PH stars using the *UVBY* photometry from [17]. The results are listed in the fifth and sixth columns of tables 1 and 2. The [Fe]/[H] values derived from the photometric calibrations are fairly consistent with each other. The [Fe]/[H] values derived from both photometric calibrations are systematically lower than those obtained from spectroscopy and the discrepancies strongly increase towards higher [Fe]/[H] values (figure 2). The photometric calibrations result in [Fe]/[H] values that are less accurate but, as they are based on [Fe]/[H] values obtained from

											Estimated
	wirfm	T spc					D		G (1		mass of
HD	$I_{\rm eff}^{\rm min}$ (K)	$T_{\rm eff}$ (K)	([Fe]/[H]) _{spc}	([Fe]/[H]) _{MS}	: ([Fe]/[H])sn	$\log R'_{\rm HW}$	$P_{\rm rot}$ (days)	B - V	Spectral type	Age (G vears)	planetary
						о пк				(-)	
Stars ins	ide the	$\frac{5102}{5102}$	l of the main s	equence		1 92		0.80	C5		
2038	6065	6252	0.10	0.12	0.16	-4.65	_	0.89	GIV	2 4	
20267	50005	6120	0.20	0.12	0.10	-4.03		0.50		2-4	
20507	3989	1975	0.17	-0.02	0.01	-4.30	0	1.00	GU KAV	0.9	
27605	5216	5301	0.30			_	_	0.83	KOV		
37003 400704	6081	6145	0.31	0.07	0.03	4.63		0.85	KUV FSV2	$\frac{-}{26}$	
40979u 40674	5500	5644	0.21	0.07	-0.03	4.05	27	0.37	C5V2	2-0	
52265	6007	6103	0.33	0.18	0.22	-4.80	16	0.74	GOV2	5-5 6 4	41 M-
63/5/	0007	18/1	0.23	0.15	0.15	-5.02	10	1.01	KAV	0-4	411/1
68088	5778	5088	0.11	0.35	0.36	5.04	26	0.65	G0	1.6	
70642	5620	5603	0.18	0.33	0.14	-5.04	20	0.05	G5IV_V	- <u>+</u> -0	
73256	5344	5518	0.16	0.11	0.14	_1 19	_	0.02	$G8_K0V$	>10	
752804	6080	61/3	0.20	0.12	0.17	-5.00	15	0.78	GOV	×10 4_5	
80606d	5461	5574	0.20	0.10	0.20	-5.00	15	0.56	G5		
820/13	5052	6016	0.32	0.22	0.20	-4.92	20	0.70	GO	3_1	36M-
02788	5500	5821	0.30	0.25	0.27	5.05	32	0.62	G5V2	3 0	54 Mz
92/00	5590	1005	0.32	0.16	0.22	-5.05	18	0.09	K3V	5-9	54 <i>m</i> J
00/02/	4605	4995	0.15	_	_	-5.02	40	1.00	KOV	0	
101030	4095	5070	0.20	_	_	-4.95	45	0.01	K1V	5	
101930	6101	6218	0.17	0.06	0.07	1 78	40	0.51	F8 COV	24	
1201364	6307	6330	0.20	0.00	0.07	4.70	6	0.54	F7V	2-4	
1201300	5062	6075	0.23	0.19	0.12	4.70	0	0.51	GOV	2	
142415	5902	6045	0.10	-0.02	-0.02	-4.75	10	0.59	G2V G2V	25	
142413	5266	5600	0.21	0.10	0.13	-4.00	26	0.02	G2 V	2-5	
170040	6160	6260	0.27	0.09	0.11	-4.89	10	0.75	CJ EQV	2-5	
1/9949	5665	5845	0.22	0.12	0.00	-4.79	27	0.55	GOV	67	
210277	5410	5532	0.13	0.14	0.17	-5.05	41	0.00	G2V G8V	67	18M-
217014	5690	5804	0.19	0.04	0.11	-5.00	29	0.67	G2IV	0=7 4-7	10///
Stars out	side th	ie ma	in sequence								
2039	5847	5976	0.32	0.07	0.09	-4 91		0.66	G2IV/V	2_3	
9826d	6184	6212	0.13	0.07	-0.04	-5.04	12	0.54	621177 F7V	4-6	$108 M_{\rm T}$
16141d	5679	5801	0.15	-0.06	-0.02	-5.11	31	0.67	G5IV	8-5	$111M_{\rm T}$
19994d	5999	6190	0.15	0.00	-0.01	_4 88	14	0.57	F8V	4-5	111111
23596	5977	6108	0.31	0.18	0.10	-5.06	25	0.63	F8	7_4	
27894		4875	0.30					1.00	K2V		
28185	5594	5656	0.22	0.21	0.21	-4.82	30	0.75	G5	>10	
30177	5500	5588	0.39	0.16	0.20	-5.08	_	0.77	G8V	>10	
41004d	5047	5242	0.16	_	_	-4.66	27	0.89	K1V		
45350	5446	5616	0.13	0.14	0.19	-5.10	39	0.74	G5IV	8-12	
46375d	5267	5268	0.20	_	_	-4.94	43	0.86	K1IV	5-11	
74156	5910	6112	0.16	-0.03	-0.06	-5.08	19	0.58	G0	4–7	
75732d	5247	5279	0.33	_	_	-5.04	47	0.87	G8V	6–9	
83443	5386	5478	0.37	_	_	-4.85	35	0.81	K0V	4-8	
89744d	6106	6234	0.22	0.19	0.12	-4.94	11	0.53	F5V	2-5	$97M_{\rm I}$
102117	5458	5690	0.32	0.02	0.09	-5.03	34	0.72	G6V	>10	J
108874	5443	5596	0.23	0.09	0.14	-5.08	38	0.74	G5	>10	
117207	5483	5654	0.23	-0.01	0.07	-5.06	36	0.72	G8IV/V	6-10	
134987	5674	5776	0.30	0.18	0.22	-5.09	33	0.69	G5V	6	$34M_{\rm I}$
142022d	5402	5499	0.19	_	_	-4.95	38	0.79	KOV	>10	- 3
145675	5129	5311	0.43	_	_	-5.06	48	0.88	KOV	8	
160691	5600	5806	0.32	0.15	0.20	-5.02	31	0.69	G3IV	7	
169830	6227	6299	0.21	0.15	0.07	-5.12	11	0.52	F8/9V	7	$102M_{1}$
183263	5755	5991	0.34	0.09	0.10	-5.11	32	0.68	G2IV	8-3	- 0 - 1.1 j
188015	5557	5793	0.30	0.19	0.21	-5.05	36	0.73	G5IV	7	
190360d	5552	5584	0.24	0.11	0.17	-5.09	40	0.75	G6IV	7	
196050	5789	5918	0.22	0.06	0.09	-5.04	16	0.67	G3V	4	

