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To describe the state of dark energy a new condition, namely the pressure-dominance condition
(p < −ρ), was first proposed. This allowed us to write the dark-energy equation of state in the
form of the equations in nonlinear acoustics. It is shown that a system of two gravitating scalar fields
allowed the realization of the pressure-dominance condition.

Keywords: Dark energy; Equation of state

One of the basic problems of modern cosmology is the theoretical description of the dark
energy associated, for example, with quintessence, the � term, etc. Its observable properties
are the scale homogeneity and absence of clustering [1, 2]. An important theoretical aspect
of this problem is the question of the dark-energy equation of state. The simplest equation of
state for quintessence was chosen in the linear form p = w2ρ, where the magnitude of the
coefficient of proportionality is within the interval −1 < w2 < −1/3 [3]. However, observable
data on supernova demonstrate that w2 may be less than −1 [4–9]. At the same time these
data led to the result about the energy-dominance violation in the dark energy.

This has been discussed in a number of articles where the energy-dominance condition was
found by using nonlinear equations of state. In fact, in [10] it was expressed as the equation
of state for a Thait liquid, p = ω0ρ

γ , where ω < 0 and γ > 0. In [11, 12] the Chaplygin
gas equation of state, p = −A/ρn, where A > 0 and n > 1, was used for its description.
Modification of the Chaplygin gas equation of state [13] and other attempts (see, for example,
[14]) to describe the dark energy were also used.

In the present article, the new theoretical interpretation of dark-energy non-clustering
is proposed. To understand its meaning, consider the general condition of any substance
clustering.

It is well known that clustering of a baryonic substance takes place in cases when its density
satisfies the energy-dominance condition

−ρ ≤ p ≤ ρ. (1)
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266 L. M. Chechin

Hence, it is possible to interpret the absence of clustering as a violation of condition (1), or as
a violation of the energy-dominance principle in cosmology.

The violation of the energy-dominance principle in classical cosmology has been discussed,
for example, in [15]. It was shown there that, if the general relativity is modified by using the
conformal gravitational constant G → Gψ(ρ), then the energy-dominance principle for high
densities may be violated by choosing a suitable function ψ(ρ).

However, we shall not consider the situation outside the framework of general relativity
but shall give another treatment of dark-energy non-clustering. In fact, we shall interpret the
non-clustering of dark energy as the possibility of describing its state by a pressure-dominance
condition, i.e. by imposing the following conditions on it:

p < −ρ and p > ρ. (2)

To find the equation of state for dark energy, note that in the above-cited articles the magnitude
of the coefficient has rather wide limits: −1.0 < w2 < −1.3. According to other estimates,
−1.3 < w2 < −1.6 and also just −2.4 < w2 < −1.0 [7]. From the first two estimates it is
easy to see that it is possible to describe the state of dark energy with the required accuracy by
a small deviation from the vacuum state. Thus, to deduce this, we shall use the approximation
method.

So, we write the equation of state for an arbitrary barytropic substance in the general form

p = p(ρ) (3)

and express its pressure and energy density as

p = p0 + δp, δp > 0,

ρ = ρ0 + δρ, δρ > 0,
(4)

where δp and δρ are small incremental terms added to an unperturbed pressure p0 and unper-
turbed energy density ρ0, which are determined by the propagation of sound in a substance.
Equation (3) can be expressed as a Taylor series,

p = p0 +
(

∂p

∂ρ

)
0

δρ + 1

2

(
∂2p

∂ρ2

)
0

(δρ)2 + · · · , (5)

according to [16].
Further we utilize the basic values of pressure and energy density that satisfy the vacuum

state, namely

p0 = −ρ0, (6)

while we consider the dark-energy state as a sum of the vacuum state and a small incremental
term added to it. As (

p

ρ

)
= υ2 > 0 (7)

is the speed of sound in a substance (we use the atomic unit system, i.e. � = c = 1), then to
describe the dark energy we limit ourselves to only the three terms in equation (5). Bearing
in mind equation (6) we express the pressure in the nonlinear form

p = −ρ0 + υ2

(
1 + κ

δρ

υ

)
δρ = p0 + δp, (8)

where κ = (∂υ/∂ρ)0 is the dispersion index of the substance. If κ > 0, δρ > 0, then dispersion
is normal and equation (8) in total will describe the state of a substance satisfied by the energy-
dominance condition (1). However, if κ < 0, δρ > 0, then dispersion will be abnormal and
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Description of dark energy by the pressure-dominance condition 267

equation (8) may effectively describe the state of dark energy that now satisfies the pressure-
dominance condition (2). Note that the choice of the nonlinear equation of state type (8)
allows us to describe the dynamics of dark energy effectively in the framework of the standard
inflationary model.