Table 2. The physical characteristic of stars with planets and with $([Fe]/[H])_{spc} > 0.10$.

(continued)

HD	T ^{irfm} (K)	$T_{\rm eff}^{ m spc}$ (K)	([Fe]/[H]) _{spc}	([Fe]/[H]) _{MS}	([Fe]/[H]) _{SN}	$\log R'_{\rm HK}$	P _{rot} (days)	B - V	Spectral type	Age (G years)	Estimated mass of planetary companion
213240A	5899	5984	0.17	0.00	-0.02	-5.00	15	0.60	G4IV	3-5	
216435	5931	5938	0.24	-0.01	-0.05	-5.00		0.62	G3IV	5	
216437	5733	5887	0.25	0.08	0.11	-5.04	27	0.66	G4IV-V	>8	
216770	5353	5423	0.26	_	_	-4.92	39	0.82	K1V	>10	
217107	5598	5646	0.37	0.31	0.28	-5.08	39	0.74	G8IV	7	
4203	5546	5636	0.40	0.19	0.22	-5.18	45	0.77	G5	10-4	
10697	5510	5641	0.14	0.01	0.08	-5.08	36	0.73	G5IV	7	$38M_{\rm J}$
12661	5501	5702	0.36	_	_	-5.08	35	0.71	K0V?	8	$56M_{\rm J}$
27442	4613	4825	0.39	_	_	-5.27		1.08	K2IV	7	
38529	5487	5674	0.40	0.26	0.23	-4.96	37	0.77	G4V	4-5	$435 M_{\rm J}$
76700	5645	5737	0.41	0.12	0.14	-4.90		0.74	G6V?	>10	
88133	5160	5438	0.33	0.47	-0.05		_	0.81	G5IV	9	

Table 2. Continued.

spectroscopic analysis, we expected to find only large random errors when comparing with spectroscopic values. We believe that unreliable definitions of the [Fe]/[H] values obtained from spectroscopy could be the reason for such discrepancies.

In figure 3 the locations of both PH groups in a colour–absolute magnitude diagram relative to the average main sequence (obtained by MS) in the solar neighbourhood are shown. To determine the locations of the average MS values we used A9 to K2V stars within 20 pc with a V magnitude of not more than 8 from the Hipparcos catalogue. The absolute magnitudes of PH stars are calculated on the basis of the trigonometric parallaxes and UBV photometry from the Hipparcos catalogue. The data for the metal-deficient PH stars are plotted as full circles, those for the metal-rich PH stars are plotted as full triangles, and the location of the Sun is shown by an arrow. On the basis of the theoretical isochrones, it was estimated [18] that a star with [Fe]/[H] = +0.3 will lie at a magnitude of 0.45 beneath

Figure 1. The comparison of the $T_{\text{eff}}^{\text{spc}}$ values derived from high-resolution spectroscopy [2, 3] with the $T_{\text{eff}}^{\text{irfm}}$ values obtained from IRFM calibration [10]. The one-to-one relation is drawn as a solid line.

Figure 2. The comparison of [Fe]/[H] values derived from high-resolution spectroscopy [2, 3] with those obtained from *UVBY* [Fe]/[H] calibration [12]. The one-to-one relation is drawn as solid line.

it. We plotted these limits in figure 3 as the dotted and dot-dashed lines respectively. As seen in figure 3, almost all the stars in the first group lie within the MS values. These PH stars belong mainly to the early spectral subclasses G. Their levels of activity are similar to the average level for the Sun (log $R'_{\rm HK} = -4.96$). The inactive, slowly rotating stars of this group lie outside the MS values.

Some of the stars in the second group which are located within the MS values have higher levels of activity and faster rotations than the Sun. This could be an indicator of a young age

Figure 3. Colour – magnitude diagram for PH stars. Metal-poor PH stars are plotted as full circles, metal-rich PH stars are plotted as full triangles, and the location of the Sun is shown by an arrow.

and the presence of a massive companion. Most stars in this group lie outside the MS values. They are the inactive, slowly rotating stars. The stars which belong to a binary stellar system and subgiants are among these. Some stars are displaced from the MS values by a magnitude of more than 1. These inactive, slowly rotating stars have the highest [Fe]/[H] values from the spectroscopic analysis.

In the last two columns of both tables are given the estimations of the stellar ages from [16, 19] and the preliminary estimations of the masses of planetary companions from [4]. Usually the age of star is estimated from comparison of the position of a star on the Hertzsprung–Russell diagram with a series of accepted isochrones [19]. The alternative method uses the age-activity relation [16]. Isochronic and chromospheric ages sometimes differ by a factor of almost 2. The levels of activity, the periods of rotation and the estimations of age show that most of the PH stars are older than the Sun.

As a result of the above work, we have found the following.

- (i) There is a systematic distinction between the effective temperatures obtained from the IRFM and those found from spectroscopic analysis.
- (ii) There is a systematic distinction between the distributions of metallicities in PH stars obtained from spectroscopic analysis and photometric calibrations.
- (iii) Comparison of the metal-poor and metal-rich stars has shown that the first group of stars as a whole belong to the earlier subclasses G.
- (iv) The high abundances obtained from the spectroscopic analysis are found mainly for old inactive late-type subclasses G to K stars, for subgiants and for stars found to belong to binary stellar systems.

Thus, we believe that the metal abundances for late-type stars can be overestimated because of incompleteness of the applied models of stellar atmospheres.

References

- [1] G. Gonzalez, C. Laws, S. Tyagi and B.E. Reddy, Astron. J. 121 452 (2001).
- [2] N.S. Santos, G. Israelian, M. Mayor, J.P. Bento, P.C. Almeida, S.G. Sousa and A. Ecuvillon, Astron. Astrophys. 415 1153 (2004).
- [3] N.S. Santos, G. Israelian, M. Mayor et al., Astron. Astrophys. 437 1127 (2005).
- [4] I. Han, D. Black and G. Gatewood, Astrophys. J. Lett. 548 L57 (2000).
- [5] G. Zhao, Y.Q. Chen, H.M. Qiu and Z.W. Li, Astron. J. 124 2224 (2002).
- [6] C. Laws, G. Gonzalez, K.M. Walker, S. Tyagi, J. Dodsworth, K. Snider and N.B. Suntzeff, Astron. J. 125 2664 (2003).
- [7] U. Heiter and R.E. Luck, Astron. J. 126 2015 (2003).
- [8] R.L. Kurucz, Baltic Astron. 11 100 (2001).
- [9] M. Asplund, Astrophys. J. 598 501 (2003).
- [10] I. Ramierez and J. Melendez, Astrophys. J. 609 417 (2004).
- [11] I. Ramierez and J. Melendez, Astrophys. J. 626 446 (2005)
- [12] S.L. Martell and G.H. Smith, Publns. Astron. Soc. Pacif. 116 920 (2004).
- [13] W.J. Schuster and P.E. Nissen, Astron. Astrophys. 221 65 (1989).
- [14] G. Cayrel de Strobel and C. Bentolila, Astron. Astrophys. 119 1 (1983).
- [15] G. Cayrel de Strobel, C. Soubiran and N. Ralite, Astron. Astrophys. 373 159 (2001).
- [16] J.T. Wright, G.W. Marcy, R.P. Butler, S.S. Vogt, Astrophys. J., Suppl. Ser. 152 261 (2005).
- [17] B. Hauck and M. Mermilliod, Astron. Astrophys., Suppl. Ser. 129 431 (1998).
- [18] J.T. Wright, Astron. J. 128 1273 (2005).
- [19] B. Nordstrom, M. Mayer, J. Andersen, J. Holmberg, F. Pont, B.R. Jørgensen, E.H. Olsen, S. Udry and N. Mowlavi, Astron. Astrophys. 418 989 (2004).