In doing this, consider the self-consistent problem for mutual evolution of fields and the
Universe. A suitable system of Einstein’s equations and equations of two interacting scalar
fields is

(
ȧ

a

)2

= 4πG

3

(
ϕ̇2 + m2

ϕϕ2 + ψ̇2 + m2
ψψ2 + λϕ

2
ϕ4 + λψ

2
ψ4 + vϕ2ψ2

)
, (9)

ϕ̈ + 3
ȧ

a
ϕ̇ + m2

ϕϕ + λϕϕ3 + vψ2ϕ = 0, (10)

ψ̈ + 3
ȧ

a
ψ̇ + m2

ψψ + λψψ3 + vϕ2ψ = 0. (11)

To search for the possibility of pressure-dominance realization in this model, let the masses
and fields correlate with each other as m � mψ, ψ � ψ , while the self-action coefficients
satisfy the inequality λϕ � λψ � 1. Hence, the period of oscillations for the field ϕ is larger
than the period of oscillations for the field ψ(Tϕ � Tψ). In other words, in the time when
the field ψ changes, the basic field ϕ almost does not change, i.e. we can describe this by the
conditions

ϕ̇ ≈ 0, ϕ ≈ constant. (12)

By neglecting the self-action of the fields, we can simplify our system of equations and reduce
it to another system given by

(
ȧ

a

)2

= 4πG

3
(m2

ϕϕ2 + ψ̇2 + m̂2
ψψ2), (13)

ψ̈ + 3
ȧ

a
ψ̇ + m̂2

ψψ = 0, (14)

on which we shall perform our analyses. Here m̂2
ψ = m2

ψ + vϕ2 is the square of the effective
mass for the field ψ , determined by the proper field mass and its interaction with the field ϕ.

In the following, it is necessary to determine the masses of the scalar fields and their initial
amplitudes. According to [17] their typical magnitudes are

mϕ � λ1/2
ϕ MP, mψ � λ

1/2
ψ MP, ϕ0 ≈ λ−1/4

ϕ MP, ψ0 ≈ λ
−1/4
ψ MP, (15)

where MP is the Planck mass. Bearing in mind these constraints, consider the case when

mϕϕ � m̂ψψ, mϕϕ � ψ̇. (16)

For our model the inequalities (16) occur if

λψ � λϕ � 1. (17)

Conditions (16) mean that the energy of the basic field φ is essentially larger than the energy
of the additional field ψ . Under this assumption the system (13) and (14) becomes simpler
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268 L. M. Chechin

and takes the form (
ȧ

a

)2

= 4πG

3
m2

ϕϕ2, ψ̈ + 3
ȧ

a
ψ̇ + m̂2

ψψ2 = 0. (18)

It is easy to see that equations (18) reduce to one linear differential equation of the second
order given by

ψ̈ + Jψ̇ + Rψ = 0,

with the coefficients J = (12πG)1/2mϕϕ andR = m̂2
ψ .We looks for its solution in the standard

form ψ = ψ0 exp(Mt); hence we obtain the following algebraic equation:

M2 + JM + R = 0

which has two roots

M1,2 = −J

2
±

(
J2

4
− R

2

)1/2

. (19)

From equations (16) and (17) we obtain mϕ � m̂ψ . Thus it is possible to express J2/4 − R2

as a Taylor series with respect to the small value m̂ψ/mϕ and to obtain two solutions

M1 = − m̂2
ψ

2(3πG)1/2mϕϕ
, M2 = −2(3πG)1/2mϕϕ (20)

Note that the second solution is approximate with zero accuracy with respect to m̂ψ/mϕ . Thus
the required solutions of the field ψ take the forms

ψ1 = ψ0 exp(M1t) = ψ0 exp

(
− m̂2

ψt

2(3πG)1/2mϕϕ

)
, (21)

ψ2 = ψ0 exp(M2t) = ψ0 exp[−2(3πG)1/2mϕϕ]. (22)

From the right-hand side of equation (9) it is easy to find the incremental terms added to the
energy density and pressure:

δρ = 1

2
ψ̇2 + m2

ψ

2
ψ2 + v

2
ϕ2ψ2, (23)

δp = 1

2
ψ̇2 − m2

ψ

2
ψ2 − v

2
ϕ2ψ2. (24)

Putting these into the nonlinear equation of state (8) and bearing in mind the constraints on
the field’s character (negligible self-action), we obtain the main dispersion term

κ ≈ κ0 = 2
(ψ̇2 − m̂2

ψψ2) − υ2(ψ̇2 + m̂2
ψψ2)

υ(ψ̇2 + m̂2
ψψ2)2

. (25)

(Other terms that are proportional to the coefficient of interaction are omitted here.) Putting
equations (21) and (22) into equation (25), we obtain

κ01,2 = 2
(M2

1,2 − m̂2
ψ) − υ2(M2

1,2 + m̂2
ψ)

υ(M2
1,2 + m̂2

ψ)2ψ2
0

exp(−2M1,2t). (26)
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Description of dark energy by the pressure-dominance condition 269

To estimate the sign of dispersion, assign specific values to the roots in equation (26). For the
first root the dispersion is

κ01 = −2
(1 − m̂2

ψ/12πGm2
ϕϕ2) + υ2(1 + m̂2

ψ/12πGm2
ϕϕ2)

υm̂2
ψ(1 + m̂2

ψ/12πGm2
ϕϕ2)ψ2

0

exp

(
m̂2

ψ√
3πGmϕϕ

· t

)
. (27)

For the second root we have the following expression for dispersion:

κ02 = −2
(1 − 12πGϕ2m2

ϕ/m̂2
ψ) + υ2(1 + 12πGϕ2m2

ϕ/m̂2
ψ)

υm̂2
ψ(1 + 12πGϕ2m2

ϕ/m̂2
ψ)ψ2

0

exp[4(3πG)1/2mϕϕt]. (28)

Remembering that because of equations (16) and (17) the masses of the fields correlate as
m̂ψ � mϕ and the gravitational constant G = M−2

P , we obtain the following estimation:

m̂2
ψ

Gm2
ϕϕ2

≈ λψ

λ
1/2
ϕ

� 1.

Hence, the expression for abnormal dispersion (27) is simplified radically and takes the form

κ01 = −2
1 + υ2

υm̂2
ψψ2

0

exp

(
m̂2

ψ√
3πGmϕϕ

· t

)
< 0. (29)

From this we see that the time given by

T1 ≈ G1/2mϕϕ

m2
ψ

�
(

λϕ

λ4
ψ

)1/4

M−1
P �

(
λϕ

λ4
ψ

)1/4

× 10−43c. (30)

is the time scale for the existence of dark energy. Thus, at typical magnitudes of the self-
interaction constants λψ ≈ 10−14 and λϕ ≈ 10−12, the exponent index will be of the order of
10−5 during the prehot stage t ≈ 10−37c of evolution of the Universe. This means that the
magnitude of abnormal dispersion is

κ01 ≈ −2
1 + v2

vm2
ψψ2

� −2
1 + υ2

υλ
1/2
ψ

M−4
P (31)

or, in the usual units, κ01 � −10−87cm3 g−1. This estimation shows that, despite the minute-
ness of the dispersion (31) at the initial stages of the evolution of the Universe, the state of the
substance differs from that of the vacuum-like substance.

Because of the same conditions (15) and (17) we also obtain the following estimation:

Gϕ2
m2

ϕ

m̂2
ψ

≈ λ
1/2
ϕ

λψ

� 1; (32)

hence the dispersion is positive (normal dispersion):

κ02(t) ≈ 2
1 − υ2

υGm2
ϕϕ2

0ψ
2
0

exp[(12πG)1/2mϕϕt]

≈ 2
1 − υ2

υ

(
λψ

λ2
ϕ

)1/2

M−4
P exp[(12πG)1/2mϕϕt] > 0. (33)
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The state of the system with positive dispersion, as follows from equation (32), will exist on
the time scale

T2 ≈ 1

G1/2mϕϕ
� λ−1/4

ϕ M−1
P � λ−1/4

ϕ × 10−43c. (34)

Hence, the exponent index becomes very large (much greater than 102) even at the initial
lifetime of the Universe t > T 2. However, because of the condition υ = 1 [18], the dispersion
(32) will always tend to zero, i.e. κ02(t) = 0.

So, the given analysis provides the result that the system of two gravitating scalar fields, one
of which, namely ϕ, is in the vacuum-like state (12) and the other, namely ψ , is exponentionally
decreasing as equation (21), can naturally describe the state of dark energy by the pressure-
dominance condition.
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